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Abstract: This paper proposes a distributed empirical likelihood (DEL) method for

performing an integrative analysis of multiple data sources with the flexibility of

handling either homogeneous or heterogeneous data. The proposed DEL method

does not require pooling individual data sets into a centralized operational platform,

so the privacy of subject-level information in individual data sources is protected.

The DEL method is shown to be almost surely equal to the centralized empirical

likelihood approach that would be adopted if individual data sets were combined

and stored at one place. We establish the large-sample properties and algorithm

convergence of the DEL method. We also illustrate the numerical performance of

the DEL method using simulation studies and a real-data example, in which the

DEL method is clearly advantageous over the classical meta-estimation method

when analyzing unbalanced data sets.
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meta estimation.

1. Introduction

One of the primary tasks in data integration is to combine data from different

sources in order to perform an analysis in a comprehensive and unified manner,

overcoming the limitations of separate analyses of individual data sources (Lenz-

erini (2002); Halevy, Rajaraman and Ordille (2006)). For example, consider a

situation in which one data source contains observations collected from students

in elementary schools, while another source contains measurements from stu-

dents in middle schools. These two data sources present different ranges of age,

and merging them can yield statistics and conclusions generalizable to a broader

population than is possible with an analysis of a single data source. In many ap-

plications, appropriately integrating multiple data sources enables practitioners

to empower their data analysis to answer a scientific hypothesis of interest (Citro

(2014); Lohr and Raghunathan (2017); National Academies of Sciences Engineer-

ing and Medicine (2017)). Proposed first by Owen (1988, 1991), the empirical
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likelihood (EL) method is one of the primary statistical methods for estimation

and inference, owing to several methodological advantages over other existing

methods. For example, the EL method requires minimal parametric model as-

sumptions for data distributions, allows us to construct data-driven confidence

regions, and can organically handle auxiliary information. Such properties are

particularly appealing for data integration; see Owen (2001) and the references

therein for a comprehensive overview of the EL method.

This paper develops a distributed EL (DEL) method for an integrative data

analysis when multiple sources of subject-level data are accessible at local sites,

but combining individual data sets is prohibited. Specifically, consider K in-

dependently sampled data sets from K study sites, W [k] = {Wki}nk

i=1, for k =

1, . . . ,K, with the kth data set consisting of nk independent and identically dis-

tributed (i.i.d.) observations. To analyze the kth data set alone, we estimate a

(q + 1)-dimensional parameter θk0 ∈ Ξ ⊂ Rq+1 using the following set of mo-

ment conditions: E {gk(Wki;θk0)} = 0, for i = 1, . . . , nk, k = 1, . . . ,K, where

gk(Wki;θ) is an mk-dimensional estimating function with mk ≥ (q + 1). We

consider two scenarios of integrative analyses of practical importance: (a) the

homogeneity case: both the parameters and the estimating functions are assumed

to be the same for all K data sources, that is, θk0 ≡ θ0 and gk(·) ≡ g(·), for all

k; and (b) the partial homogeneity case: θk0 ≡ θ0, where the moment conditions

gk(·) may be different for k. Scenario (a) is typically considered in a classical

meta-analysis in that the data distributions in the individual data sources are

required to be reasonably balanced, so that reliable site-specific statistics may

be obtained prior to a meta-estimation. However, this individual balance may

fail to hold in practice. For example, for the motivating US kidney transplant

data, three binary covariates on transplant recipients (namely, obesity, previous

transplant, and hepatitis C serology in region Guam) take the same value with

no variability (i.e., zero variances). In this case, the classical meta-type method

fails, while our proposed DEL method works properly, because it aggregates the

estimating functions across study sites, whereas the meta-estimation directly ag-

gregates site-specific summary statistics.

Few studies have examined the EL methodology in integrative data analyses.

Most published works focus on improving the EL method under a single data

set by incorporating auxiliary information. For example, Chen and Kim (2014)

developed an EL method for a finite population, incorporating features of the

sampling design using suitable constraints. Han and Lawless (2019) studied an

EL estimation, using a certain summary of auxiliary information to improve the

efficiency. Along this line of research, Huang, Qin and Tsai (2016) proposed a
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double EL method for estimating a survival time distribution by synthesizing

individual-level data from an external data source; see also Chen and Qin (1993);

Qin (2000); Chaudhuri, Handcock and Rendall (2008), and Qin et al. (2014),

among others. However, the objective of an integrative data analysis differs from

those of the aforementioned approaches, because it pertains to a joint inference

with multiple data sources, in which each data set is regarded as a primary

information source and treated equally in the distributed estimation.

One straightforward solution to data integration is the so-called centralized

method; that is, all data sets are combined, stored, and processed in a central

computing facility. In this case, the EL method may be applied directly to

analyze the combined data. The feasibility of such an approach depends on the

availability of the combined data, which may be limited by computing facilities,

data use agreements, or data privacy considerations. Data privacy is one of the

biggest barriers to sharing and combining data. For example, although sharing

patients’ health records across hospitals is beneficial for medical research, this

process requires significant administrative effort and time. As a result, it is

tedious and contingent on information censoring, owing to data privacy concerns

and regulatory policies related to data sharing. In addition, the computational

burden may become substantial as the volume of merged data increases. For

omics data, imaging data, and mobile health data generated by modern high-

throughput technologies, storing and processing all the data at a single computing

facility may be prohibitive. In such cases, divide-and-conquer strategies using

distributed computing are popular. Note that a centralized data analysis may be

less efficient, or even invalid, when substantial data heterogeneity exists across

data sources.

A meta-analysis combines site-specific summary statistics (Simmonds and

Higgins (2007); Kovalchik (2012)). It uses a weighted average of individual sum-

mary statistics to produce an overall estimator for a common population attribute

θ0 of interest:

θ̂meta =

(
K∑
k=1

V −1
k

)−1( K∑
k=1

V −1
k θ̂k

)
, (1.1)

where θ̂k is, say, an EL estimate obtained from the kth data source, and Vk =

Var(θ̂k) is the corresponding variance. Having no closed-form expression, an

approximate variance Vk is given for a large nk; see Qin and Lawless (1994). The

validity of the meta-estimation in (1.1) is easily justified when all nk are large by

using the means of confidence distribution method first proposed by Efron (1993),
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and later advocated by Xie and Singh (2013). However, the large-sample behavior

may fail with finite sample sizes. For example, in practice, some data sources have

small sample sizes, for which approximate variances are no longer reliable. As a

result, the meta estimator in (1.1) may perform poorly. The estimation of Vk may

be improved using a resampling method, but this incurs excessive computational

costs. Furthermore, some variables may show unbalanced distributions when the

sample sizes are small across data sources (e.g., measurements of a covariate with

little variability). In this case, the meta-estimation method can fail.

We investigate a new approach to distributed computing and inference, which

we call the distributed empirical likelihood (DEL) method. It performs an

EL estimation and inference without pooling individual data sets or sharing

subject-level information across data sets. To address scenarios (a) and (b),

we present two variants of the DEL method: (i) the doubly constrained (DOC)

DEL (DEL.DOC) method, which is suitable for the homogeneity scenario (a);

and (ii) the singly constrained (SIC) DEL (DEL.SIC) method, which applies to

the partial homogeneity scenario (b). Compared with the conventional meta-

estimation method, the DEL methodology offers four advantages. First, in both

scenarios, our DEL method still works in the presence of unbalanced distribu-

tions of variables across multiple data sources, where the meta-type method fails.

Second, in scenario (a), the DEL.DOC estimator is asymptotically equivalent to

that obtained by the centralized method (hereafter, referred to as the central-

ized EL estimator (CEL)) in the “almost surely” sense (Stout (1974)); that is,

the DEL.DOC method produces an EL estimator that is equal, almost surely, to

the CEL estimator. In contrast, the meta-type estimator in (1.1) is only weakly

equivalent to the CEL estimator in the sense of “in distribution” (Liu, Liu and Xie

(2015)). Third, the DEL.DOC method provides a valid inference under a fixed

K and when K diverges to infinity at any rate. Fourth, neither the DEL.DOC

method nor the DEL.SIC method requires a direct estimation of the individual

variances Vk in the operation of the DEL method.

The rest of the paper is organized as follows. Section 2 introduces the nec-

essary notation and presents the DEL.DOC method under the homogeneity sce-

nario (a). Section 3 extends the DEL method to the partial homogeneity scenario

(b), where we also investigate the theoretical properties of the DEL.SIC method.

Simulation studies and a real-data example are used to evaluate the two proposed

methods in Sections 4 and 5, respectively. Section 6 concludes the paper. All

technical details can be found in the Supplementary Material.
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2. DEL Method in the Homogeneity Setting

Under scenario (a) of homogeneous parameters θk0 ≡ θ0 and estimating

functions gk(·)≡g(·), for all k, we present the doubly constrained DEL (DEL.DOC)

method after a brief review of the centralized EL (CEL) method.

2.1. The CEL method

Consider the kth data set W [k] of nk i.i.d. observations. The parameter of

interest θ0 ∈ Ξ satisfies the mean-zero moment condition: Eθ0 {g(Wki;θ0)} = 0.

Here, Ξ ⊂ Rq+1 is a compact set containing θ0 as an interior point. According

to the empirical likelihood theory (Owen (1988); Qin and Lawless (1994)), the

parameter θ0 may be estimated by maximizing the following objective function

based on data set W [k]: Lk(θ) = suppki

∏nk

i=1 nkpki, subject to pki ≥ 0, for

i = 1, . . . , nk,
∑nk

i=1 pki = 1, and
∑nk

i=1 pkig(Wki;θ) = 0. The EL estimator

θ̂k = argmaxθ∈Ξ Lk(θ). For each θ ∈ Ξ, let Tnk
(θ) = ∩nk

i=1{t : tT gki(θ) < 1},
where gki(θ) = g(Wki;θ). Denote hk(θ, t) = n−1

k

∑nk

i=1 log
(
1− tT gki(θ)

)
. Here,

θ̂k may be obtained by solving the saddle-point problem:

θ̂k = argmin
θ∈Ξ

sup
t∈Tnk

(θ)
hk(θ, t). (2.1)

When multiple data sources W [k], for k = 1, . . . ,K, are available, as long

as the capacity of the computing facility permits it, the CEL method can be

performed by first aggregating all data sets on a centralized computing site, and

then acquiring an estimator θ̂cen of the form

θ̂cen = argmin
θ∈Ξ

sup
t∈Tn(θ)

{
K∑
k=1

wkhk(θ, t)

}
, (2.2)

where wk = nk/n, n =
∑K

k=1 nk, and Tn(θ) = ∩Kk=1Tnk
(θ).

This CEL estimator θ̂cen is the same as the classical EL estimator. Thus, all

relevant finite-sample and large-sample properties of the empirical likelihood the-

ory hold and apply for θ̂cen under suitable regularity conditions. Arguably, in the

case (a) of homogeneity, the CEL method is the method of choice for performing

an EL estimation and inference, as long as an adequate computational facility is

available, and no data sharing barriers exist across multiple data sources.
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2.2. The DEL.DOC method

As noted in Section 1, obtaining the CEL estimator θ̂cen in (2.2) can be chal-

lenging or even prohibitive. To address this challenge, we propose the DEL.DOC

method. Inspired by the divide-and-conquer strategy, our solution leads to a

new method of distributed estimation and inference in the context of empirical

likelihood. Our proposed DEL.DOC method uses data stored on separate loca-

tions, without needing to communicate or share subject-level information across

individual data sets.

The divide-and-conquer strategy can be implemented by the following doubly

constrained EL optimization problem:

min
Θ∈DΘ

sup
T∈DTn(Θ)

{
K∑
k=1

wkhk(θk, tk)

}
, (2.3)

subject to θ1 = θ2 = · · · = θK , and t1 = t2 = · · · = tK ,

where Θ = (θ1,θ2, . . . ,θK), T = (t1, t2, . . . , tK), DΘ = {Θ : Θ = (θ1, . . . ,θK)

with θk ∈ Ξ}, and DTn(Θ) = {T : T = (t1, . . . , tK) with tk ∈ Tnk
(θk)}. The

double constraints refer to the sets of equality constraints on θk and tk, which

guarantee that the resulting EL estimator is equivalent to the centralized EL

θ̂cen estimation. This optimization problem (2.3) is different to the conventional

meta estimation given in (1.1), where the combined estimator is based directly

on individual EL θ̂k. In contrast, the proposed DEL.DOC method in (2.3) gives

a combined estimator using an aggregated objective function, with the equality

constraints imposed directly on the parameters θk and tk. Such global constraints

lead to a new combined EL estimator of θ0. Note that without such constraints,

the individual parameters θk are estimated separately in parallel, with no data

integration. To solve (2.3), we invoke the mean of the alternating direction method

of multipliers (ADMM) (Boyd et al. (2011)) using the following optimization

problem:

min
Θ∈Dθ

a∈Ξ

sup
T∈DTn

b∈Tn(a)

{
K∑
k=1

wkhk(θk, tk)

}
, (2.4)

subject to θk ≡ a, tk ≡ b, k = 1, . . . ,K.

The constrained optimization in (2.4) can be solved using Algorithm 1, the con-

vergence of which is established in Proposition 1. The final output estimates are

denoted by θ̂del.doc = a∗; that is, a∗ is the converged value of a(s) at iteration s.



DISTRIBUTED EMPIRICAL LIKELIHOOD 2215

Remark 1. In Step 6 of Algorithm 1, the updated θ
(s)
k is obtained by minimizing

a modified EL function that is expanded with a quadratic term consisting of the

combined estimate a(s), the step size u
(s)
1,k, and the learning rate matrix Ω1,k.

The rationale for adding such an expansion to the EL method stems from the

fact that this quadratic term pulls separate local estimates toward a common

overall estimate, enabling us to effectively “borrow” information from other data

sets during iterations, with no need to access subject-level observations of other

data sources. In Theorem 1, we show that the estimator θ̂del.doc is equal, almost

surely, to the CEL θ̂cen obtained in (2.2). In other words, the proposed DEL.DOC

method provides the same solution as that obtained by running analyses with the

aggregated data sets once. In addition, with this quadratic term, the proposed

DEL method overcomes the problem of unbalanced variables, as shown in both

the simulation and the real-data examples.

In a classical meta-analysis, the meta-estimator in (1.1) takes a simple one-

step weighted average of data set-specific estimators θ̂k using (2.1). With these

estimates θ̂k, proper weights (e.g., estimates of the variances Vk) are chosen to

ensure the validity of the meta-estimator. In the proposed DEL.DOC method,

all separate estimates θ
(s)
k are calibrated iteratively by the quadratic term in the

ADMM algorithm step (ii). Therefore, we can use a relatively liberal choice of

the learning rate matrix Ω1,k in the weighted averaging procedure to combine

individual estimates. From this point of view, the meta-estimator (1.1) may be

regarded essentially as a one-step approximation to the proposed DEL.DOC esti-

mator. Because the DEL.DOC method does not explicitly calculate the variances

Vk, it avoids both the difficulty of estimating the variance Vk, and the potential

numerical instability caused by a poor estimate of Vk with a small sample size

nk.

2.3. Theoretical properties

In the case of homogeneity, θk0 ≡ θ0 and gk(·) ≡ g(·), for all k, we let

S ≡ S1 ≡ · · · ≡ SK and Q ≡ Q1 ≡ · · · ≡ QK , where Sk and Qk are the sensi-

tivity and variability matrices defined in conditions (C5) and (C3), respectively.

Below, we first present the algorithmic convergence of the ADMM algorithm in

Proposition 1, which is proposed to implement the DEL.DOC method. Its proof

is given in the Supplementary Material.

Proposition 1. (Algorithmic convergence of the ADMM for the DEL.DOC

method). Denote Ur = (ur,1, . . . ,ur,K), for r = 1, 2. Let L01(Θ,T,a,U1) =∑K
k=1wkhk(θk, tk)+

∑K
k=1 u

T
1,kΩ1,k(θk−a), and L02(Θ,T, b,U2) = −

∑K
k=1wkhk
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(θk, tk)+
∑K

k=1 u
T
2,kΩ2,k(tk−b). Suppose that (i) there exists (Θ∗,T∗,a∗, b∗,U∗1 ,

U∗2 ), for which the following inequalities hold for all Θ ∈ Dθ,T ∈ DTn ,a ∈
Ξ, b ∈ Tn(a),U1 ∈ R(q+1)×K , and U2 ∈ Rm1+···+mK : L01(Θ∗,T,a∗,U1) ≤
L01(Θ∗,T,a∗,U∗1 ) ≤ L01(Θ,T,a,U∗1 ), and L02(Θ,T∗, b∗,U2) ≤ L02(Θ,T∗, b∗,

U∗2 ) ≤ L02(Θ,T, b,U∗2 ); and (ii) there exist initial values (a(0), b(0),U
(0)
1 ,U

(0)
2 ),

such that

K∑
k=1

{(
u

(0)
1,k − u

∗
1,k

)T
Ω1,k

(
u

(0)
1,k − u

∗
1,k

)
+
(
a(0) − a∗

)T
Ω1,k

(
a(0) − a∗

)}
≤M1,

K∑
k=1

{(
u

(0)
2,k − u

∗
2,k

)T
Ω2,k

(
u

(0)
2,k − u

∗
2,k

)
+
(
b(0) − b∗

)T
Ω2,k

(
b(0) − b∗

)}
≤M2,

for some positive constants M1 and M2. Then, as the iteration s→∞, we have

max
k

∥∥θ(s)
k − θ

∗
k

∥∥
2
→ 0, and ‖a(s) − a∗‖2 → 0,

max
k

∥∥t(s)k − t∗k∥∥2
→ 0, and ‖b(s) − b∗‖2 → 0.

Proposition 1 indicates that, according to condition (ii), both the initial

values and the learning rate matrices Ωr,k could affect the performance of the

DEL.DOC method. When the number of data sources, K, is large, proper initial

values are required to ensure the convergence of the algorithm. Theorem 1 gives

the almost sure equality between θ̂del.doc and θ̂cen, as well as the asymptotic

properties of θ̂del.doc.

Theorem 1. Assume Conditions (C1)–(C5) in the Appendix hold.

(a) If the initial values satisfy a(0) = θ0 +O(K−1/2), b(0) = O(K−1/2), U
(0)
1 =

0, and U
(0)
2 = 0, then Prob(θ̂del.doc = θ̂cen) = 1.

(b) If the conditions of the initial values given in part (a) hold, as n→∞,

√
n

(
θ̂del.doc − θ0

t̂del.doc − 0

)
d→ N

(
0,

[
J−1
del.doc 0

0 Q−1 −Q−1SJ−1
del.docS

TQ−1

])
,

where the Godambe information matrix Jdel.doc = STQ−1S.

The proof of Theorem 1 is given in the Supplementary Material. According

to Theorem 1, when the number of data sources, K, is fixed, the initial values

of a and b may be chosen easily, say, as certain reasonable constant vectors.

However, if K increases, the initial value of a(0) should be chosen to be close to

the true value θ0 at the rate O(K−1/2).
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Algorithm 1. Algorithm for DEL.DOC Method.

1: procedure DEL.DOC (round, ε, Ωr,k, r = 1, 2, k = 1, . . . ,K) . Input

2: Determine the initial local estimates {θ(0)k }Kk=1, {t(0)k }Kk=1 for each data set (e.g.,

individual estimates θ̂k and corresponding t̂k), initial global estimates a(0) and b(0)

(e.g., simple averages of local estimates), and initial step sizes {u(0)
1k }Kk=1, {u(0)

2k }Kk=1

(e.g., all set to 0).
3: iter ← 1
4: converge← FALSE
5: while !converge & iter ≤ round do
6: Update θk, tk,a, b,u1,k,u2,k by

θ
(s+1)
k = argmin

θk

{
wkhk(θk, t

(s)
k ) +

1

2

(
θk − a(s) + u

(s)
1,k

)T
Ω1,k

(
θk − a(s) + u

(s)
1,k

)}
;

t
(s+1)
k = argmin

tk

{
− wkhk(θ

(s+1)
k , tk)

+
1

2

(
tk − b(s) + u

(s)
2,k

)T
Ω2,k

(
tk − b(s) + u

(s)
2,k

)}
;

a(s+1) =

(
K∑

k=1

Ω1,k

)−1( K∑
k=1

Ω1,kθ
(s+1)
k

)
, b(s+1) =

(
K∑

k=1

Ω2,k

)−1( K∑
k=1

Ω2,kt
(s+1)
k

)
;

u
(s+1)
1,k = u

(s)
1,k + θ

(s+1)
k − a(s+1), u

(s+1)
2,k = u

(s)
2,k + t

(s+1)
k − b(s+1);

where Ωr,k, r = 1, 2, k = 1, . . . ,K are prespecified (q + 1) × (q + 1)-dimensional
positive-definite symmetric matrices pertaining to the algorithmic convergence rate.

7: if maxk

∥∥θ(s+1)
k − θ(s)k

∥∥
2
< ε and maxk

∥∥t(s+1)
k − t(s)k

∥∥
2
< ε for a prespecified

threshold ε, say 10−4, then converge← TRUE

8: iter ← iter + 1

9: return Θ,T ,a, b.
. Output

3. DEL Method in the Partial Homogeneity Setting

Now, we consider scenario (b) of θk0 ≡ θ0, but where gk(·) varies over

k. We propose the DEL.SIC method to perform the meta EL estimation. The

asymptotic properties of the DEL.SIC method are thoroughly investigated in this

section.

3.1. DEL.SIC method

The DEL.DOC method imposes two sets of equality constraints, θk ≡ a

and tk ≡ b, for k = 1, . . . ,K, in order to enforce homogeneity on both the

parameters θk0 and the estimation functions gk(·). This is the typical situation

considered routinely in a classical meta-analysis. However, note that in most
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practical studies, the second set of constraints on gk may be rarely satisfied,

owing to inter-data heterogeneity. For example, in the setting of instrumental

variable models (Imbens (2002); Newey and Smith (2004)), different data sets may

have their own instrumental variables, leading to different numbers of moment

constraints. Thus, gk(·) may vary in terms of its form and dimension. In this case,

tk are of different dimensions; hence, it is impossible to require tk ≡ b. A natural

modification of the DEL.DOC method is to remove the second set of constraints

on tk, resulting in a relaxed DEL method with only a single set of constraints

θk ≡ a. Interestingly, as shown in Theorem 3, this generalization helps to handle

the homogeneity case (a), in which the resulting DEL.SIC estimator appears to

have smaller asymptotic variances than those obtained by the DEL.DOC method.

Specifically, the DEL.SIC method relaxes step 6 in Algorithm 1, given as

follows:

θ
(s+1)
k = argmin

θk

{
wkfk(θk) +

1

2

(
θk − a(s) + u

(s)
k

)T
Ωk

(
θk − a(s) + u

(s)
k

)}
;

a(s+1) =

(
K∑
k=1

Ωk

)−1( K∑
k=1

Ωkθ
(s+1)
k

)
; u

(s+1)
k = u

(s)
k + θ

(s+1)
k − a(s+1); (3.1)

where fk(θ) = supt∈Tnk
(θ)

{
n−1
k

∑nk

i=1 log
(
1− tT gki(θ)

)}
, and Ωk is a prespeci-

fied learning rate. Denote the converged value of a(s) from the relaxed ADMM

algorithm as θ̂del.sic. The convergence of the ADMM algorithm implemented for

the DEL.SIC method via (3.1), stated in Proposition 2 in the Supplementary

Material, can be proved using similar arguments to those in Proposition 1. See

the Supplementary Material.

Remark 2. The DEL.SIC method provides an interesting interpretation as a new

approach to aggregating ELs. Consider an objective function L(θ) that aggre-

gates K individual ELs, each having its own set of pki: L(θ) = suppki

∏K
k=1

∏nk

i=1

nkpki, subject to pki ≥ 0,
∑nk

i=1 pki = 1, and
∑nk

i=1 pkigki(θ) = 0, for k = 1, . . . ,K.

In this formulation, different gk(·) are allowed in the aggregation. Let θ̌cen be the

EL solution to the above objective function obtained using a centralized compu-

tation method. After some simple calculations, we have that

θ̌cen = argmin
θ∈Ξ

K∑
k=1

wkfk(θ) = argmin
θ∈Ξ

{
K∑
k=1

wk sup
tk∈Tnk

(θ)
hk(θ, tk)

}
. (3.2)

The relaxed ADMM algorithm (3.1) enables us to search for the solution

to the reformulated optimality problem given in (3.2), with the following con-
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straints: minΘ∈DΘ
supT∈DTn(Θ)

{
∑K

k=1wkhk(θk, tk)}, subject to θ1 = · · · = θK .

It coincides with the proposed estimator θ̂del.sic. The next subsection presents

the asymptotic properties of the CLE θ̌cen and the almost sure equality between

θ̌cen and θ̂del.sic.

3.2. Asymptotic properties

The asymptotic consistency and normality of θ̌cen are established in Theo-

rems 2 and 3, respectively, both of which are new, owing to the relaxation with

varying gk(·) in the EL method. Theorem 5 presents the almost sure equality

between θ̌cen and θ̂del.sic. Theorem 6 concerns the asymptotic distribution of the

EL ratio statistic used for a distributed inference. All proofs are given in the

Supplementary Material. Let nmin
def
= min{n1, . . . , nK}.

Theorem 2. (Consistency of θ̌cen). If Conditions (C1)–(C3) in the Appendix

hold, then θ̌cen
p→ θ0 as nmin → ∞. Moreover, let ǧk = n−1

k

∑nk

i=1 gk(Wki; θ̌cen)

and ťk = argmaxt∈Tnk
(θ̌cen)wkhk(θ̌cen, t), We have (i) ǧk = Op(n

−1/2
k ); (ii) ťk

exists with probability approaching one; and (iii) ťk = Op(n
−1/2
k ).

The estimation consistency above is well established in the literature.

Theorem 3. (Asymptotic normality of θ̌cen). Under Conditions (C1)–(C5)

in the Appendix, if K = O(n1/2−δ), for some 0 < δ ≤ 1/2 and nmin → ∞, we

have
√
n(θ̌cen − θ0)
√
n1(ť1 − 0)

...
√
nK(ťK − 0)

 d→ N

0,


J−1
del.sic 0 · · · 0

0 Q−1
1 − w1P11 · · · −w1P1K

...
... · · ·

...

0 −wKPK1 · · · Q−1
K − wKPKK


 ,

where Jdel.sic = limnmin→∞(
∑K

k=1wkS
T
kQ
−1
k Sk) and Pij = Q−1

i SiJ
−1
del.sicS

T
j Q
−1
j .

Theorem 4 compares the estimation efficiency between θ̌cen in (3.2) and θ̂cen
in (2.2).

Theorem 4. If the dimensions of gk(·) are the same, that is, m1 = · · · = mK ,

then Jdel.sic ≥ Jcen, where Jcen = limn→∞{(
∑K

k=1wkS
T
k )(
∑K

k=1wkQk)
−1 ×

(
∑K

k=1wkSk)} is the asymptotic covariance of the centralized EL estimator θ̂cen
in (2.2). The inequality ≥ is in the Löwner’s sense. Moreover, the equal variance

occurs if and only if STk ≡ Qk, for k = 1, . . . ,K, or ST1 Q
−1
1 = · · · = STKQ

−1
K .

Theorem 4 implies the following interesting results.
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Corollary 1. In the homogeneity case (a), θ̂cen (equivalent to θ̂del.doc a.s.) and

θ̌cen have the same estimation efficiency.

Theorem 5. Under the same conditions as those of Theorem 3, if the initial

values a(0) = θ0 +O(K−1/2) and u(0) = 0, then Prob(θ̂del.sic = θ̌cen) = 1.

The proof of Theorem 5 is similar to that of Theorem 1 by taking (Θ∗,a∗,u∗) =

(Θ̌cen, θ̌cen,0), and thus is omitted here.

Remark 3. Under Theorem 5, it is easy to see Theorems 2–4 also hold for

θ̂del.sic. According to Theorem 4, when the DEL.DOC method is applicable, the

asymptotic variance of θ̂del.sic(or θ̌cen) is no larger than the variance of θ̂del.doc
(or θ̂cen).

Theorem 3 indicates that the asymptotic normality of θ̂del.sic holds when

the number of data sets K grows at a slower rate than
√
n, and all sample

sizes of the data sets should tend to infinity. This order of K, O(n1/2−δ), in

Theorem 3 may be relaxed by invoking a high-order bias correction technique.

This is because aggregating the EL estimates across K data sets reduces the order

of the variance, but does not reduce the order of the estimation bias. Denote

Υ = (θT , tT1 , . . . , t
T
K)T . Following Firth (1993), we consider a qth-order Taylor

expansion of Q(Υ), the estimating function for solving the optimization given

in (3.2), from which we construct the high-order bias corrected estimator Υ̃q =

Υ̌ + S−1rq, where Υ̌ = (θ̌Tcen, ť
T
1 , . . . , ť

T
K)T , S is a p × p matrix E[∇Q(Υ0)],

and rq is a certain p-element vector yielded from the q-order Taylor expansion.

We can show that the order of the estimation bias for this new estimator Υ̃q is

Kq+2n−(q+1)+(K/n)(q+1)/2. In order for this bias to be asymptotically ignorable,

it is sufficient to set K = o(n1−1.5/(q+2)), for q ≥ 1, for which the resulting bias

is at a higher order than n−1/2. The details can be found in the Supplementary

Material.

Additionally, Theorem 3 implies that (a) in the DEL.SIC method, θ̂del.sic and

t̂k are asymptotically independent, (b) θ̂del.sic(or θ̌cen) has the same convergence

rate as those of θ̂del.doc and θ̂cen, and (c) from Theorem 1, the asymptotic variance

of the individual estimator for t based only on the kth data set is n−1
k [Q−1

k −
Q−1
k Sk

(
STkQ

−1
k Sk

)−1
STkQ

−1
k ], which is different from that of t̂k in the DEL.SIC

method. Here, t̂k = argmaxt∈Tnk
(θ̂del.sic)wkhk(θ̂del.sic, t).

As in the EL literature, we consider the following EL ratio (ELR) statistic

for testing H0 : θ = θ0: WE(θ0) = 2n{L(θ̂del.sic, T̂) − L(θ0,T0)}, where tk0 =

argmaxt∈Tnk
(θ0) hk(θ0, t), for k = 1, . . . ,K, and L(θ,T) =

∑K
k=1wkhk(θ, tk),

with T0 = (t10, t20, . . . , tK0).



DISTRIBUTED EMPIRICAL LIKELIHOOD 2221

Theorem 6. Under the conditions of Theorem 3 and under the null hypothesis

H0 : θ = θ0, WE(θ0)
d→ χ2

q+1 as nmin →∞ and
∑K

k=1 n
−1/2
k → 0.

Note that when all data sets are of equal size, that is, nk ≡ ñ, Theorem 6

requires that ñ → ∞ and K = O(ñ1/3−δ), for some 0 < δ ≤ 1/3. To construct

a confidence interval, we consider the profile ELR statistic proposed in Qin and

Lawless (1994, Corollary 5). Let θT = (θ1,θ
T
2 )T , where θ1 is the parameter of

interest and θ2 is the subvector of the nuisance parameters. For H0 : θ1 = θ10, the

profile ELR test statistic is W2 = 2n(L(θ̂del.sic, T̂ ) − L(θ10, θ̂
null
2 , T̂ null)), where

(θ̂null2 , T̂ null) = arg minθ2 supT {
∑K

k=1wkhk(θk, tk)}, subject to θ1k ≡ θ10, and

θ2k ≡ θ2, for k = 1, . . . ,K, where θ2 is a common subvector across K data sets to

be estimated. Following Theorem 6, W2 → χ2
1 as nmin →∞. The details can be

found in the Supplementary Material. Thus, a (1 − α)100% confidence interval

satisfies Prob[W2 ≤ χ2
1(1−α)] = 1−α. We numerically find the lower and upper

limits of a 95% confidence interval, [θ̂l1, θ̂
u
1 ], as follows. First, (i) calculate the

0.05 upper quantile of χ2
1, denoted by q0.05, such that F (q0.05) = 0.95, where F is

the chi-square distribution function with degree one. Second, solve the equation

W2(θ1) = q0.05, giving two roots θ̂u1 > θ̂l1. Then, the interval length is calculated

as |θ̂u1 − θ̂l1|.

4. Examples and Numerical Illustration

Example 1. (Estimation with auxiliary information). In this example, we revisit

the two-sample problem considered in Qin and Lawless (1994) from the perspec-

tive of a distributed EL estimation and inference. We simulate i.i.d. observations

of trivariate random variables (X,Y, Z) according to the following models: X ∼
Weibull(2, 1), Y = X+ε1, and Z = X+ε2, where (ε1, ε2) ∼ BVN(0, 0, 1, 1,−0.6)

and (ε1, ε2) are independent of X. We consider a scenario of K = 3 data sets with

unequal sample sizes. The parameter of interest is the tail probability p = P (X ≥
ξ0.9), with ξ0.9 being the 0.9-quantile of Weibull(2, 1). Clearly, the true value

p0 = 0.1. Suppose we have additional information from external sources (Y, Z)

of, say, E(Y ) = µy0 = 2 and E(X) = E(Z). Such auxiliary information is rele-

vant to the parameter p, because X is correlated with the two auxiliary variables

(Y, Z). To incorporate this information in the estimation of p, we set up a joint

estimating function of the form g(x, y, z; p) = (1 (x ≥ ξ0.9) − p, y − µy0, x − z)T ,

which is unbiased because E{g(X,Y, Z; p0)} = 0. We assess and compare the

performance of the DEL.DOC method with that of the following methods: (i)

the naive sample proportion estimator with no use of auxiliary information; (ii)

the CEL estimator based on the combined data set, and (iii) the classical meta
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estimator using the inverse variance weighting. For the meta estimator, the in-

dividual variances Vk are separately estimated using the EL asymptotic variance

given in Qin and Lawless (1994). Table 1 shows the summary results over 2,000

replicates under different sample sizes. The results include the average bias, em-

pirical standard error (ESE), average asymptotic standard error (ASE), coverage

probability (CP), average interval length (AIL) of the 95% confidence interval,

and average computational time (Time), measured in seconds. The ASEs are

reported only for the naive and meta estimators based on the asymptotic nor-

mality. The two methods use the estimated asymptotic variances to construct the

confidence intervals, whereas all other methods use the ELR statistic according

to Theorem 6. Table 1 shows that the performance of the proposed DEL.DOC

method is virtually identical to that of the centralized EL method, with minor

differences owing to the numerical implementation. These two top performers

give very small estimation biases and adequate coverage probabilities under all

cases of the sample sizes considered. The meta method clearly underestimates the

standard error, with a noticeably lower coverage probability than 95%, especially

when some of the data sets have small sample sizes. The coverage probability of

the DEL.SIC method is lower than the nominal 95% level with a small sample

size for n = 60, 120 and nk = 20, 40. This is not surprising, because the DEL.SIC

method requires individual nk → ∞. The meta method performs worst, with

much lower coverage probabilities around 70% and 80%. When all individual

data sets are sufficiently large, the results of the meta estimation are close to

those of the two top methods. Furthermore, the naive estimation method has the

largest ESE and AIL, because it does not use the auxiliary information in the

estimation.

Example 2. (Log-linear model with over-dispersion). This example examines

violation of the homogeneity in the sense that the second-order moments of

gk(·) are different across the data sets, owing to heterogeneous over-dispersion.

We simulate i.i.d. observations of (Y,X) from the following Poisson-gamma

model: Y |θ,X ∼ Poi(θµ), with log(µ) = β0 + β1X, X ∼ Uniform[-1,1], where

(β0, β1) = (0, 1), and θ is a multiplicative random effect with E(θ) = 1, the

distribution of which is specified differently over K = 3 data sets. Specifically,

for the first data set, θ is degenerated as θ ≡ 1, so no over-dispersion exists;

for the second data set, θ follows a gamma distribution, θ ∼ Gamma(5, 5),

and for the third dataset, θ follows a two-point distribution, θ ∈ {0, 4}, with

P (θ = 4) = 1/4. Using the correctly specified marginal mean model, the goal is

to estimate the slope parameter β1. The unbiased estimating function is given by
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Table 1. Summary of the Bias(×10−3), ESE(×10−3), ASE(×10−3), CP(%), and
AIL(×10−2) of the 95% confidence interval and the average computational time (in sec-
onds) over 2,000 replicates under six sample sizes when estimating the tail probability of
the Weibull distribution with auxiliary information.

Method BIAS ESE ASE CP(AIL) Time BIAS ESE ASE CP(AIL) Time

nk = (20, 20, 20) nk = (80, 80, 80)

Naive 0.55 39.06 37.81 93.35(14.82) 0.00 0.37 19.75 19.28 92.75(7.56) 0.00

CEL 2.16 26.97 — 95.88(10.37) 0.05 0.21 13.64 — 95.65(5.29) 0.08

Meta −13.99 45.18 19.65 69.77 (7.70) 0.32 −1.72 14.64 12.94 91.20(5.07) 0.34

DOC 3.18 26.43 — 96.15(10.39) 4.86 0.21 13.64 — 95.65(5.29) 3.70

SIC 7.27 27.95 — 90.96 (9.30) 2.55 0.28 13.78 — 94.49(5.26) 2.35

nk = (40, 40, 40) nk = (40, 80, 120)

Naive 0.55 27.60 27.12 95.55(10.63) 0.00 0.37 19.75 19.28 92.75(7.56) 0.00

CEL 0.27 19.73 — 94.19 (7.43) 0.06 0.21 13.64 — 95.65(5.29) 0.08

Meta −4.62 25.02 17.17 83.35 (6.73) 0.31 −2.20 16.51 12.86 89.51(5.04) 0.35

DOC 0.37 19.59 — 94.38 (7.43) 3.91 0.21 13.64 — 95.65(5.29) 3.93

SIC 0.59 20.45 — 91.67 (7.18) 2.35 0.40 13.82 — 94.48(5.24) 2.54

nk = (150, 150, 150) nk = (80, 150, 220)

Naive 0.51 14.34 14.13 93.30 (5.54) 0.00 0.51 14.34 14.13 93.30(5.54) 0.00

CEL 0.29 9.94 — 94.90 (3.88) 0.10 0.29 9.94 — 94.90(3.88) 0.10

Meta −0.64 10.32 9.69 93.30 (3.80) 0.42 −0.73 10.41 9.69 92.75(3.80) 0.42

DOC 0.30 9.94 — 94.95 (3.88) 3.26 0.29 9.94 — 94.95(3.88) 3.43

SIC 0.37 10.00 — 94.50 (3.86) 2.63 0.30 10.04 — 94.30(3.86) 2.78

g(x, y;β) = (1, x)T {y − exp(β0 + β1x)}, which satisfies E[g(Y,X;β)] = 0. De-

spite the absence of random effects in the estimating function, the outcome y is

over-dispersed, with different dispersion parameters over three data sets. To eval-

uate the influence of the heterogeneity in the variances, we apply the DEL.DOC

and DEL.SIC methods to estimate β1. Their performance is also compared with

that of the standard GLM method under no over-dispersion, the CEL method

based on the combined data set, and the meta method with an inverse variance

weighting. The results are summarized from 2,000 replicates in Table 2, where the

last column shows the relative 95% confidence interval length (RIL) of a method

compared with that of the CEL method.

Similarly to the findings in Example 1, the DEL.DOC method and the

CEL method exhibit almost identical performance. However, the results of the

DEL.SIC method are very close to those of the meta EL method, both of which

have smaller ESEs and shorter AILs than those of the DEL.DOC and CEL meth-

ods. This numerical evidence confirms the theoretical results in Theorem 3 in the

case of heterogeneity, when the second-order moments of the estimating functions

gk are different, owing to varying over-dispersion generated by different distribu-
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Table 2. Summary of the BIAS(×10−2), ESE(×10−2), ASE(×10−2), CP(%), and
AIL(×10−1) of the 95% confidence interval, relative interval length compared with that
of the CEL method (RIL), and average computation time (in seconds) over 2,000 repli-
cates under different sample sizes when estimating the slope parameter β1 in a log-linear
model with over-dispersion.

nk method BIAS ESE ASE CP AIL RIL Time
(50,100,150) GLM −0.18 17.34 10.24 74.55 4.01 0.58 0.00

CEL −0.18 17.34 — 94.80 6.88 1.00 0.88
Meta −0.75 14.36 13.04 93.33 5.11 0.74 0.14
DOC −0.19 17.31 — 94.80 6.88 1.00 7.90
SIC 0.67 14.41 — 93.50 5.20 0.76 6.20

(100,200,300) GLM 0.14 12.43 7.21 74.00 2.83 0.58 0.00
CEL 0.14 12.43 — 94.75 4.86 1.00 1.02
Meta −0.38 9.77 9.45 94.20 3.70 0.76 0.18
DOC 0.13 12.39 — 94.75 4.86 1.00 7.57
SIC 0.01 9.76 — 94.60 3.75 0.77 6.42

(200,400,600) GLM 0.17 8.91 5.09 73.20 1.99 0.58 0.01
CEL 0.17 8.91 — 94.50 3.44 1.00 1.55
Meta −0.25 6.95 6.76 94.35 2.65 0.77 0.25
DOC 0.17 8.88 — 94.50 3.44 1.00 10.54
SIC −0.43 6.96 — 94.60 2.68 0.78 8.79

tions of the random effects. When naively using the standard GLM method with

the over-dispersion ignored, although producing consistent point estimates, it

severely underestimates the variance of the estimator. Note that the DEL.SIC

method automatically adjusts for heterogeneous over-dispersion, without explic-

itly modeling it, which is rather appealing in practice.

Example 3. (Log-linear model with unbalanced variables). This example con-

cerns data with unbalanced variables. We simulate i.i.d. observations of (Y,X1,

X2, X3) from the following Poisson regression model: Y |X ∼ Po(µ), with log(µ)

= β0+β1X1+β2X2+β3X3, where (β0, β1, β2, β3) = (0, 1, 1, 1) and X1 ∼ U[−1, 1].

To create an imbalance, Xi2 and Xi3 are generated independently from Bernoulli

B(1, p) with varying p. Set the total sample size of n = 300 subjects, which are

randomly assigned to K = 10 data sets satisfying nk ≡ 30. Five different levels

of unbalanced variables are considered, with p = 0.05, 0.1, 0.2, 0.5. To mimic the

real kidney transplant data, we further consider an extremely unbalanced situ-

ation (S0) with X2 ∼ B(1, 0.05). One data set is generated by X3 ∼ B(1, 0.5),

one has X3 ≡ 0, and the other eight have X3 ≡ 1. We compare the proposed

DEL method with the centralized GLM method, centralized EL method, meta

GLM method, and meta EL method. The BIAS, ESE, CP, and AIL of the 95%

confidence interval, proportion of the algorithmic convergence (PAC), and com-
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Table 3. Summary of the results for estimating β3 in a log-linear model. Different scenar-
ios of imbalances in the distributions of the covariates are given by various probabilities
p, and S0 represents an extremely unbalanced situation.

p 0.5 0.2 0.1 0.05 S0 0.5 0.2 0.1 0.05 S0
Centralized GLM Centralized EL

BIAS 0.00 −0.00 −0.00 −0.01 −0.00 0.00 −0.01 −0.00 −0.01 −0.00
ESE 0.07 0.08 0.11 0.16 0.06 0.07 0.08 0.11 0.16 0.06
CP 94.45 94.65 94.75 95.65 94.85 94.60 94.30 92.85 92.33 94.70
AIL 0.26 0.32 0.44 0.62 0.22 0.25 0.32 0.43 0.59 0.22
Time 0.00 0.00 0.00 0.00 0.00 30.12 30.89 30.86 33.35 23.37
PAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Distributed EL
BIAS 0.00 −0.00 −0.00 −0.01 −0.00
ESE 0.07 0.08 0.11 0.16 0.06
CP 94.55 94.30 92.83 92.60 94.67
AIL 0.25 0.32 0.43 0.59 0.22
Time 29.47 19.12 14.43 20.66 39.02
PAC 1.00 1.00 1.00 1.00 0.99

Meta GLM Meta EL
BIAS −0.01 0.00 0.02 0.02 – −0.01 0.01 – – –
ESE 0.07 0.08 0.11 0.19 – 0.08 0.09 – – –
CP 94.30 94.80 95.05 81.82 – 79.61 78.21 – – –
AIL 0.26 0.32 0.43 0.54 – 0.20 0.22 – – –
Time 0.02 0.02 0.02 0.02 – 5.83 6.32 – – –
PAC 1.00 0.97 0.42 0.01 0.00 0.88 0.04 0.00 0.00 0.00

putation time (Time) from 2,000 replicates are reported in Table 3. It is easy

to see that the performance of the DEL method is the same as that of the CEL

method, regardless of the imbalance levels. However, the two meta-type methods

fail as the imbalance becomes noticeably severe.

5. Real-Data Example

The Scientific Registry of Transplant Recipients (SRTR) provides epidemio-

logical data and statistical analyses related to solid organ transplantation in the

United States. Post-transplantation graft survival is the clinical outcome of most

importance for patients who receive a kidney transplant, and understanding its

associated risk factors is of clinical interest. Graft failure at the fifth year (1 for

yes and 0 for no) after organ replacement therapy is analyzed using a logistic

model that includes the following eight covariates: donor’s and recipient’s age,

BMI (0 if not obese and 1 if obese), and gender (0 for female and 1 for male),

as well as each recipient’s previous transplant (prev tx, 0 for no and 1 for yes)

and hepatitis C serology (ree hcv, 0 for negative and 1 for positive). This illus-

trative analysis concerns kidney transplant recipients from three regions: Alaska
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Table 4. Results of the logistic regression with the SRTR data using the distributed
empirical likelihood (DEL) method, Meta method (Meta2), and region-specific maximum
likelihood estimations on Alaska (GLM AK) and Wyoming (GLM WY).

DEL Meta2 MLE AK MLE WY
EST p-val EST p-val EST p-val EST p-val

(×10−1) (×10−1) (×10−1) (×10−1)
Intercept −1.94 0.01 −1.77 0.01 −1.96 0.22 −1.83 0.09
rec sex 0.55 0.14 0.42 1.19 0.67 1.17 0.38 2.69
don sex −0.57 0.16 −0.48 0.65 −1.13 0.07 −0.20 5.57
rec age −0.01 0.18 −0.01 1.31 −0.01 5.02 −0.02 1.46
don age 0.00 1.37 0.00 9.64 −0.01 7.04 0.01 7.21
rec bmi 0.19 1.02 0.26 3.45 0.13 7.45 0.49 2.03
don bmi −0.52 0.45 −0.30 3.90 −0.94 1.34 −0.10 8.17
prev tx 0.43 0.86 0.33 3.53 1.00 0.51 −0.18 7.29
rec hcv −0.34 1.20 −0.24 7.47 −0.49 6.53 −0.17 8.72

(AK), Guam (GU), and Wyoming (WY), with data sizes of 449, 9, and 401,

respectively, during the period 1987 to 2017. Because of the limited data size in

GU, the covariates don bmi, prev tx, and rec hcv take the same values with no

variability, and thus cannot be included in the regression model as independent

variables. Because a standard logistic regression is not feasible for the data in

region GU, the meta method fails to combine the results from these three regions.

For the purpose of comparison, we apply the method for two regions, namely, AK

and WY; see the results in Table 4 under Meta2, and the region-specific logistic

regression analyses on AK (GLM AK) and WY (GLM WY) using the R package

GLM, based on the maximum likelihood estimation. In contrast, our proposed

DEL method still combines the three regions, generating several interesting re-

sults; see Table 4. From the DEL analysis of the SRTR data from the three

regions, we see that (i) male donors have a higher five-year graft survival than

that of female donors, but a lower five-year graft survival than that of female

recipients; (ii) older recipients tend to have a slightly lower five-year graft failure

risk than younger recipients do; and (iii) recipients who receive repeated trans-

plants tend to have the same five-year graft survival as those having a first-time

transplant.

6. Discussion

We have developed a DEL methodology for performing EL estimation and

inference, with no need to pool individual data sets or share subject-level in-

formation across multiple data sets. This is a useful approach for protecting

data privacy and overcoming data-sharing barriers in practice. Two forms of
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the DEL method are proposed, namely, the DEL.SIC and the DEL.DOC meth-

ods, under homogeneity and heterogeneity scenarios, respectively. The former

is the setting routinely postulated in classical meta-analyses. Both our analytic

and our numerical results show that the DEL method is almost surely equivalent

to the centralized EL method, which processes aggregated data at a centralized

operation platform.

There is an interesting connection between the meta-estimation and the DEL

method. That is, the one-step update of the DEL.SIC method in equation (3.1)

gives rise to the meta-estimate (1.1). When the weighting matrix is specified

by the variance of the estimator, the resulting meta-estimator is equivalent in

distribution to the centralized EL estimator. In contrast, our DEL estimator im-

plemented using the ADMM-based iterative weighting is almost surely equal to

the centralized EL estimator. It is known that the mode of almost sure equiva-

lency is stronger than the mode of equivalency in distribution. One key practical

advantage of the DEL method is its ability to handle unbalanced data distri-

butions across multiple data sets, which often occurs in discrete variables. The

meta-estimation method may fail when the imbalance is extreme, although this

method is computationally faster than the DEL method.

In practice, data heterogeneity appears in various forms, which calls for

context-dependent solutions. Our contributions to the DEL method may provide

useful techniques for studying data heterogeneity across multiple data sources.

Two possible directions of future research are a sparsity regularization of the

parameter θ and a post-fusion inference. The former pertains to the issue of

reconciling sparse solutions obtained from different data sets, and the latter in-

cludes a debiasing procedure to correct the estimation bias for valid statistical

inferences.

Supplementary Material

The online Supplementary Material contains additional notation, simulation

results, and technique details, including proofs of the theorems.
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Appendix: Conditions

Here are regularity conditions required to establish key theoretical properties

for the proposed DEL.DOC estimators.

(C1) The true parameter θ0 is an interior point in a compact set Ξ and is the

unique solution to Eθ0 {gk(Wki;θ)} = 0, i = 1, . . . , nk, k = 1, . . . ,K.

(C2) Estimating function gk(Wki;θ) is continuous at each θ ∈ Ξ with probability

1 for i = 1, . . . , nk, k = 1, . . . ,K, and for some α > 2, Eθ0(supθ∈Ξ,1≤k≤K
‖gk(Wki;θ)‖α2 ) <∞.

(C3) Variability matrices Qk = Eθ0
{
gk(Wki;θ0)gTk (Wki;θ0)

}
, k = 1, . . . ,K, are

positive-definite.

(C4) gk(Wki;θ) is continuously differentiable in a neighborhood of θ0, say D, and

Eθ0
(
supθ∈D,1≤k≤K ‖∂gk(Wki;θ)/∂θT ‖2

)
<∞.

(C5) rank(Sk) = q + 1, where sensitivity matrix Sk = Eθ0 {∂gk(Wki;θ0)/∂θ}.

All these five conditions (C1)-(C5) are assumed in the seminal work of em-

pirical likelihood (EL) by Qin and Lawless (1994) in the context of estimating

functions. Condition (C1) is a mild regularity condition that requires unbiased

estimating functions for estimation consistency, while conditions (C3) and (C5)

are routinely imposed in order to obtain a valid sandwich covariance matrix in the

asymptotic normality. Conditions (C2) and (C4) appear slightly stronger with

the uniform upper bounds than the classical situation of one dataset, which is

postulated to deal with the case of K →∞. In other words, these uniform bound

conditions may be relaxed when the number of datasets K is fixed. Checking con-

ditions (C2) and (C4) may be done by case by case. Let us look at Example 2,

where the mean moment condition gk used for parameter estimation is the same

over the data sources but outcomes are over-dispersed with heterogeneous over-

dispersion. It is known that the analytic expressions of the moment condition

and its derivative are given as follows: gk(W ;θ) = (1, x)T {y − exp(θ0 + θ1x)} ,
and ∂gk(W ;θ)/∂θT = −(1, x)T (1, x) exp(θ0 + θ1x), respectively, which are con-

tinuous in parameters θ0 and θ1, and the same over k. Then, it follows that for

some α > 2, with a compact set Ξ under Condition (C1), we have
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Eθ0

(
sup

θ∈Ξ,1≤k≤K
‖gk(Wki;θ)‖α2

)

= Eθ0
{

sup
θ∈Ξ

[
(1 +X2)(Y − exp(θ0 + θ1X))2

]α/2}

≤ c
[α+1]∑
j=0

Eθ0
{

(1 +X2)α/2Y α−j exp(c1X)j
}

≤ c

2

[α+1]∑
j=0

{
Eθ0(Y 2α−2j) + Eθ0

[
(1 +X2)α exp(c1X)2j

]}
<∞,

where [a] denotes the largest integer smaller than a, c and c1 are two pos-

itive constants, and the last inequality holds as long as Eθ0(Y j) < ∞, and

Eθ0(Xj1 exp(c1X)j2) <∞, for j, j1, j2 = 1, . . . , 2[α+ 1]. In Example 2, these two

moment conditions automatically hold because Y follows a Poisson distribution

for data source #1, a negative-binomial distribution (resulted from the Poisson-

gamma convolution) for data source #2, and a two-component mixture of Pois-

son distributions for data source #3, as well as X ∼ U [−1, 1]. Similarly, under

a compact neighborhood D, we have Eθ0
(
supθ∈D,1≤k≤K ‖∂gk(Wki;θ)/∂θT ‖2

)
=

Eθ0(supθ∈D[(1 + 2X2 +X4)× exp(θ0 + θ1X)2]1/2) <∞, where the last inequality

holds because condition (C1) and X ∼ U [−1, 1].
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