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1. Proofs of Theorems in Section 2 of the Main Paper

Throughout the document, we let (2, F, P) be the probability space where a stationary
Gaussian random field Z(s) is defined. To self-contained, we state theorems and corollary

again in this supplementary material.

Proof of Theorem 2.2 . The proof of the consistency of 8, is similar with Wu, Lim

and Xiao (2013). So we only show (2.10) of the main paper.
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where gc g = dgcg/df. We can rewrite %Rm(c*7 9)’9:9 as
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Note that we have (1/m?=%) (f,T,L @rd/m) /Ggco 0 (27rJ/m)> 25 1 since
(1/m?=0%) (I;Tn @2rd/m) /Ge, 60 (27TJ/m)) %5 1 by Lim and Stein (2008) and 6, is

consistent. Thus, from the continuity of g, for any 0 < € < 1, there exists a positive

<e}>1—e
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Since ¢ (2wJ/m) < 0 [Wu (2011)], we have the following inequalities by replacing

integer M. independent of the value of ¢* such that

P 1 I7(2nd/m) .
m?=% ge,6,,(2mJ /m)

for all m > M,. Note that
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(1/md=0%) (ffn @2rd/m) /ge, .0, (27rJ/m)) with 1 — e and 1 + €, respectively, in the
expression of %Rm(c*7‘9)}9:9 :
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(1.1) and (1.2) can be rewritten as

(ot e (=t =a) <o
(et ~tosom) (1= ot c0) >0

From (1.3) and (1.4), we have

C—Smem_eo(l —¢) <1 and C—Sme’"—eo(l +e) > 1,
c c

since (g1,0,, (27T /m) /91,0, (27T /m) —log(m)) < 0 for large enough m due to the
boundedness of g and ¢ shown in Wu, Lim and Xiao (2013). By taking the logarithm on

both sides of the above inequalities, we obtain (2.10) of the main paper. O

Proof of Corollary 2.1. First, it can be easily shown that when max{0, (d — 2)/d} <

1 I7(2xd/m)
m*=00 gey 0, (21 /m)

=1 ae. (1.5)

by the Borel-Cantelli lemma and the Chebyshev’s inequality with

1 I7(2nd/m) _2n
~ . 1.
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Then, the strong consistency of 8,, can be shown in a similar way as the proof of Theorem
3 in Wu, Lim and Xiao (2013) by using (1.5).

O

Proof of Theorem 2.4. Ouly the proof of case (i) (¢* > ¢g) is presented, and that of
case (ii) can be shown similarly.

Suppose that the result (i) does not hold, that is, there exists 6 > 0 and M; > 0
such that

Py > 0p) >0

imsart-generic ver. 2011/05/20 file: manuscript-Sinica-R2-supplementary.tex date: July 22, 2015



Wu and Lim/Estimation of smoothness of a random field 4

for m > M. By the consistency of a smoothed periodogram (Lim and Stein (2008)), we

have
0 (2rd
dm == — am( mJ/m) £ co/c”.
mad=%og.. o (2w d /m)

Then, there exists a subsequence of {m}, {my}, such that d,,, converges to cy/c* almost
surely. By the Egorov’s Theorem (Folland, (1999)), there exists Gs C € such that d,,,
converges to ¢p/c* uniformly on G5 and P(Gs) > 1 — §/2. Since ¢o/c* < 1, there exists
My such that d,,, <1 on Gs for my, > My by the uniform convergence.

Let Q= {w € Q : 0p > O, }. On Qyyy,, we have ge- g, (27T /) < Ge= p,,,, (27T /M)

since §(2nrJ/my) < 0. Then, we have

Oy —00 Yo .0, (27 [my,)
my
e+ 0m,, (2rd /mk)

<lon Q,.

Thus, we can show R, (¢*,0pm,) — Rm, (c¢*,00) > 0 on Q,,,, (]G5 using the Lemma
2 of Wu, Lim and Xiao (2013). Note that, by construction, P(€Qy,, (Gs) > /2 > 0 since
P(Qy,,) > 6 and P(Gs) > 1 —6/2 for my, > M = max{My, My} which contradicts to

the fact that 6,,, is the minimizer of R,,, (c*,0). O
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