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Abstract: In this article we investigate the asymptotic and numerical properties of

a class of block thresholding estimators for wavelet regression. We consider the

effect of block size on global and local adaptivity and the ch oice of thresholding

constant. The optimal rate of convergence for block thresholding with a given

block size is derived for both the global and local estimation. It is shown that

there are conflicting requirements on the block size for achieving the global and

local adaptivity. We then consider the choice of thresholding constant for a given

block size by treating the block thresholding as a hypothesis testing problem. The

combined results lead naturally to an optimal choice of block size and thresholding

constant. We conclude with a numerical study which compares the finite-sample

performance among block thresholding estimators as well as with other wavelet

methods.
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1. Introduction

Consider the nonparametric regression model:

yi = f(xi) + σ zi, (1)

i = 1, . . . , n (= 2J ), xi = i/n, σ is the noise level and zi’s are i.i.d. N(0, 1).
The function f(·) is an unknown function of interest. We measure the estimation
accuracy both globally by the mean integrated squared error

R(f̂ , f) = E‖f̂ − f‖2
2 , (2)

and locally by the expected loss at a point

R(f̂(x0), f(x0)) = E(f̂(x0)− f(x0))2. (3)

Wavelets are an effective tool for nonparametric regression. Wavelet methods
achieve adaptivity through shrinkage of the empirical wavelet coefficients. Stan-
dard wavelet shrinkage procedures estimate wavelet coefficients term by term,
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on the basis of their individual magnitudes. Other coefficients have no influence
on the treatment of particular coefficients. The commonly used VisuShrink of
Donoho and Johnstone (1994) is a good example of the term-by-term threshold-
ing procedures. Other term by term shrinkage rules include firm shrinkage (Gao
and Bruce (1997)), non-negative garrote shrinkage (Gao (1998)), and Bayesian
shrinkage rules based on independent priors on empirical coefficients (see, e.g.,
Clyde, Parmigiani, and Vidakovic (1998) and Abramovich, Sapatinas, and Sil-
verman (1998)).

Hall, Kerkyacharian and Picard (1998, 1999a) introduced a local block thresh-
olding estimator which thresholds empirical wavelet coefficients in groups rather
than individually. The procedure first divides the wavelet coefficients at each res-
olution level into nonoverlapping blocks and then simultaneously keeps or kills all
the coefficients within a block, based on the magnitude of the sum of the squared
empirical coefficients with that block. The block size is chosen to be of order
(log n)2 where n is the sample size. They demonstrate that the block thresh-
olding estimator enjoys a number of advantages over the conventional term-by-
term thresholding. See also Hall, Kerkyacharian and Picard (1999b) and Härdle,
Kerkyacharian, Picard, and Tsybakov (1998). Other block shrinkage estimators
have been considered in Cai (1999a), Cai and Silverman (2001) and Efromovich
(2000a, b).

Block thresholding is conceptually appealing. It increases estimation preci-
sion by utilizing information about neighboring wavelet coefficients and allows
the balance between variance and bias to be varied along the curve, resulting in
adaptive smoothing. The degree of adaptivity, as we will show however, depends
on the choice of block size and threshold level.

In the present paper, we consider the asymptotic and numerical properties of
a class of block thresholding estimators for wavelet nonparametric regression with
independent and identically distributed Gaussian errors. We have four objectives.
The first is to study the effect of block length on both the global and local
adaptivity. The second is to derive an appropriate threshold level for any given
choice of block size. The third objective is to determine the “optimal” choice of
block size and threshold level and investigate the asymptotic properties of the
resulting estimator. And finally we wish to study the numerical performance of
the block thresholding estimators.

The block size and the threshold level play important roles in the perfor-
mance of a block thresholding estimator. After Section 2, in which basic notation
and the block thresholding method are introduced, we consider in Section 3 the
effect of block length on both the global and local adaptivity. The results reveal
that there are conflicting demands on the block size for achieving the global and
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local adaptivity. To achieve the optimal global adaptivity, the block size must
be at least of the order log n. On the other hand, to achieve the optimal local
adaptivity, the block size must be no more than order log n. Therefore no block
thresholding estimator can achieve simultaneously the optimal global and local
adaptivity if the block size is larger or smaller than order log n.

In Section 4, we treat block thresholding as a hypothesis testing problem.
We derive an appropriate threshold level for any given block size by imposing
the condition that the type I error of the blockwise test for zero signal vanishes
asymptotically. This condition also implies that the resulting estimator enjoys a
desirable denoising property. With the selected threshold level, the block thresh-
olding estimator is fully specified and attains the optimal rate of convergence for
a given choice of block size.

The results obtained in Sections 3 and 4 lead naturally to the considera-
tion in Section 5 of a possible optimal choice of block thresholding estimator.
Asymptotic results show that the estimator is indeed optimal in the sense that it
achieves simultaneously the exact global and local adaptivity. More specifically,
it achieves the exact minimax convergence rate, under the global risk measure
(2), over a wide range of function classes of inhomogeneous smoothness. The es-
timator also optimally adapts to the local smoothness of the underlying function;
it achieves the adaptive minimax rate over an interval of local Hölder classes for
estimating a function at a point.

We then consider the finite-sample performance of block thresholding esti-
mators in Section 6. The block thresholding estimators are compared among
themselves as well as with other wavelet methods. It is shown that the estimator
with the “optimal” choice of block size and thresholding constant has superior
numerical performance among the block thresholding estimators and in com-
parison to the other wavelet estimators. Section 7 discusses modifications and
extensions of the block thresholding estimators. Proofs are given in Section 8.

2. Block Thresholding Estimators

Let {φ, ψ} be a pair of father and mother wavelets. The functions φ and ψ
are assumed to be compactly supported and

∫
φ = 1. Dilation and translation

of φ and ψ generates an orthonormal wavelet basis. We use the periodized
wavelet bases on [0, 1] in the present paper. See Daubechies (1994) and Cohen,
Daubechies, Jawerth, and Vial (1993) for more on wavelet bases on an interval.

A special family of compactly supported wavelets is the so-called Coiflets,
constructed by Daubechies (1992), which can have arbitrary number of vanishing
moments for both φ and ψ. Denote by W (D) the collection of Coiflets {φ,ψ} of
order D. So if {φ,ψ} ∈W (D), then φ and ψ are compactly supported and satisfy
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∫
xiφ(x)dx = 0 for i = 1, . . . ,D − 1; and

∫
xiψ(x)dx = 0 for i = 0, . . . ,D − 1.

An orthonormal wavelet basis has an associated orthogonal Discrete Wavelet
Transform (DWT). See Daubechies (1992) and Strang (1992) for further details
on wavelets and the DWT.

Suppose we observe noisy data Y = {yi} as in (1). Let φj,k(x) = 2j/2φ(2jx−
k), and ψj,k(x) = 2j/2ψ(2jx − k). Denote the true wavelet coefficients of f by
ξj,k = 〈f, φj,k〉 and θj,k = 〈f, ψj,k〉. Let Ỹ = W · n−1/2Y be the discrete wavelet
transform of n−1/2Y . Write

Ỹ = (ξ̃j01, . . . , ξ̃j02j0 , ỹj01, . . . , ỹj02j0 , . . . , ỹJ−1,1, . . . , ỹJ−1,2J−1)′. (4)

Here ξ̃j0k are the gross structure terms at the lowest resolution level, and ỹj,k
(j = 1, . . . , J −1, k = 1, . . . , 2j) are empirical wavelet coefficients at level j which
represent detail structure at scale 2j . The ỹj,k are independent with noise level
n−1/2σ and can be written as

ỹj,k = θ′j,k + n
−1/2σzj,k, (5)

where the θ′j,k are approximately the true coefficients of f , and the zj,k’s are
i.i.d. N(0, 1).

A term-by-term thresholding procedure estimates the function f by

f̂t(x) =
2j0∑
k=1

ξ̃j0kφj0k(x) +
J−1∑
j=j0

2j∑
k=1

ỹj,kI(|ỹj,k| > T )ψj,k(x).

Here, each wavelet coefficient θj,k is estimated separately and the estimate θ̂j,k
depends solely on ỹj,k, other coefficients have no influence on θ̂j,k. The threshold
T = (2n−1 log n)1/2σ is used in Donoho and Johnstone (1994).

A block thresholding estimator thresholds wavelet coefficients in groups in-
stead of individually. Block thresholding aims to increase estimation accuracy by
utilizing information about neighboring wavelet coefficients and making simulta-
neous decisions on all the coefficients within a block. Local block thresholding
rules were first introduced by Hall, Kerkyacharian, and Picard (1998, 1999a).
The procedure is as follows.

At each resolution level j, the empirical wavelet coefficients ỹj,k are divided
into nonoverlapping blocks of length L. Denote (jb) the indices of the coefficients
in the b-th block at level j, i.e., (jb) = {(j, k) : (b− 1)L+1 ≤ k ≤ bL}. Let S2

jb =∑
k∈(jb) ỹ

2
j,k denote the sum of squares of the empirical coefficients in the block.

A block (jb) is deemed important if S2
jb is larger than a threshold T = λLn−1σ2
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and then all the coefficients in the block are retained; otherwise the block is
considered negligible and all the coefficients in the block are discarded.That is,

θ̂j,k = ỹj,k · I(S2
jb > λLn

−1σ2), for (j, k) ∈ (jb). (6)

The estimator of the whole function is given by

f̂(x) =
2j0∑
k=1

ξ̃j0kφj0k(x) +
J−1∑
j=j0

∑
b

(
∑

k∈(jb)

ỹj,kψj,k(x))I(S2
jb > λLn

−1σ2). (7)

Block thresholding estimators depend on the choice of the block size L and thresh-
olding constant λ. The term-by-term estimator VisuShrink is a special case of
(7) with L = 1 and λ = 2 log n. In the regression case, Hall, Kerkyacharian, and
Picard (1999a) suggest to choose L = (log n)2 and λ ≥ 48. It is shown that,
under the global risk measure (2), the block thresholding estimator with the cho-
sen parameters attains the minimax rate of convergence over a range of function
classes H considered in Section 3.1. In the density estimation case, Hall, Kerky-
acharian, and Picard (1998) choose L = C(log n)2 for sufficiently large constant
C > 0. See also Härdle, Kerkyacharian, Picard, and Tsybakov (1998).

Block thresholding may also be regarded as an automatic model selection
procedure, which selects a set of important variables (wavelet coefficients) by
omitting insignificant ones and fits to the data a model consisting of only the im-
portant variables. The distinctive feature of block thresholding is that it retains
or deletes variables group-by-group rather than one-by-one.

Because the choice of block size L and thresholding constant λ largely de-
termines the performance of the resulting estimator, it is important to study in
detail the effect of L and λ on the properties of the estimator and derive the
optimal L and λ if such values exist. Between the two parameters L and λ,
the block size L is more important. It plays a similar role as the bandwidth in
the traditional kernel estimation. In the present paper, we consider the block
thresholding estimator (7) with general block size L = (log n)s with some s ≥ 0
and denote by f̂s,λ an estimator with block size L = (log n)s and thresholding
constant λ. We begin by investigating the relationship between block size and
adaptivity.

3. The Effect of Block Length on Adaptivity

We consider both global and local adaptivity. An estimator that is globally
adaptive can automatically adjust to varying level of overall regularity of the
target function; and a locally adaptive estimator can optimally adapt to subtle,
spatial changes in smoothness along the curve. An estimator that achieves simul-
taneously the optimal global and local adaptivity permits the trade-off between
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variance and bias to be varied along the curve in an optimal way, resulting in
spatially adaptive smoothing in classical sense.

3.1. The function classes H
We consider the global adaptivity of block thresholding estimators over a

family of large function classes which was used in Hall, Kerkyacharian, and Picard
(1999a). The classes contain functions of inhomogeneous smoothness and are
different from other traditional smoothness classes. Functions in these classes can
be regarded as the superposition of smooth functions with irregular perturbations
such as jump discontinuities and high frequency oscillations.

Definition 1. Let H = H(α1, α, γ,M1,M2,M3,D, v), where 0 ≤ α1 < α ≤ D,
0 ≤ γ < 1+2α1

1+2α , and M1,M2,M3, v ≥ 0, denote the class of functions f such that
for any j ≥ j0 > 0 there exists a set of integers Aj with card(Aj) ≤ M32jγ for
which the following are true:

• For each k ∈ Aj , there exist constants a0 = f(2−jk), a1, . . . , aD−1 such that
for all x ∈ [2−jk, 2−j(k + v)], |f(x)− ∑D−1

m=0 am(x− 2−jk)m| ≤M12−jα1;

• For each k /∈ Aj , there exist constants a0 = f(2−jk), a1, . . . , aD−1 such that
for all x ∈ [2−jk, 2−j(k + v)], |f(x)− ∑D−1

m=0 am(x− 2−jk)m| ≤M22−jα.

Roughly speaking, the intervals with indices in Aj are “bad” intervals which con-
tain less smooth parts of the function. The number of the “bad” intervals is con-
trolled byM3 and γ so that the irregular parts do not overwhelm the fundamental
structure of the function. The function class H(α1, α, γ,M1,M2,M3,D, v) con-
tains the Besov class Bα∞∞(M2) as a subset for any given α1, γ, M1, M3, D, and
v. Loosely speaking, the Besov space Bα

p,q contains functions having α bounded
derivatives in Lp space, the second parameter q gives a finer gradation of smooth-
ness. See Meyer (1992) and Triebel (1983) for definitions and properties of Besov
spaces.

A function f ∈ H(α1, α, γ,M1,M2,M3,D, v) can be regarded as the super-
position of a regular smooth function fs in Bα∞∞(M2) and an irregular pertur-
bation τ : f = fs + τ . The perturbation τ can be, for example, jump discon-
tinuities or high frequency oscillations such as chirp and Doppler of the form:
τ(x) =

∑K
k=1 ak(x − xk)βk cos(x − xk)−γk . See Hall, Kerkyacharian, and Picard

(1998, 1999a) for further discussions about the function classes H.

3.2. Effect on global adaptivity

An estimator is said to achieve the optimal global adaptivity over some
function classes Fα for a range of smoothness index α ∈ A if, under the global
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risk measure (2), it attains the minimax rate of convergence simultaneously for
all α ∈ A.

Define the traditional Hölder class Λα(M) in the usual way:

Λα(M) = {f : |f (�α�)(x)− f (�α�)(y)| ≤M |x− y|α′}
where �α� is the largest integer less than α and α′ = α − �α�. Relative to
the function class H, the Hölder class is smaller and contains relatively simple
functions.

It is well known that the minimax rate of convergence for global estima-
tion over Λα(M) and the Besov class Bα∞∞(M) is n−2α/(1+2α). Because H ≡
H(α1, α, γ,M1,M2,M3,D, v) contains Bα∞∞(M2) as a subset, the convergence
rate over H cannot exceed n−2α/(1+2α). The results below shows the significant
effect of block length on the global adaptivity.

Theorem 1. Suppose the wavelets {φ,ψ} ∈ W (D) and supp(φ) = supp(ψ) =
(0, N). Let H = H(α1, α, γ,M1,M2,M3,D, v).
(i) If 0 ≤ s < 1, then for any λ = λ(n) and for all 0 < α ≤ D and 0 < M <∞,

lim
n→∞ n

2α
1+2α · (log n)− 2α(1−s)

1+2α · sup
f∈Λα(M)

E‖f̂s,λ − f‖2
2 > 0. (8)

(ii) On the other hand, if s > 1, then for any fixed λ > 1 and for all 0 < α ≤ D

and v ≥ N ,
lim
n→∞ n

2α
1+2α · sup

f∈H
E‖f̂s,λ − f‖2

2 <∞. (9)

Theorem 1 shows the striking difference in asymptotic behavior between block
thresholding estimators f̂s,λ with s < 1 and those with s > 1. When the block
size is small, i.e., s < 1, the rate of convergence for f̂s,λ over Λα(M) cannot
exceed (log1−s n/n)2α/(1+2α), and so it is impossible for the estimator f̂s,λ to
achieve the optimal global adaptivity even over simple function classes Λα(M).
The extra logarithmic factor in (8) is due to the fact that the block size is too
small and consequently information on neighboring coefficients within a block is
not sufficient to precisely estimate the coefficients. On the other hand, with s > 1
and any fixed thresholding constant λ > 1, a block thresholding estimator f̂s,λ
is globally adaptive over a wide range of function classes H of inhomogeneous
smoothness.

Theorem 1(i) gives a lower bound for the global risk of block thresholding
estimators f̂s,λ with 0 ≤ s < 1. The lower bound is sharp, i.e., with an appropri-
ately chosen λ, the rate (log1−s n/n)2α/(1+2α) is attained. So,

inf
λ

sup
f∈Λα(M)

E‖f̂s,λ − f‖2
2 � (log1−s n/n)2α/(1+2α). (10)
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In fact, (10) holds over the larger function class H. The choice of thresholding
constant λ is discussed in Section 4.

Remark. A special case is L = 1. Theorem shows that the rate of convergence
over Hölder classes Λα(M) cannot exceed (log n/n)2α/(1+2α) for any term by
term thresholding estimator. This rate is attained by the VisuShrink estimator
of Donoho and Johnstone (1994).

3.3. Effect on local adaptivity

For functions of spatial inhomogeneity, the local smoothness of the functions
varies significantly from point to point and global risk measures such as (2) cannot
wholly reflect the performance of an estimator locally. The local risk measure
(3) is more appropriate for measuring the spatial adaptivity, where x0 ∈ (0, 1)
is any fixed point of interest.

Define the local Hölder class Λα(M,x0, δ) by

Λα(M,x0, δ) = {f : |f (�α�)(x)−f (�α�)(x0)| ≤M |x−x0|α′
, x ∈ (x0 − δ, x0+ δ)}

where �α� is the largest integer less than α and α′ = α− �α�.
There is an interesting and important distinction between global estimation

and local estimation. In global estimation, it is possible to achieve complete
success of adaptation across a range of function classes in terms of convergence
rate, in some case, even at the level of the constant. That is, one can do as
well when the degree of smoothness is unknown as one could do if the degree of
smoothness is known.

For local estimation, however, one must pay a price for adaptation. When
α is known, the local minimax risk over Λα(M,x0, δ) converges at the rate of
n−r where r = 2α/(1 + 2α). When α is unknown, as shown by Lepski (1990)
and Brown and Low (1996), one has to pay a price for adaptation of at least
a logarithmic factor; the best one can do in this case is (log n/n)r. We call
(log n/n)r the adaptive minimax rate for local estimation.

We now consider the effect of block size on local adaptivity of f̂s,λ.

Theorem 2. Suppose the wavelets {φ,ψ} ∈W (D) and x0 ∈ (0, 1) is fixed.
(i) If 0 ≤ s < 1, then there exists λ = λ(L) such that for all 0 < α ≤ D and

0 < M <∞,

lim
n→∞ (

n

log n
)

2α
1+2α · sup

f∈Λα(M,x0,δ)
E(f̂s,λ(x0)− f(x0))2 <∞. (11)

(ii) If s > 1, then for any fixed thresholding constant λ > 1 and for all 0 < α ≤ D

and 0 < M <∞,
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lim
n→∞ (

n

log n
)

2α
1+2α · (log n)− 2α(s−1)

1+2α · sup
f∈Λα(M,x0,δ)

E(f̂s,λ(x0)− f(x0))2 > 0. (12)

In words, when s > 1, no block thresholding estimator can achieve the
optimal local adaptivity. The extra logarithmic factor in (12) is due to the
fact that the block size is too large and consequently the estimator is not well
localized. Intuitively, it is clear that the block length should not be too large
in order to well adapt to the local behavior of the underlying function. On the
other hand, if s < 1, then, with an appropriate choice of λ, the optimal local
adaptivity can be achieved. The choice of λ will be discussed in Section 4.

It is revealing to put Theorems 1 and together. Block size affects the
global and local adaptivity in the opposite direction. To attain optimal rate
of convergence in global estimation, the block size L needs to be large so the
information contained in a block is sufficient for accurate decision making. On
the other hand, to attain adaptive rate of convergence in local estimation, the
block size L needs to be small so the estimator is well localized. Theorems 1 and
combined show that it is impossible to simultaneously achieve both by a block
thresholding estimator with L = (log n)s and s �= 1.

These results leave the choice of L = log n as the only possible optimal com-
promise. We will consider this case in Section 5 and show that L = log n is indeed
the optimal choice in the sense that with L = log n and an appropriate λ derived
in Section 4, the resulting block thresholding estimator achieves simultaneously
the optimal global and local adaptivity.

4. The Choice of Thresholding Constant

The aim of block thresholding is to achieve better adaptivity while retaining
the smoothing and denoising properties. In particular, we wish to choose the
threshold so that the estimator removes pure noise completely, with probability
tending to 1. In this section, we treat block thresholding as a hypothesis testing
problem and select the thresholding constant so that the resulting estimator
achieves these objectives.

Suppose one observes

xi = θi + zi, i = 1, . . . , n,

with zi
i.i.d.∼ N(0, 1). The mean θ = (θi) is the object of interest. Assume one

has reasons to think, although not certain, that the mean θ is zero. Then it is
natural first to test

H0 : θ1 = · · · = θn = 0. (13)

Term-by-term thresholding can be viewed as a Bonferroni type test which tests
the global hypothesis (13) coordinate-wise. In contrast, block thresholding tests
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the global hypothesis (13) in groups. Divide the mean vector into block of size
L and test the hypothesis H(b)

0 : θbL−L+1 = · · · = θbL = 0. On each block (b) for
b = 1, . . . , n/L, and estimate θ(b) by 0 when the hypothesis H(b)

0 is not rejected
and by x(b) otherwise. Multivariate normal decision theory shows that, for each
block, a uniformly most powerful test exists; the best rejection region is of the
form

∑
x2
i > T , where T is a constant (see, e.g., Lehmann and Casella (1998, p.

351). Hence the estimator becomes θ̂j = xj · I(∑i∈(b) x
2
i > T ) for j ∈ (b), which

is exactly a block thresholding estimator.
Rewriting the threshold T as T = λ ·L, it is easy to see that the probability

of type I error of the blockwise test under the null hypothesis is

pL(λ) = 1− (1− P (χ2
L > λ · L))n/L, (14)

where χ2
L denotes a chi-squared distribution with L degrees of freedom. We

impose the condition that, under the null, the blockwise test asymptotically
makes the correct decision with certainty, i.e., pL(λ) → 0, as n → ∞. In the
context of signal detection, this means that if the observations are pure noise
without any signal, as the sampling frequency increases, one can tell eventually
with certainty that there is no signal. Equivalently, the corresponding estimator
removes pure noise completely, with probability tending to 1. The condition
pL(λ) → 0 as n → ∞ provides a criterion for the selection of the thresholding
constant λ.

Theorem 3. Let L = (log n)s and let pL(λ), as given in (14), be the probability
of type I error of the blockwise test. Denote Ts = 2(log n)1−s for 0 < s < 1 and
δs = 2(log n)−(s−1)/2 for s > 1. Let
(i) λs = 2 log n, when s = 0; (15)
(ii) λs = Ts+ log Ts +1, when 0 < s ≤ 1/2; (16)
(iii)λs = Ts+ logTs+1+ (logTs+1)/Ts, when 1/2 < s < 1; (17)
(iv)λs = 4.5052 the root of λ−log λ−3 = 0, when s = 1; (18)
(v) λs = 1+δs+δ2

s/3+δ
3
s/36, when 1 < s < 2. (19)

(vi)λs = 1+ δs + δ2
s/3, when 2 ≤ s < 3. (20)

(vii)λs = 1+ δs, when s ≥ 3. (21)
Then, for λ ≥ λs, pL(λ) → 0 as n → ∞. Moreover, the bounds given above

are sharp.
For example, in the case of 0 < s ≤ 1/2, if λ ≤ Ts+log Ts+c with a constant

c < 1, then pL(λ) → 1. In particular, if limn→∞ λ/λs < 1, then pL(λ) → 1.

Remark. In the special case of L = 1, the bound λ0 = 2 log n given in Theorem
3 is equivalent to the bound

√
2 log n in the Gaussian case, which motivates the

choice of the threshold for VisuShrink (see Donoho and Johnstone (1994)). In the
case of s = 1 (or L = log n), λ1 is an absolute constant satisfying λ−log λ−3 = 0.
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Guided by Theorem 3, for a given block length L = (log n)s, we choose the
thresholding constant λs as in (15)−(21) Furthermore, for L = (log n)s with
s �= 1, the lower bounds of convergence rates as specified in Theorem 1 and
Theorem 2 are attained by the block thresholding estimators f̂s,λs. For example,
with L = (log n)s and 0 < s ≤ 1/2, and λs as given in (16), f̂s,λs satisfies that,
for all 0 < α ≤ D and 0 < M <∞,

sup
f∈H

E‖f̂s,λs − f‖2
2 ≤ C(

log1−s n

n
)

2α
1+2α ,

sup
f∈Λα(M,x0,δ)

E(f̂s,λs(x0)− f(x0))2 ≤ C(
log n
n

)
2α

1+2α .

Both rates are optimal for the given choice of block length.

5. L = log n: the Optimal Choice

The results in Section 3 show that for both global and local adaptivity, s = 1
is the dividing line. A natural question is what happens in this critical case of
s = 1, or equivalently L = log n? As derived in Section 4, the corresponding
thresholding constant λ in this case is λ1 = 4.5052. This block thresholding
estimator is denoted by f̂1,λ1.

Theorem 4. (i) Under the conditions of Theorem 1, f̂1,λ1 is globally adaptive
over H = H(α1, α, γ,M1,M2,M3,D, v) for all 0 < α ≤ D and for all v ≥ N ,
i.e.,

sup
f∈H

E‖f̂1,λ1 − f‖2
2 ≤ Cn−2α/(1+2α). (22)

(ii) Under the conditions of Theorem , f̂1,λ1 is locally adaptive for all 0 < α ≤ D,
δ > 0 and 0 < M <∞, i.e., for any fixed x0 ∈ (0, 1),

sup
f∈Λα(M,x0,δ)

E(f̂1,λ1(x0)− f(x0))2 ≤ C · (log n/n)2α/(1+2α). (23)

Thus, the estimator f̂1,λ1, without knowing the a priori degree or amount
of smoothness of the underlying function, attains the adaptive minimax rate
simultaneously for global and local estimation. It is easy to generalize the global
result over other function classes such as the regular Besov classes. The estimator
f̂1,λ1 achieves simultaneously the global and local adaptivity, which is impossible
to achieve for any block thresholding estimator f̂s,λ with s �= 1. In this sense,
f̂1,λ1 is asymptotically optimal within this class of block thresholding estimators.

Remark. (Use of Coiflets): If the following local Lipschitz condition is imposed
on H when functions in H are relatively smooth, then there is no need for using
Coiflets. Indeed simulation shows no particular advantages of using Coiflets in
the finite sample case.
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(i) If α > 1 ≥ α1, then for k /∈ Aj , |f(x)− f(2−jk)| ≤ M42−j , for x ∈ [2−jk,
2−j(k + v)].

(ii) If α > α1 > 1, then |f(x)− f(2−jk)| ≤M42−j , for x ∈ [2−jk, 2−j(k + v)].

6. Numerical Comparisons

We have so far focused on the comparisons of asymptotic properties. In this
section, we carry out a simulation study to compare the finite sample performance
among the block thresholding estimators as well as with the conventional wavelet
methods.

The block thresholding estimator f̂s,λs can be easily implemented in three
steps for estimating f at the sample points, at a computational cost of O(n), as
follows.
1. Transform the noisy data via the discrete wavelet transform.
2. At each resolution level, the empirical coefficients are grouped into nonover-

lapping blocks of length Ls = (log n)s. If the sum of the squared empirical
coefficients in a block is above the threshold T = λsLsσ

2, then all the coeffi-
cients in the block are retained, otherwise all the coefficients in the block are
discarded.

3. Obtain the estimate of function f at the sample points by the inverse discrete
wavelet transform of the denoised wavelet coefficients.

For numerical comparisons we consider the average mean squared errors (AMSE)
of the estimators at the sample points,

AMSE =
1
N

N∑
�=1

(
1
n

n∑
i=1

(f̂�(xi)− f(xi))2),

where f̂� is the estimate of f in 5-th replication and N is the total number of
replications.

Eight test functions representing different level of spatial variability are used.
The test functions are normalized so that all the functions have the same sig-
nal standard deviation of 10. Doppler, HeaviSine, Bumps and Blocks are from
Donoho and Johnstone (1994), Blip and Wave are from Marron, Adak, John-
stone, Neumann, and Patil (1998), and Spikes and Corner are from Cai (1999a).
Plots of the test functions are given in the appendix. Sample sizes from 512
to 8192 and signal-to-noise ratios (SNR) from 3 to 7 are considered. Different
combinations of wavelets and SNRs yield basically the same results. For rea-
sons of space, we only report in detail the results for one particular case, using
Daubechies’ compactly supported wavelet Symmlet 8 and SNR equal to 5. See
Cai (1999b) for additional results.
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6.1. Comparisons among block thresholding estimators

We consider the block thresholding estimators f̂s,λs for five different block
sizes: s = 0, 0.5, 1, 1.5, and 2. There are 2j empirical wavelet coefficients at a
given resolution level j. It is often more convenient to choose the block size to
be a dyadic integer and evenly divide the coefficients at each resolution level into
nonoverlapping blocks. In the simulation, for a given choice of s, the block size is
chosen to be the largest dyadic integer smaller than or equal to (log n)s, i.e., L =
2[log2(log n)s]. Throughout, the lowest resolution level j0 = ceiling(log2 log n) + 1
was used. For certain values of n and s, the number of coefficients at the lowest
level is smaller than the block size. In that case, thresholding stops at the level
where the number of coefficients equals the block size so that there is at least
one block at a level. Table 1 reports the AMSEs (rounded to two significant
digits) over 500 replications for the block thresholding estimators f̂s,λs with s =
0, 0.5, 1, 1.5, and 2. A graphical presentation is given in Figure 1.

Table 1. Mean squared errors from 500 replications (SNR=5)

n s = 1 s = 0 s = 0.5 s = 1.5 s = 2 s = 1 s = 0 s = 0.5 s = 1.5 s = 2
Doppler HeaviSine

512 0.98 1.55 1.33 0.89 1.29 0.56 0.56 0.52 0.63 0.60
1024 0.63 0.91 0.75 0.52 0.74 0.36 0.37 0.32 0.45 0.44
2048 0.32 0.53 0.42 0.28 0.39 0.19 0.19 0.16 0.29 0.31
4096 0.17 0.31 0.22 0.17 0.31 0.13 0.12 0.09 0.17 0.19
8192 0.08 0.18 0.12 0.09 0.16 0.07 0.07 0.06 0.10 0.13

Bumps Blocks
512 1.81 2.43 1.96 2.04 3.03 1.98 2.28 2.03 2.15 3.16
1024 1.23 1.66 1.34 1.98 2.40 1.18 1.40 1.14 1.83 2.06
2048 0.74 1.08 0.79 1.14 1.42 0.77 0.95 0.78 1.26 1.55
4096 0.55 0.63 0.47 0.67 0.97 0.67 0.61 0.47 0.81 1.23
8192 0.28 0.35 0.25 0.36 0.58 0.41 0.39 0.28 0.51 0.84

Spikes Blip
512 0.82 1.09 0.76 0.97 1.34 0.43 0.45 0.39 0.52 1.26
1024 0.50 0.70 0.49 0.65 0.80 0.26 0.26 0.27 0.48 0.77
2048 0.30 0.38 0.29 0.34 0.47 0.17 0.18 0.17 0.26 0.43
4096 0.16 0.21 0.17 0.17 0.26 0.09 0.11 0.09 0.14 0.39
8192 0.08 0.11 0.09 0.09 0.13 0.05 0.06 0.05 0.09 0.24

Corner Wave
512 0.36 0.39 0.35 0.40 0.42 0.56 1.34 1.00 0.56 0.52
1024 0.21 0.23 0.20 0.24 0.27 0.31 0.53 0.34 0.28 0.29
2048 0.12 0.13 0.12 0.13 0.15 0.17 0.17 0.18 0.16 0.17
4096 0.06 0.07 0.07 0.07 0.08 0.09 0.10 0.10 0.09 0.09
8192 0.04 0.04 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.06
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Figure 1. The vertical bars represent the ratios of the AMSEs of f̂s,λs with
s = 0, 0.5, 1.5, and 2 to the corresponding AMSE with s = 1. The higher
the bar the better the relative performance of f̂1,λ1 . For each signal the bars
are ordered from left to right by the sample sizes (n = 512 to 8192).

The estimator f̂1,λ1 has smaller AMSE than VisuShrink f̂0,λ0 in all but four
cases, among the total of 40 combinations of signals and sample sizes. The im-
provement is more significant for functions with significant spatial variability
such as Doppler, Bumps, and Spikes. The estimator f̂1,λ1 outperforms the other
two block thresholding estimators with larger block sizes as well. Among the 40
cases, the AMSE of f̂1,λ1 is lower than those of f̂1.5,λ1.5 and f̂2,λ2 in 35 and 37
cases, respectively. The differences between the AMSEs of f̂1,λ1 and f̂2,λ2 are
highly significant. In terms of AMSE, the only competitor to f̂1,λ1 among the
estimators under consideration is f̂0.5,λ0.5 . These two estimators are compara-
ble. Overall, among the five block thresholding estimators, f̂1,λ1 has the best
numerical performance.

The numerical results agree to a certain extent with the asymptotic prop-
erties of estimators. For example, for 0 ≤ s ≤ 1, the global performance of
the estimator f̂s,λs improves as s increases from 0 to 0.5 and to 1. Both the
asymptotic and finite sample results show that the estimator f̂1,λ1 has the best
performance among the class of estimators under consideration. However, there
is also some noticeable discrepancy between the asymptotic and finite sample
results. For instance, although it is shown that asymptotically the estimators
f̂s,λs attain the optimal rate of convergence for any s ≥ 1 under the global risk
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measure, both f̂1.5,λ1.5 and f̂2,λ2 do not perform well in the simulation study. It
is possible that it requires very large sample sizes for the asymptotics to take ef-
fect. In addition the asymptotic results only concern the rate of the convergence;
the constant factor in the asymptotic risk is not considered. The discrepancy
shows the need of examining both the asymptotic and finite sample performance
of estimators.

6.2. Comparisons with other wavelet methods

The estimator f̂1,λ1 stands out among the block thresholding estimators,
both in terms of asymptotic adaptivity and numerical performance. We now com-
pare f̂1,λ1 with four other wavelet methods, RiskShrink, SureShrink, Translation-
Invariant (TI) de-noising, and BlockJS.

RiskShrink (Donoho and Johnstone (1994)) is a term-by-term thresholding
estimator with the threshold chosen to achieve certain minimaxity for a given
sample size n. SureShrink thresholds the empirical coefficients by minimizing the
Stein’s unbiased risk estimate at each resolution level. We use the hybrid method
proposed in Donoho and Johnstone (1995) in the simulations. RiskShrink and
SureShrink usually have better mean squared error performance than VisuShrink,
but the reconstructions often contain visually unpleasant spurious fine-structure.
TI de-noising (Coifman and Donoho (1995)) averages over VisuShrink estimates
based on all the shifts of the original data. BlockJS (Cai (1999a)) is a block
shrinkage procedure using the James-Stein rule. This estimator is shown to have
numerical advantages over several conventional estimators. For further details
see the original papers.

The AMSEs over 500 replications is reported in Table 2 with a graphical pre-
sentation given in Figure 2. In Table 2, “BJS” stands for BlockJS. The estimator
f̂1,λ1 outperforms the other methods. It yields better results than RiskShrink in
36 out of the 40 cases; and beats TI de-noising in 35 out of 40 cases. The
differences are especially notable when the underlying function is of significant
spatial variability. In terms of AMSE, the competitors among the four methods
are SureShrink and BlockJS. The estimator f̂1,λ1 has similar asymptotic proper-
ties as BlockJS. But f̂1,λ1 has almost uniformly better numerical performance;
it yields smaller AMSE than BlockJS in 38 out of 40 cases. Apart from being
better than SureShrink in more than 75% of cases in mean squared error, f̂1,λ1

yields noticeably better results visually. See Section 6.3 for a qualitative compar-
ison and see Cai (1999b) for more simulation results. Cai and Silverman (2001)
propose two block shrinkage estimators, NeighBlock and NeighCoeff, which are
shown to perform well against well-known conventional wavelet estimators. Our
numerical study shows that the estimator f̂1,λ1 outperforms NeighBlock slightly
and is comparable to NeighCoeff. For reasons of space, we omit the detailed
numerical comparisons here.
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Table 2. Average Mean Squared Error From 500 Replications (SNR=5).

n f̂1,λ1 Risk Sure TI BJS f̂1,λ1 Risk Sure TI BJS
Doppler HeaviSine

512 0.98 1.72 1.59 2.64 1.21 0.56 0.47 0.50 0.52 0.55
1024 0.63 1.17 0.89 1.66 0.74 0.36 0.33 0.34 0.39 0.39
2048 0.32 0.77 0.54 1.02 0.40 0.19 0.23 0.23 0.28 0.23
4096 0.17 0.45 0.34 0.56 0.21 0.13 0.14 0.13 0.16 0.17
8192 0.08 0.29 0.18 0.34 0.11 0.07 0.09 0.07 0.10 0.09

Bumps Blocks
512 1.81 4.99 2.23 7.53 2.37 1.98 3.05 2.61 5.35 2.64
1024 1.23 3.16 1.69 4.50 1.66 1.18 2.08 1.59 3.61 1.67
2048 0.74 2.04 1.12 2.70 0.90 0.77 1.48 1.04 2.40 1.02
4096 0.55 1.18 0.57 1.47 0.72 0.67 0.94 0.71 1.39 0.92
8192 0.28 0.74 0.34 0.86 0.38 0.41 0.64 0.44 0.89 0.56

Spikes Blip
512 0.82 1.45 1.05 2.11 1.08 0.43 0.56 0.63 0.75 0.53
1024 0.50 0.94 0.56 1.25 0.55 0.26 0.40 0.42 0.51 0.32
2048 0.30 0.61 0.33 0.72 0.32 0.17 0.27 0.24 0.32 0.18
4096 0.16 0.34 0.15 0.30 0.22 0.09 0.16 0.15 0.19 0.13
8192 0.08 0.21 0.08 0.17 0.10 0.05 0.10 0.09 0.11 0.07

Corner Wave
512 0.36 0.35 0.29 0.30 0.38 0.56 1.77 2.95 2.62 0.90
1024 0.21 0.21 0.17 0.20 0.24 0.31 1.04 3.20 1.56 0.38
2048 0.12 0.13 0.09 0.12 0.13 0.17 0.62 3.38 0.90 0.16
4096 0.06 0.06 0.05 0.06 0.07 0.09 0.25 0.09 0.11 0.09
8192 0.04 0.04 0.03 0.03 0.04 0.06 0.16 0.06 0.06 0.06

6.3. A qualitative example

The sunspots data are well-known and have been analyzed, for example, by
Anderson (1971), Brockwell and Davis (1991) and recently by Efromovich (1999).
We consider 1024 consecutive monthly means of daily numbers of sunspots from
January, 1749 to March, 1834. (The data is available in the standard Splus
package.) See Figure 3. Using the model in Section 3.1, we can envision the true
underlying function f as the superposition of two components: a smooth part fs
and a high frequency oscillation part τ . In this example, the smooth part fs can
be thought of as the well-known periodic, seasonal component (with a period of
about 11 years).

Three wavelet estimators, f̂1,λ1, VisuShrink, and SureShrink, are applied to
the data. Figure 4 displays the reconstructions, and their residuals, of f̂1,λ1,
SureShrink and VisuShrink. The f̂1,λ1 reconstruction shows remarkable spatial
adaptivity The reconstruction is smooth near the valleys and the sixth peak where
the volatility is low; at the same time, it captures the high frequency oscillation
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part very well near the other peaks where the volatility is high. The estimator
f̂1,λ1 permits the balance between variance and bias to be varied along the curve.
The reconstruction confirms the theoretical results derived in Section 5.
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Figure 2. The vertical bars represent the ratios of the AMSEs of the esti-
mators to the corresponding AMSE of f̂1,λ1 . The higher the bar the better
the relative performance of f̂1,λ1 . For each signal the bars are ordered from
left to right by the sample sizes (n = 512 to 8192).
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Figure 3. Monthly number of sunspots from January, 1749 to March, 1834.

In comparison, VisuShrink over-smoothes the data; it captures the smooth
seasonal component well but misses almost all the fine details. It does not show
the local oscillations around the peaks. SureShrink performs better than Vis-
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uShrink. But SureShrink smoothes out some oscillations around the peaks, no-
ticeably near the fourth and the seventh peaks, but still retains a fair amount of
noise near the valleys. The reconstructions of VisuShrink and SureShrink fail to
show the significant difference in volatilities between the peaks and valleys. The
reconstructions of RiskShrink and TI de-noising, not shown here for the reason
of space, are very similar to that of VisuShrink.

A look at the residual plots is also revealing. The residuals of both Vis-
uShrink and SureShrink have a clear pattern−they cluster around the peaks; in
comparison the residuals of f̂1,λ1 are much more uniform. SureShrink keeps many
wavelet coefficients at the high resolution levels around the areas in which the
underlying function is smooth. In fact, an examination of the wavelet coefficients
shows that SureShrink uses 345 coefficients while f̂1,λ1 keeps 63 blocks of size 4
with a total of 252 coefficients.
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Figure 4. Comparison of reconstructions and residuals. The block thresh-
olding estimator used here is f̂1,λ1 .

7. Discussions

7.1. Modifications and extensions

Modifications and extensions of the block thresholding estimators discussed
in the earlier sections are possible. The modified estimators in many cases have
better numerical performance than the original version. We briefly discuss two
such modifications below.
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Cai and Silverman (2001) introduce a technique for enhancing numerical
performance of wavelet estimators by incorporating information on neighboring
coefficients. The technique can be readily used on the block thresholding esti-
mators discussed in this paper. For example, we can use the construction of the
NeighBlock estimator in Cai and Silverman (2001) to obtain a new version of
f̂1,λ1. The procedure can be summarized in four steps.

1. Transform the data into the wavelet domain via the discrete wavelet trans-
form.

2. At each resolution level j, group the empirical wavelet coefficients into dis-
joint blocks bji of length Lc = [(log n)/2]. Extend each block bji by an
amount Lh = max(1, [Lc/2]) in each direction to form overlapping larger
blocks Bj

i of length L1 = Lc + 2Lh.

3. If the sum of the squared empirical coefficients in the larger block Bj
i is

above the threshold T = λ1L1σ
2, then all the coefficients in the smaller

block bji are retained; otherwise all the coefficients in bji are discarded.

4. Obtain the estimate of the function via the inverse discrete wavelet trans-
form of the denoised wavelet coefficients.

We can envision Bj
i as a sliding window which moves Lc positions each time and,

for each given window, only the half of the coefficients in the center of the window
are estimated. Let us denote the resulting estimator by f̂∗1,λ1

. This estimator
often has numerical advantages over the original version. See Figure 5.
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Figure 5. The bars represent the ratios of the AMSE of f̂1,λ1 to the AMSE
of f̂∗1,λ1

. For each signal the bars are ordered from left to right by the sample
sizes (n = 512 to 8192).
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The block thresholding estimators can also be modified by averaging over
different block centers. For each given 0 ≤ i ≤ L − 1, partition the indices at
each resolution level j into blocks {(j, k) : (b − 1)L + i + 1 ≤ k ≤ bL + i}. In
the original estimator, we take i = 0. Let f̂ (i)

s,λs
be the version of f̂s,λs for a given

i. Define the modified estimator f̂∗∗s,λs
=

∑L−1
i=0 f̂

(i)
s,λs

/L. This technique was also
used in Hall, Penev, Kerkyacharian and Picard (1997).

Other possible modifications include incorporating block thresholding with
translation-invariant denoising (Coifman and Donoho (1995)). These modified
estimators often have better numerical performance, at the cost of higher compu-
tational complexity. For reasons of space, we leave the detailed numerical study
to future work.

7.2. Concluding remarks

We study the effect of block size on global and local adaptivity and derive
the optimal rate of convergence for block thresholding with a given choice of
block size for both the global and local estimation. The results lead naturally
to a possible optimal choice of block thresholding estimator. Asymptotic and
numerical results show that the estimator f̂1,λ1 with block size L = log n and
thresholding constant λ1 = 4.5052 indeed enjoys excellent performance both
among the class of block thresholding estimators and in comparisons to other
wavelet estimators.

Block thresholding is a way to pool information on neighboring coefficients
for simultaneous decision-making. It is shown in Cai (2000b) that information
pooling is a necessity rather than an option for achieving optimal adaptivity. For
instance, no separable rules can achieve the optimal rate of convergence adap-
tively for global estimation. Block thresholding provides an easy and convenient
tool for information pooling.

In the present paper, our main concern is with the nonparametric regres-
sion estimation of a function observed at regular intervals with independent ho-
moscedastic Gaussian noise. Our results rely on these assumptions. Detailed
study under more general structures on both design and errors is an interesting
topic for future work.

Besides nonparametric regression, block thresholding techniques can be ap-
plied to other statistical problems such as linear inverse problems (see Cai (2000a)
and Cavalier and Tsybakov (2000)). For example, block thresholding can be used
to improve the asymptotic results obtained in Abramovich and Silverman (1998)
for linear inverse problems.
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8. Proofs

8.1. Preparatory results

We prove the main results in the order of Theorems 4, 1, 2, and 3. A key
result used in the proofs is Proposition 1 which is proved at the end. Besides
Proposition 1, we also need a number of preparatory results given below.

Proposition 1. Suppose that xi
ind.∼ N(θi, σ2∗), i = 1, . . . , L. Let θ̂i = xi I(S2 >

λLσ2∗), where S2 =
∑L

i=1 x
2
i and λ ≥ 4. Then

E‖θ̂ − θ‖2
2 ≤ (2λ+ 2)(‖θ‖2

2 ∧ Lσ2
∗) + 2λL(λ−1eλ−1)−L/2σ2

∗. (24)

In particular, if λ = 4.5052, the root of λ − log λ − 3 = 0, L = log n and
σ2∗ = n−1σ2, then

E‖θ̂ − θ‖2
2 ≤ (2λ+ 2)(‖θ‖2

2 ∧ Lσ2) + 2λσ2n−2 log n. (25)

The second term on the right hand side of (25) is negligible. Thus the risk in-
equality shows that the estimator achieves, within a constant factor, the optimal
balance between the variance and the squared bias over the blocks.

Lemma 1. (i) Let f ∈ H(α1, α, γ,M1,M2,M3,D, v). Assume the wavelets
{φ,ψ} ∈W (D) with supp(φ) = supp(ψ) ⊆ [0, v]. Let n = 2J . Then

|ξJ,k − n− 1
2 f(k/n)| ≤M1‖φ‖1n

−(1/2+α1) for all k ∈ AJ ;
|ξJ,k − n− 1

2 f(k/n)| ≤M2‖φ‖1n
−(1/2+α) for all k /∈ AJ ;

|θj,k| ≤M1‖ψ‖12−j(1/2+α1) for all k ∈ Aj ;
|θj,k| ≤M2‖ψ‖12−j(1/2+α) for all k /∈ Aj .

(ii) For all functions f ∈ Λα(M), the wavelet coefficients of f satisfy |θj,k| ≤
C ′ · 2−j(1/2+α) where the constant C ′ depends on the wavelets, α and M only.

Lemma 1 (i) is a direct consequence of the vanishing moments conditions on
the wavelets {φ, ψ}, see Hall, Kerkyacharian and Picard (1999a). Lemma 1 (ii)
bounds the wavelet coefficients of a function based on the smoothness, see, e.g.,
Daubechies (1992).

Lemma 2. If ‖u‖2
�2

≤ γ2t with 0 < γ < 1, then
(i) {x : ‖x+ u‖2

�2
≤ t} ⊇ {x : ‖x‖2

�2
≤ (1− γ)2t};

(ii) {x : ‖x+ u‖2
�2

≥ t} ⊆ {x : ‖x‖2
�2

≥ (1− γ)2t}.
Lemma 3. Let Y and Xi be random variables, then
(i) E(

∑
Xi)2 ≤ (

∑
(EX2

i )
1/2)2; (26)

(ii) (E(Y +
∑
Xi)2)1/2 ≥ (EY 2)1/2−∑

(EX2
i )

1/2. (27)
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Lemma 4. Let YL ∼ χ2
L and λ > 1. Then

(i) 2
5λ

−1L−1/2(λ−1eλ−1)−L/2 ≤ P (YL > λL)
≤ π−1/2(λ−1)−1L−1/2(λ−1 eλ−1)−L/2; (28)

(ii) EYLI(YL ≥ λL) ≤ λL (λ−1 eλ−1)−L/2. (29)

Proof. Denote by fm(y) the pdf of a χ2
m variable. Integration by parts yields

P (Ym > x) = 2fm(x) + P (Ym−2 > x) and by recursion, P (YL > λL) ≤
2

∑[(L−1)/2]
k=0 fL−2k(λL). It is easy to see that, form ≤ L, fm(λL) = m

λLfm+2(λL)≤
λ−1fm+2(λL). Then

P (YL > λL) ≤ 2
[(L−1)/2]∑

k=0

λ−kfL(λL) ≤ 2λ
λ− 1

· 1
2L/2Γ(L/2)

(λL)L/2−1e−λL/2.

Now Stirling’s formula in the form Γ(x + 1) =
√
2π xx+1/2 e−x+θ/(12x), with

0 < θ < 1, yields P (YL > λL) ≤ π−1/2(λ − 1)−1L−1/2(λ−1eλ−1)−L/2. On the
other hand,

P (YL ≥ λL) =
1

2L/2 Γ(L/2)

∫ ∞

λL
xL/2−1e−

x
2 dx ≥ (λL)L/2−1 2e−λL/2

2L/2 Γ(L/2)
.

Again, it follows from Stirling’s formula, after some simple algebra, that P (YL ≥
λL) ≥ 2

5 λ
−1 L−1/2 (λ−1 eλ−1)−L/2. The proof of (29) is straightforward.

8.2. Proof of Theorem 4

We first consider global estimation. Denote L∗ = log n and λ∗ = 4.5052.
For simplicity, in all the proofs we assume that the sample size n is divisible by
the block size L. Let Ỹ be the discrete wavelet transform of {n−1/2Y } and be
written as in (4). One may write

ỹj,k = θj,k + aj,k + n−1/2σzj,k (30)

where θj,k is the true wavelet coefficients of f , aj,k is some approximation er-
ror which is considered “small” by the results of Lemma 1 (i), and zj,k’s are
i.i.d. N(0, 1). Denote f̃(x) =

∑n
i=1 n

−1/2yiφJi(x). The function f̃(x) can be
written as

f̃(x) =
n∑

i=1

[ξJi + (n−1/2f(xi)− ξJi) + n−1/2σzi]φJi(x)

=
2j0∑
k=1

[ξj0k+ãj0k+n
−1/2σz̃j0k]φj0k(x)+

J−1∑
j=j0

2j∑
k=1

[θj,k+aj,k+n−1/2σzj,k]ψj,k(x).

Here, ξj0k and θj,k are the orthogonal transform of {ξJi} via W , likewise ãj0k
and aj,k the transform of {n−1/2f(xi) − ξJi}, and z̃j0k and zj,k the transform of
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{zi}. Thus z̃j0k and zj,k are i.i.d. N(0, 1). Let ξ̃j0k = ξj0k+ ãj0k+n
−1/2σz̃j0k and

ỹj,k = θj,k + aj,k + n−1/2σzj,k. Lemma 1 (i) and the orthogonality of the discrete
wavelet transform yield that

2j0∑
k=1

ã2
j0k +

J−1∑
j=j0

2j∑
k=1

a2
j,k =

n∑
i=1

(n−1/2f(xi)− ξJi)2 = o(n−2α/(1+2α)). (31)

See Hall, Kerkyacharian and Picard (1999a, p.43) for more details on the deriva-
tion of 31. Let ξ̂j0k = ξ̃j0k and θ̂j,k = ỹj,kI(S2

jb > λ∗L∗n−1σ2), for (j, k) ∈ (jb).
By the isometry of the function norm and the sequence norm, the risk of f̂1,λ1

can be written as

E‖f̂1,λ1 − f‖2
2 =

∑
k

E(ξ̂j0k − ξj0k)2 +
J−1∑
j=j0

∑
k

E(θ̂j,k − θj,k)2 +
∞∑
j=J

∑
k

θ2
j,k. (32)

Lemma 1 (i) and (31) yield that

∑
k

E(ξ̂j0k − ξj0k)2 +
∞∑
j=J

∑
k

θ2
j,k = o(n−2α/(1+2α)). (33)

Denote by C a generic constant that varies from place to place and let

Gj = {blocks at level j contain at least one coefficient with indices in Aj};
G′

j = {blocks at level j contain no coefficients with indices in Aj}.

The term S ≡ ∑J−1
j=j0

∑
k E(θ̂j,k − θj,k)2 can be bounded by using Proposition 1

and 31.

S ≤ (2λ∗ + 2)
J−1∑
j=j0

∑
k

(θj,k + aj,k)2 ∧ L∗n−1σ2 + λ∗L∗n−1σ2

≤ C
J−1∑
j=j0

∑
k

θ2
j,k ∧ L∗n−1 + o(n−2α/(1+2α)).

Denote S1 =
∑J − 1

j = j0

∑
(jb)∈Gj

∑
(j, k)∈ (jb) θ

2
j, k ∧ L∗n−1;S2 =

∑J − 1
j = j0

∑
(jb)∈G′

j∑
(j, k)∈ (jb) θ

2
j, k ∧ L∗n−1. Note that card(Gj) ≤M32jγ and let J1 and J2 be two

integers satisfying 2J1 � n1/(1+2α1) and 2J2 � n1/(1+2α) respectively. Also note
that by the assumptions δ ≡ 1+2α1

1+2α − γ > 0, so

S1 ≤
J1−1∑
j=J0

∑
(jb)∈Gj

L∗n−1 +
J−1∑
j=J1

∑
(jb)∈Gj

∑
(j,k)∈(jb)

θ2
j,k

≤ L∗n−12J1γ + CL∗2−J1(1+2α1−γ) = o(n−2α/(1+2α)), (34)
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S2 ≤
J2−1∑
j=J0

∑
(jb)∈G′

j

L∗n−1 +
J−1∑
j=J2

∑
(jb)∈G′

j

∑
(j,k)∈(jb)

θ2
j,k ≤ Cn−2α/(1+2α). (35)

Now (22) follows from (33), (34) and (35).

Now consider local estimation. For brevity, we prove the result for Hölder class
Λα(M). It follows from Lemma 3 (i) that

E(f̂1,λ1(x0)− f(x0))2 ≤
{ 2j0∑
k=1

(E(ξ̂j0k − ξj0k)2)1/2|φj0k(x0)|

+
J−1∑
j=j0

2j∑
k=1

(E(θ̂j,k − θj,k)2)1/2|ψj,k(x0)|

+
∞∑
j=J

2j∑
k=1

|θj,k||ψj,k(x0)|
}2

≡ (Q1 +Q2 +Q3)2.

Let us consider the three terms separately. First note that at each resolution
level j, there are at most N basis functions ψj,k such that ψj,k(x0) �= 0, where
N is the length of the support of ψ. Denote K(j, x0) = {k : ψj,k(x0) �= 0}. Then
|K(j, x0)| ≤ N . Therefore,

Q1 =
2j0∑
k=1

(E(ξ̂j0k − ξj0k)2)1/2|φj0k(x0)| ≤ 2j0/2‖φ‖∞Nn−1/2σ = o(n−α/(1+2α)).

(36)
For the third term, it follows from Lemma 1 (ii) that

Q3 =
∞∑
j=J

2j∑
k=1

|θj,k||ψj,k(x0)| ≤
∞∑
j=J

N‖ψ‖∞2j/2C2−j(1/2+α) ≤ Cn−α. (37)

Consider the second term Q2. Note that for function f ∈ Λα(M), the approx-
imation error aj,k satisfies |aj,k| ≤ Cn−α2−j/2. By applying Lemma 1 (ii) and
Proposition 1, we have

Q2 ≤
J−1∑
j=j0

∑
k∈K(j,x0)

2j/2‖ψ‖∞(E(θ̂j,k − θj,k)2)1/2

≤ C
J−1∑
j=j0

2j/2[(2−j(1+2α) + 2−jn−2α) ∧ L∗n−1σ2 + L∗n−2σ2]1/2

= C(log n/n)α/(1+2α). (38)

Combining (36), (37) and (38), we have E(f̂1,λ1(x0)−f(x0))2≤C(log n/n)2α/(1+2α).
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8.3. Proof of theorem 1

We prove only part (i) in detail. The proof of part (ii) is similar to that of
Theorem 4 (i). Denote w = 2α/(1 + 2α) and s = 1 − γ with 0 < γ ≤ 1. The
proof is divided into two cases.

Case 1. For all n > 0, the threshold λn > w(log n)γ . Let J1 be an integer
such that 2J1 � n1/(1+2α)(log n)−γ/(1+2α). Let fn(t) =

∑
k θJ1kψJ1k(t) where

θJ1k = c0(log n)γ/2n−1/2 � 2−J1(1/2+α) with c0 > 0. Then fn ∈ Λα(M) when
the constant c0 is chosen small enough. We again use the decomposition (30).
Since fn ∈ Λα(M), Lemma 1 (i) and the fact that the wavelets are compactly
supported yield that |d(x)| ≡ |∑n

k=1[ξJ,k − n−1/2f(k/n)]φJ,k(x)| ≤ Cn−α. Hence
the approximation error satisfies |aj,k| ≡ | ∫ d(x)ψj,k(x)dx| ≤ Cn−α2−j/2. For a
given block (J1b) at level J1,

∑
(j,k)∈(J1b)

E(θ̂jk − θjk)2 ≥
∑

(j,k)∈(J1b)

(
1
2
E[θ̂jk − (θjk + aj,k)]2 − a2

jk)

=
∑

(j,k)∈(J1b)

[
1
2
E(ỹjk − θjk)2I(S2

J1b > λnL) +
1
2
(θj,k + aj,k)2P (S2

J1b ≤ λnL)− a2
jk]

≥ 1
4

∑
(j,k)∈(J1b)

θ2
j,kP (S

2
J1b ≤ λnL)− 2

∑
(j,k)∈(J1b)

a2
jk (39)

To get a lower bound for P (S2
J1b

≤ λnL), we apply Lemma 2 to S2
J1b

. Since
|aj,k| ≤ Cn−α2−j/2,

∑
(J1b) a

2
j,k ≤ Cn−1−4α2/(1+2α)(log n)(1−2αγ)/(1+2α). Hence

there exists N > 0 such that for n > N ,
∑

(J1b) a
2
j,k ≤ 1

16λnLn
−1σ2. Now∑

(J1b) θ
2
j,k = c20n

−1 log n, so for small c0 > 0,
∑

(J1b) θ
2
j,k ≤ 1

16λnLn
−1σ2. Choos-

ing the constant c0 > 0 small enough, we have, for n > N ,
∑
(J1b)

(θj,k + aj,k)2 ≤ 2
∑

(J1b)

θ2
j,k + 2

∑
(J1b)

a2
j,k ≤ 1

4
λnLn

−1σ2.

Then it follows from Lemma 2 that

{S2
J1b≤λLn−1σ2}=

{∑
(J1b)

(θj,k+aj,k+n−1/2σzj,k)2≤λnLn−1σ2
}
⊇

{∑
(J1b)

z2
j,k≤

1
4
λnL

}
.

For large n, λn/4 ≥ (w/4)(log n)γ ≥ 2. Hence

P (S2
J1b ≤ λnLn

−1σ2) ≥ P (
∑
(J ′b)

z2
j,k ≤ 2L) ≥ 1/2. (40)

Combining (39) and (40), we have, for large n,

E‖f̂n − fn‖2 ≥
∑
k

E(θ̂J1k − θJ1k)
2 ≥ 1

8

∑
k

θ2
J1k − 2

∑
k

a2
J1k

= (c20/8)(n/ log
γ n)−2α/(1+2α)(1 + o(1)).
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So, in this case, limn→∞ n
2α

1+2α · (log n)− 2αγ
1+2α · supf∈Λα(M)E‖f̂n−f‖2

2 ≥ c20/8 > 0.

Case 2. There exists a subsequence (nm) such that the threshold λnm ≤
w(log nm)γ .
Without loss of generality, assume that λn ≤ w(log n)γ for all n. Consider fn ≡ 0.
Then all θj,k = 0 and all aj,k = 0 and for each block (jb),

∑
(j,k)∈(jb)E(θ̂j,k −

θj,k)2 = n−1σ2EY I(Y > λnL), where Y ∼ χ2
L. Hence

E‖f̂n − fn‖2
2 ≥

J−1∑
j=j0

∑
b

∑
(j,k)∈(jb)

E(θ̂j,k − θ)2 = (n− 2j0)n−1σ2EY I(Y > λnL).

Let λ′n = max(λ1, 1), then Lemma 4 yields

EY I(Y > λnL) ≥ λ′nLP (Y > λ′nL) ≥
2
5
L1/2(λ′ne)

L/2n−r/2.

Hence in this case limn→∞ n
2α

1+2α · (log n)− 2αγ
1+2α · supf∈Λα(M)E‖f̂n − f‖2

2 = ∞.

8.4. Proof of Theorem 2

We give the proof of part (ii) in detail. With the thresholding constant λs
chosen as in Section 4, the proof of part (i) is similar to that of Theorem 4 (ii).
Let J ′ be an integer satisfying 2J

′ � (n/L)1/(1+2α) and let k′ be an integer
such that |ψ(2J ′

x0 − k′)| ≥ c0 > 0. Let f∗n(x) = θ∗J ′k′ψJ ′k′(x) where θ∗J ′k′ =
c1(n−1L)1/2 � 2−J ′(1/2+α). The function f∗n has only one “large” wavelet coeffi-
cient and all other coefficients are zero. It is easy to show that fn ∈ Λα(M) if
the constant c1 > 0 is sufficiently small. Noting that ξj0k = 〈f∗n, φj,k〉 = 0 for all
k and θj,k = 〈f∗n, ψj,k〉 = 0 for all (j, k) �= (J ′, k′), we have

S ≡ { sup
f∈Λα(M)

Ef (f̂n(x0)− f(x0))2}1/2 ≥ (Ef∗
n
(f̂n(x0)− f∗n(x0))2)1/2

=


E[(θ̂J ′k′−θJ ′k′)ψJ ′k′(x0) +

2j0∑
k=1

ξ̂j0kφj0k(x0) +
∑

(j,k)∈J
θ̂j,kψj,k(x0)]2




1/2

(41)

where J = {(j, k) : j0 ≤ j ≤ J − 1, 1 ≤ k ≤ 2j and (j, k) �= (J ′, k′)}. Applying
Lemma 3 (ii) to the RHS of (41), we have

S≥(E(̂θJ ′k′−θJ ′k′)2)1/2|ψJ ′k′(x0)|−
2j0∑
k=1

(Eξ̂2
j0k)

1/2|φj0k(x0)|−
∑

(j,k)∈J
(Eθ̂2

j,k)
1/2|ψj,k(x0)|

≡ T1 − T2 − T3. (42)
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We show that the first term T1 is dominating and that T2 and T3 are “small”. We
first derive a lower bound for T1. Denote by (J ′b) the block containing (J ′, k′),
then

E(θ̂J ′k′−θJ ′k′)2=E(ỹJ ′k′−θJ ′k′)2I(S2
J ′b>λLn

−1σ2)+θ2
J ′k′P (S

2
J ′b≤λLn−1σ2)

≥ θ2
J ′k′P (S

2
J ′b ≤ λLn−1σ2). (43)

As in the proof of Theorem 1, we apply Lemma 2 to S2
J1b

to get a lower bound for
P (S2

J1b
≤λnL). Since |aj,k|≤Cn−α2−j/2,

∑
(J ′b)a

2
j,k≤Cn−1−4α2/(1+2α)L(2+2α)/(1+2α).

Hence there exists a constant N∗ > 0 such that for n > N∗
∑
(J ′b)

a2
j,k ≤ 1

4
(1− λ−1/2)2λLn−1σ2. (44)

By choosing c1 ≤ σ
2 (λ

1/2 − 1), we have for n > N∗,
∑
(J ′b)

(θj,k + aj,k)2 ≤ 2θ2
J ′k′ + 2

∑
(J ′b)

a2
j,k ≤ (1− λ−1/2)2λLn−1σ2.

It follows from Lemma 2 that

{S2
J ′b≤λLn−1σ2}={

∑
(J ′b)

(θj,k+aj,k+n−1/2σzj,k)2≤λLn−1σ2}⊇{
∑
(J ′b)

z2
j,k≤L}.

So, P (S2
J ′b ≤ λLn−1σ2) ≥ P (

∑
(J ′b) z

2
j,k ≤ L) ≥ 1/2. Now (43) yields E(θ̂J ′k′ −

θJ ′k′)2 ≥ 1
2θ

2
J ′k′ =

1
2c

2
1n

−1L. Therefore

T1 = (E(θ̂J ′k′ − θJ ′k′)2)1/22J
′/2|ψ(2J ′

x0 − k′)| ≥ 1√
2
c0c1n

−α/(1+2α)Lα/(1+2α).

(45)
For T2, as in the proof of Theorem 4 (ii), we have

T2 =
2j0∑
k=1

(Eξ̂2
j0k)

1/2|φj0k(x0)| = o(n−α/(1+2α)). (46)

Now consider the term T3. Let J1 be an integer satisfying 2j1 � max (1,
n(1 − α2) / (1 + 2α)). Denote J1 = {(j, k) ∈ J and j ≤ j1}, and J2 = {(j, k) ∈
J andj > j1}. First consider (j, k) ∈ J1. It is easy to see that

Eθ̂2
j,k = Eỹ

2
jkI(S

2
jb > λLn

−1σ2) ≤ Eỹ2
j,k

= a2
j,k + n

−1σ2 ≤ Cn−2α2−j + n−1σ2. (47)

T31 ≡
∑

(j,k)∈J1

(Eθ̂2
j,k)

1/2|ψj,k(x0)|

≤ Cn−α log n+ Cn−1/22j1/2 log n = o(n−α/(1+2α)). (48)
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Now consider (j, k) ∈ J2. In this case, similar to (44), for large n, we have

∑
(jb)

a2
j,k ≤ (1− (

1 + λ
2λ

)1/2)2λLn−1σ2.

It then follows from Lemma 2 that

{S2
jb≥λLn−1σ2} = {

∑
(jb)

(aj,k + n−1/2σzj,k)2≥λLn−1σ2}⊆{
∑
(jb)

z2
j,k≥

1
2
(1+λ)L}.

So for sufficiently n, we have

Eθ̂2
j,k = Eỹ

2
jkI(S

2
jb > λLn

−1σ2) ≤ 2n−1σ2Ez2
j,kI(S

2
jb > λLn

−1σ2) + 2a2
j,k

≤ 2n−1σ2EY (Y ≥ 1
2
(1 + λ)L) + 2a2

j,k,

where Y =
∑

(jb) z
2
j,k ∼ χ2

L. Denote λ1 = (1 + λ)/2. Lemma 4 now yields

E(θ̂j,k)2 ≤ 2n−1σ2λ1L (λ−1
1 eλ1−1)−L/2 + 2a2

j,k ≤ 2n−1σ2λ1L β
−L + Cn−2α2−j

where β = (λ−1
1 eλ1−1)1/2 > 1, since λ1 > 1. Hence

T32 ≡
∑

(j,k)∈J2

(Eθ̂2
j,k)

1/2|ψj,k(x0)| ≤ Cβ−L/2L1/2 + Cn−αL1/2 = o(n−α/(1+2α)).

(49)
It follows by combining (48) and (49),

T3 = T31 + T32 = o(n−α/(1+2α)). (50)

Putting together (45), (46), and (50), we have S≥T1−T2−T3≥ 1√
2
c0c1n

−α/(1+2α)

Lα/(1+2α)(1 + o(1)). Now (12) follows by letting L = (log n)s with s > 1.

8.5. Proof of Theorem 3

Let κ(λ) ≡ (λ − log λ − 1)/2 and rewrite (28) accordingly. First consider
s = 1. Since κ(λ) ≥ 1 for λ ≥ λs = 4.5052, for L = log n and λ ≥ λs, one has

pL(λ) = 1−(1−P (YL > λL))n/L ≤ 1−(1−(λ−1)−1 log−1/2 n/nκ(λ))n/ logn → 0.

On the other hand, if λ is a constant less than λs, then κ(λ) < 1 and it is easy
to see that pL(λ) → 1. The case of s = 0 is similar.

Now consider other cases. Suppose λ = β + δ with δ = o(β). Then, using
Taylor expansion, one has for any M > 1,

κ(λ) = β + δ − log β − 1 +
M−1∑
m=1

(−1)m δm

mβm
+O(

δM

βM
). (51)
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Consider 0 < s ≤ 1/2. Let λs = 2(log n)1−s + log(2(log n)1−s) + 1. Applying
(51) with β = 2(log n)1−s and δ = log(2(log n)1−s) + 1, one has, for large n,
κ(λs) ≥ (log n)1−s − log(2(log n)1−s)

2(logn)1−s . Hence,

e−L·κ(λs) ≤
√
2n−1(log n)(1−s)/2. (52)

Note that (52) also holds for any λ ≥ λs ≥ 1, since κ(λs) is strictly increasing
for λ ≥ 1. Thus, for λ ≥ λs, pL(λ) ≤ 1 − (1 − (λ − 1)−1/n)n/(logn)s → 0. The
other cases can be verified similarly by using (51).

8.6. Proof of Proposition 1

Denote R(θ̂, θ, σ∗) = Eσ∗‖θ̂ − θ‖2
2, and θ∗ = θ/σ∗. Since R(θ̂, θ, σ∗) =

σ2∗R(θ̂∗, θ∗, 1), it suffices to consider only the case σ∗ = 1. For brevity, we denote
R(θ̂, θ, 1) by R(θ). It is easy to see that R(θ) is bounded from above by (2λ+2)L
since

R(θ) = E‖xI(S2 > λL)−θ‖2
2 ≤ 2E‖x−θ‖2

2+2ES
2I(S2 ≤ λL) ≤ (2λ+2)L. (53)

On the other hand,

R(θ) = E‖x− θ‖2
2I(S

2 > λL) + ‖θ‖2
2Pθ(S2 ≤ λL) ≤ 2‖θ‖2

2 + 2ES2I(S2 > λL).
(54)

When ‖θ‖2
2 ≥ L/2, ES2I(S2 > λL) ≤ ES2 ≤ 3‖θ‖2

2. So,

R(θ) ≤ 8‖θ‖2
2, when ‖θ‖2

2 ≥ L/2. (55)

Now assume ‖θ‖2
2 < L/2. Let µ = ‖θ‖2

2 and denote g(µ) = ES2I(S2 > λL).
Denote by fm,µ(y) the density of a noncentral χ2-distribution with m degrees of
freedom and noncentrality µ and denote fm,0(y) by fm(y). The pdf fm,µ(y) has
many representations (see, e.g., Johnson, Kotz and Balakrishnan (1995)). We
need the Poisson form and the integral form:

fm,µ(y) =
∞∑
k=0

(µ/2)ke−µ/2

k!
fm+2k(y), (56)

fm,µ(y) =
1
2

∫ y

0
[q(

√
y − x+√

µ) + q(
√
y − x−√

µ)](y − x)−1/2fm−1(x)dx, (57)

where q(x) is the density of a standard normal distribution. Since S2 has a
noncentral χ2 distribution with L degrees of freedom and noncentrality parameter
µ, using (56), one has

g(µ) =
∞∑
k=0

(µ/2)ke−µ/2

k!
EYL+2kI(YL+2k > λL), (58)
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where Ym denotes a central χ2 random variable with m degrees of freedom.
Denote ak = EYL+2kI(YL+2k > λL) and differentiate both sides of (58): g′(µ) =
1
2

∑∞
k=0

(µ/2)ke−µ

k! (ak+1 − ak). It is easy to verify that ak+1 − ak = 2P (YL+2k+2 >

λL) + 2λLfL+2k+2(λL). Therefore,

g′(µ) =
∞∑
k=0

(µ/2)ke−µ/2

k!
{P (YL+2k+2>λL)+λLfL+2k+2(λL)}≤1+λLfL+2,µ(λL)

(59)
Now use the integral form (57) of fL+2,µ to bound λLfL+2,µ(λL).

fL+2,µ(λL) =
1
2

∫ λL

0
(q(

√
λL−x+√

µ)+q(
√
λL−x−√

µ))(λL−x)−1/2fL+1(x)dx

≤ 1
2

∫ (λ−2)L

0
(q(

√
2L) + q(

√
2L−

√
L/2))(2L)−1/2fL+1(x)dx

+
1
2

∫ λL

(λ−2)L
(

1√
2π

+
1√
2π

)fL+1((λ− 2)L)(λL− x)−1/2dx

≤ 1
4
√
π
L−1/2(e−L + e−L/4) +

1√
π
L1/2fL+1((λ− 2)L).

Using Stirling’s formula, after some algebra, one has fL+1((λ − 2)L) ≤
1

2
√

2(λ−2)π

(
λ−2
eλ−3

)L/2
. So,

λLfL+2,µ(λL) ≤ λ

4
√
π
L1/2(e−L + e−L/4) +

λ

2π
√
2(λ− 2)

L3/2
(
λ− 2
eλ−3

)L/2

. (60)

Some calculus shows that for a, b > 0,

L1/2eaL≤sup
x>0

xe−ax2
=(2ae)−1/2, and L3/2b−L≤sup

x>0
x3b−x2

=(3/(2e log b))3/2.

(61)
Set a = 1 and a = 1/4, and let b = (eλ−3/(λ − 2))1/2. It follows from (60) and
(61) that

λLfL+2,µ(λL) ≤ λ

4
√
π
((2e)−1/2 + (2/e)1/2)

+
λ

2π
√
2(λ− 2)

(
3

e(λ− 3− log(λ− 2))

)3/2

≤ λ− 1,

for λ ≥ 4. Now (59) yields g′(µ) ≤ λ and consequently g(µ) ≤ λµ + g(0) =
λµ+ EYLI(YL > λL). It now follows from Lemma 4 and (54) that

R(θ) ≤ (2λ+ 2)‖θ‖2
2 + 2λL(λ−1eλ−1)−L/2, when ‖θ‖2

2 < L/2. (62)
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The inequality (24) follows by putting together (53), (55), and (62).
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9. Appendix. The Test Functions
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