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Abstract: In this paper, the asymptotic behavior of penalized spline estimators is

studied using bivariate splines over triangulations and an energy functional as the

penalty. A convergence rate for the penalized spline estimators is derived that

achieves the optimal nonparametric convergence rate established by Stone (1982).

The asymptotic normality of the proposed estimators is established and shown to

hold uniformly over the points where the regression function is estimated. The

size of the asymptotic conditional variance is evaluated, and a simple expression

for the asymptotic variance is given. Simulation experiments have provided strong

evidence that corroborates the asymptotic theory. A comparison with thin-plate

splines is provided to illustrate some advantages of this spline smoothing approach.

Key words and phrases: Asymptotic normality, least squares, penalty, spline, tri-

angulation.

1. Introduction

Piecewise polynomial functions, or splines, have proven to be an extremely

powerful tool for smoothing. There are numerous applications of nonparametric

regression in higher dimensions; see Stone (1994) on the utility of multivari-

ate splines for statistical applications. Theoretical properties of the unpenalized

spline estimators have been examined in many directions: for global rates of con-

vergence, see Stone (1985, 1986, 1994), Kooperberg, Stone, and Truong (1995a,b),

and Huang (1998); for local asymptotic results, see Zhou, Shen, and Wolfe (1998)

and Huang (2003a,b).

Many of the spline-based approaches to multivariate estimation problems

involve tensor product spaces. Such spaces are most useful when the data are

observed in a rectangular domain. However, the structure of tensor products

is undesirable when data are located in domains with complex boundaries and

holes. Ramsay (2002) provided examples of such kind of data, and pointed out

some serious problems if one uses tensor product methods or wavelet thresholding

methods to smooth the data. When the data locations are spread in a general

bounded domain of arbitrary shape, a triangulation is the most convenient tool to

partition the domain into pieces. Bivariate splines, smooth piecewise polynomial

functions over triangulations, are natural extensions of univariate spline functions
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over subintervals. They surface in such areas as computer aided geometric design

and numerical solution of partial differential equations. Bivariate splines based

on triangulations are invariant to affine transformations (Hansen, Kooperberg,

and Sardy (1998)), and are more appealing when the given coordinate system of

the data is arbitrary, as is the case with special or compositional data.

The theory and computation of bivariate splines become matured and has

had continued growth; see the monograph by Lai and Schumaker (2007) for

basic theories of bivariate, trivariate, and spherical splines, and see Awanou, Lai,

and Wenston (2006) and Baramidze, Lai, and Shum (2006) for some numerical

implementations of multivariate splines for data fitting and their application

to geopotential reconstruction in Lai et al. (2009). We refer to Lai (2008) for

a survey of multivariate splines for scattered data fitting and some numerical

examples. Guillas and Lai (2010) used these splines for prediction of ozone

concentration based on the measurements from all EPA stations scattered around

the U.S. continent. Their predictions are consistent for different learning periods

(Ettinger, Guillas, and Lai (2012)). Lai and Wenston (2004) applied these splines

to numerically solve Navier-Stokes equations and simulated several fluid flows.

Huang (2003a,b) has studied the asymptotic behavior of discrete least spline over

triangulations for noisy data over random locations.

It is known that penalized regression splines include discrete least squares

splines as a special case. When we have regions of sparse data, penalized splines

provide a more convenient tool for data fitting than the discrete least squares

splines. Penalized bivariate splines over triangulations have been used for data

fitting, in particular, in surface generation. Approximation properties of these

splines have been studied for noise-free data in approximation theory. For exam-

ple, von Golitchek and Schumaker (2002a,b) studied the approximation proper-

ties of discrete least squares splines and penalized least squares splines for data

without noise. However, to the best of our knowledge, statistical aspects of

smoothing using bivariate penalized splines over triangulations (BPSOT) have

not been discussed for datasets in the presence of random noise, and thus our

theoretical and numerical results appear to be new.

As pointed out in Ruppert (2002) and Li and Ruppert (2008) for the univari-

ate case, one advantage of using penalized spline is that the number of knots is not

essential, provided only that the number is above some minimum depending upon

the degree of the spline. For the bivariate case, Xiao, Li, and Ruppert (2010)

proposed a penalized spline method for bivariate smoothing using tensor product

B-splines and row and column penalties defined in the bivariate P-spline of Marx

and Eilers (2005). Here we consider the bivariate penalized spline smoothing over

triangulations with energy functional penalties. For the BPSOT estimators, we
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observed a similar property in our simulation: the number of triangles is not cru-

cial given that the number is above some minimum depending upon the degree

of the smoothness.

The theoretical properties of penalized splines remains less well explored,

and most of the work has been confined to the one-dimensional setting. In the

univariate case, Wand (1999) derived an asymptotic mean squared error for pe-

nalized splines with a fixed number of knots. Hall and Opsomer (2005) derived

mean squared error expressions and consistency results for penalized spline esti-

mators using a white-noise model representation. Li and Ruppert (2008) studied

the asymptotics of penalized spline estimators using an equivalent kernel rep-

resentation for B-splines and difference penalties. Depending on the number of

knots, sample size, and penalty, Claeskens, Krivobokova, and Opsomer (2008)

showed that the theoretical properties of penalized regression spline estimators

are either similar to those of regression splines or to those of smoothing splines,

with a clear breakpoint distinguishing the cases. The asymptotic behavior of

penalized least squares fitting based on multivariate spline is of interest.

We concentrate on bivariate splines mainly because we have good knowledge

of the approximation power of bivariate splines for any degree and smoothness

over arbitrary triangulation (Lai and Schumaker (2007)). Our results extend

these of Huang (2003a,b) on discrete least squares splines over triangulations to

the setting of penalized splines, hence are more suitable for sparse data fitting.

The proposed BPSOT for regression contains a penalty term that makes the

estimation remarkably different from the discrete least squares spline (Huang

(2003a,b)). The penalty term involves the smoothness of the fitting spline, but

it does not carry information of data locations and observed values; thus, it is

difficult to get any direct estimate. Further theoretical development is required

to study the properties of the BPSOT estimators.

The rest of the paper is organized as follows. In Section 2, we introduce

the notation of triangulation and describe the BPSOT estimator. In Section 3,

we formalize the assumptions and present our main asymptotic results. Section

3.1 provides the rate of convergence of the BPSOT estimator to the true mean

function. Under some regularity conditions, we show that the rate is optimal.

Section 3.2 explains the asymptotic normality of the BPSOT estimator and we

give simple expressions for the asymptotic variance. Applications to constructing

asymptotic confidence intervals are also discussed. In Section 4, we run numerical

experiments to assess the behavior of the BPSOT estimator and to compare the

BPSOT estimator with the thin-plate spline estimator. The proofs of the main

results are given in the supplementary document online.



1402 MING-JUN LAI AND LI WANG

2. Triangulations and Bivariate Penalized Spline Estimators

Let Y be the response variable and X be the predictor variable or design

point. Suppose X ranges over a bounded domain Ω ⊆ R2 of arbitrary shape.

For any given dataset with design points located in Ω, one can find a polygonal

domain (a domain with piecewise linear boundary) to include all the design

points. The polygonal domain is allowed have a hole or multiple holes where no

design points are located. With this principle, in the following we assume that

Ω is a polygonal domain itself.

Suppose that {Xi, Yi}ni=1 = {X1i, X2i, Yi}ni=1 is an i.i.d sample of size n from

the distribution of (X, Y ), and satisfying the following model

Yi = m (Xi) + σ (Xi) ϵi, i = 1, · · · , n,

where m (x) = E (Y |X = x) is the bivariate conditional mean function and the

ϵi’s are i.i.d random noises with E (ϵi) = 0 and Var (ϵi) = 1, each ϵi independent

of Xi. Our primary interest is to estimate the unknown function m (x) based on

the given observations {Xi, Yi}ni=1.

2.1. Triangulations

Triangulations have been used for numerical solutions of partial differential

equations and computer aided geometry design for many decades. We use τ to

denote a triangle that is the convex hull of three points not located in one line.

A collection △ = {τ1, . . . , τN} of triangles is called a triangulation of Ω = ∪N
i=1τi

provided that if a pair of triangles in △ intersect, then their intersection is either

a common vertex or a common edge. Figure 1 shows some triangulations of a

particular polygonal domain. In general, any kind of polygon shapes can be used

for the partition of Ω. In this paper we restrict our attention to triangulations

of Ω because any polygonal domain of arbitrary shape can be partitioned into

finitely many triangles; see Ramsay (2002) for a triangulation of the island of

Montreal as an example.

In the rest of the paper, we assume that the domain Ω is partitioned by a

set of triangles △. In addition, we assume that all Xi’s are inside triangles of △.

That is, they are not on edges or vertices of triangles in △. Otherwise, we can

simply count them twice or multiple times if any observation is located inside of

an edge or at a vertex of △.

Given a triangle τ ∈ △, we use |τ | to denote the length of its longest edge,

and ρτ for the radius of the largest disk that can be inscribed in τ . We call the

ratio βτ = |τ |/ρτ the shape parameter of τ . When βτ is small, the triangles are

relatively uniform in the sense that all angles of triangles in the triangulation

τ are relatively the same. Thus, the triangulation looks more like a uniform
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(a) (b)

Figure 1. (a) a triangulation; (b) a uniformly refined triangulation.

triangulation and hence, the shape of τ is better. Denote the size of △ by |△| :=
max{|τ |, τ ∈ △}, the length of the longest edge of △. We say a triangulation △
is β-quasi-uniform if there is a positive β such that the triangulation △ satisfies

|△|
ρτ

≤ β, for all τ ∈ △. (2.1)

This corresponds to Condition A.2 in Huang (2003b). Let N be the number

of the triangles in the polygonal domain Ω. From (2.1), we can see that N ≤
(π|∆|2)−1AΩβ

2, where AΩ denotes the area of Ω.

It is easy to generate a β quasi-uniform triangulation by starting with an

initial triangulation, e.g. by hand drawing and then refining it uniformly and

repeatedly. For example, Figure 1 (a) illustrates a triangulation of a polygonal

domain with a few triangles and Figure 1 (b) shows the uniformly refined trian-

gulation. We can refine it repeatedly as the approximation power of a bivariate

spline space is measured by |△|. In addition, as shown in Section 3, the constant

in the estimate of spline approximation depends on β. Thus, we take β to be a

constant.

In Figure 2, we show a triangulation that is not β quasi-uniform when the

pattern of triangles at the low-right corner continues to a desired level so that

the condition in (2.1) is not satisfiable in this case. Indeed, |△| is a fixed number

while the smallest ρτ can be as small as one wishes so that no β can be found to

have (2.1).

In practice, we can find a triangulation for a given dataset in several ways.

For example, we can find a polygon Ω containing all the design points of the

data and triangulate Ω by hand or on the computer to have a triangulation
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Figure 2. An illustration of non-β quasi-uniform triangulation.

△0. Then, we can uniformly refine △0 several times to have a desired tri-

angulation. The Delaunay algorithm is a good way to triangulate the convex

hull of an arbitrary dataset; see MATLAB program delaunay.m. Addition-

ally, we can generate a triangular mesh through the DistMesh Generator; see

http://persson.berkeley.edu/distmesh/. DistMesh is a MATLAB code for

generation of unstructured triangular and tetrahedral meshes. It is short and

simple, and appears to produce high quality triangular meshes. A detailed de-

scription of the program is provided in Persson and Strang (2004).

2.2. Penalized spline estimators

For an integer r ≥ 0, let Cr(Ω) be the space of all r-times continuously

differentiable functions over Ω. Let Sr
d(△) = {s ∈ Cr(Ω) : s|τ ∈ Pd, τ ∈ △}

be a spline space of degree d and smoothness r over triangulation △, where s|τ
is the polynomial piece of spline s restricted to triangle τ , and Pd is the space

of all polynomials of degree less than or equal to d. For notation simplicity, let

S := Sr
3r+2(△) for a fixed smoothness r ≥ 1; we know that such a spline space

has the optimal approximation order (rate of convergence) for noise-free datasets;

see Lai and Schumaker (1998, 2007).

To discuss the asymptotics of the BPSOT estimator, we need some notation.

For any function f over the closure of domain Ω, let En (f) = n−1
∑n

i=1 f (Xi)

and E (f) = E[f (X)]. Write the empirical inner product and norm as ⟨f1, f2⟩n,Ω =

En (f1f2) and ∥f1∥2n,Ω = ⟨f1, f1⟩n,Ω for measurable functions f1 and f2 on Ω. The

theoretical L2 inner product and the induced norm are given by ⟨f1, f2⟩L2(Ω) =

E (f1f2) and ∥f1∥2L2(Ω) = ⟨f1, f1⟩L2(Ω). Let ∥f∥∞,Ω = supx∈Ω |f(x)|, and let

|f |υ,∞,Ω = maxi+j=υ ∥Di
x1
Dj

x2f(x)∥∞,Ω be the largest value of the maximum

norms of all the υth order derivatives of f over the closure of Ω, where D is

derivative operator.

http://persson.berkeley.edu/distmesh/
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To fix the penalized spline method, let

Eυ(f) =
∑
τ∈△

∫
τ

∑
i+j=υ

(
υ

i

)
(Di

x1
Dj

x2
f)2dx1dx2

be the energy functional for a fixed integer υ ≥ 1. For simplicity we use υ = 2,

though one can study similar problems for υ ≥ 2. Given λ > 0 and {Xi, Yi}ni=1,

we consider the minimization problem:

min
s∈S

n∑
i=1

{s (Xi)− Yi}2 + λEυ(s). (2.2)

If m̂λ ∈ S is the minimizer of (2.2), we call it the BPSOT estimator of m

corresponding to λ. It is easy to see that m̂0 := m̂ is the standard unpenalized

least squares spline estimator. The tuning parameter λ controls the smoothness

of the fitted spline function.

If B := B(Ω) is the space of all bounded real-valued functions over Ω =

∪τ∈△τ equipped with the inner product n⟨f, g⟩n,Ω + λ⟨f, g⟩Eυ with

⟨f, g⟩Eυ =
∑

i+j=υ

(
υ

i

) ∑
τ∈△

∫
τ
(Di

x1
Dj

x2
f)(Di

x1
Dj

x2
g)dx1dx2,

then Pλ : B 7→ S defined by PλY = m̂λ is a linear operator that is not in general

a linear projection. Now we have PλY = Pλm+Pλϵ, where Pλm and Pλϵ are the

penalized spline estimators based on {m (Xi)}ni=1 and {ϵi}ni=1, respectively. Un-

der some conditions (von Golitchek and Schumaker (2002a) and Huang (2003b)),

P0 is a bounded operator on S in the maximum norm. Indeed, these conditions

can be described as follows: for every s ∈ S and every τ ∈ △, there exist a

positive constant F1, independent of s and τ , such that

F1∥s∥∞,τ ≤
{ ∑

Xi∈τ, i=1,··· ,n
s (Xi)

2
}1/2

, for all τ ∈ △. (2.3)

If F2 is the largest among the numbers of observations in triangles τ ∈ △, we

have { ∑
Xi∈τ, i=1,··· ,n

s (Xi)
2
}1/2

≤ F2∥s∥∞,τ , for all τ ∈ △, (2.4)

where ∥s∥∞,τ denotes the supremum norm of s over triangle τ . The constants

F1 and F2 were used in von Golitchek and Schumaker (2002a) to describe one of

the assumptions for the boundedness of ∥Pλ∥ in the supremum norm. These are

also associated with the Condition A.1 in Huang (2003b).
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In the following, we write sλ,m = Pλm and sλ,ϵ = Pλϵ. Then, for the

penalized spline estimator m̂λ in (2.2), we have the decomposition

m̂λ (x)−m (x) = {sλ,m (x)−m (x)}+ sλ,ϵ (x) , (2.5)

where sλ,m (x)−m (x) and sλ,ϵ (x) are referred to as the bias and noise terms.

2.3. Penalty parameter selection

An important issue for application of the BPSOT smoothing is the selection

of the penalty parameter λ. A standard possibility is to select λ using K-fold

cross-validation. The original sample is randomly partitioned into K subsamples,

and one subsample is retained as test set and the remaining K − 1 subsamples

are used as training set. The cross-validation process is then repeated K times

(the folds), with each of the K subsamples used exactly once as the validation

data. Let k[i] be the part containing the ith observation. For any λ, let m̂
−k[i]
λ

be the estimate of the mean with the measurements of the k[i]th part of the data

points removed. Then the K-fold cross-validation score is

CVλ =
n∑

i=1

{
Yi − m̂

−k[i]
λ (Xi)

}2
.

We select λ by minimizing CVλ. In our simulation studies below, we have used

K = 10 in the numerical examples.

3. Theoretical Results

To measure the smoothness of a function, we use the standard Sobolev space

W ℓ,∞(Ω) = {f : |f |k,∞,Ω < ∞, 0 ≤ k ≤ ℓ}. Given random variables Tn for n ≥ 1,

we write Tn = OP (bn) if limc→∞ lim supn P (|Tn| ≥ cbn) = 0. Similarly, we write

Tn = oP (bn) if limn P (|Tn| ≥ cbn) = 0, for any constant c > 0. Also, we write

an ≍ bn if there exist two positive constants c1, c2 such that c1|an| ≤ |bn| ≤ c2|an|,
for all n ≥ 1.

3.1. Convergence rate

Our results rely on the following conditions.

(A1) The bivariate function m ∈ W ℓ+1,∞(Ω) for an integer ℓ ≥ 1.

(A2) The noise ϵ satisfies limη→∞E
[
ϵ2I(ϵ > η)

]
= 0. The standard deviation

function σ (x) is continuous on Ω and 0 < cσ ≤ infx∈Ω σ (x) ≤ supx∈Ω σ (x) ≤
Cσ < ∞.

(A3) The constant F1 in (2.3) is positive.
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(A4) The number N of the triangles and the sample size n satisfy N = Cnγ for

some constant C > 0 and γ < 1.

Remark 1. We note that (A1) and (A2) are standard conditions for nonpara-

metric models, while (A3) ensures the existence of a discrete least squares spline.

When studying the convergence of bivariate penalized least squares splines, we

need (A3) though one can get a decent penalized least squares spline fitting with

F1 zero for some triangles. Condition (A4) ensures the asymptotic equivalence

of the theoretical and empirical inner products/norms defined in Section 2.2.

According to (2.5), the convergence rate of m̂λ depends on the size of the

bias and noise terms. We proceed to bound them.

Proposition 1. Under (A1), (A3), and (A4), if d ≥ 3r+2 and △ is a β quasi-

uniform triangulation, then

∥sλ,m −m∥∞,Ω = OP

{
λ

n |△|3
|m|2,∞,Ω +

(
1 +

λ

n |△|5

)
F2

F1
|△|ℓ+1 |m|ℓ+1,∞,Ω

}
.

Proposition 2. Under (A2) and (A4), ∥sλ,ϵ∥L2(Ω) = OP (1/(
√
n|△|)).

Proposition 3. Under (A2) and (A4), ∥sλ,ϵ∥∞,Ω = OP {(log n)1/2/(
√
n|△|)

+λ/(n|△|3)}.

It is easy to see that ∥sλ,m −m∥L2(Ω) has the same order as ∥sλ,m −m∥∞,Ω.

Our result provides the convergence rate of the BPSOT estimator, m̂λ, in terms

of the L2 and supremum norms.

Theorem 1. Under (A1)−(A3), if d ≥ 3r + 2 and △ is a β quasi-uniform

triangulation, we have

∥m̂λ −m∥L2(Ω) = OP

{
λ

n |△|3
|m|2,∞,Ω +

(
1 +

λ

n |△|5

)
F2

F1
|△|ℓ+1|m|ℓ+1,∞,Ω

+
1√
n|△|

}
,

∥m̂λ −m∥∞,Ω = OP

{
λ

n |△|3
|m|2,∞,Ω +

(
1 +

λ

n |△|5

)
F2

F1
|△|ℓ+1|m|ℓ+1,∞,Ω

+
(log n)1/2√

n|△|
+

λ

n|△|3

}
.

Remark 2. Assume F2/F1 = O(1) as in (A3’) below. When λ = 0, if N ≍
n1/(ℓ+2), then the unpenalized spline estimator m̂0 satisfies ∥m̂0 − m∥2L2(Ω) =

OP (n
−(ℓ+1)/(ℓ+2)), the optimal convergence rate given in Stone (1982). If N ≍
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(n/ log n)1/(ℓ+2), then ∥m̂0 − m∥2∞,Ω = OP {(n−1 log n)(ℓ+1)/(ℓ+2)}, the optimal

rate of convergence for the supremum norm. For the penalized estimator m̂λ (

λ > 0), if λ = o(nℓ/2(ℓ+2)) and N is of the same order as in the unpenalized case,

we still have the optimal convergence rate.

3.2. Asymptotic normality

To derive the asymptotic normality of the BPSOT estimator, we bring in

further conditions.

(A3’) The constants F1 and F2 at (2.3) and (2.4) satisfy F2/F1 = O(1).

(A4’) N = Cnγ for some constant C > 0 and 1/(ℓ+ 2) < γ < 1.

(A5) λ = o(n1/2N−1).

Remark 3. Recall that F2 is the maximum of the number of locations in triangles

in △, and (A3’) suggests that we should not put too many observations in one

triangle as the larger F2 the larger the approximation constant. Compared with

(A4), (A4’) further requires that the number of triangles be above some minimum

depending upon the degree of the spline, which is similar to the requirement of

Li and Ruppert (2008) in the univariate case. In smoothing, there is usually a

fundamental trade-off between the bias and noise terms of the estimate. However,

deriving an explicit expression for the asymptotic bias of the BPSOT estimator

is a challenging and unsolved problem even in pure approximation theory for

noise-free data. Two factors that affect the smoothness of the fitted surface are

the number of triangles and the penalty term. When the triangulation is finer,

the bias is lower but the variance is higher. Larger values of λ give more weight to

the penalty term, leading to fitted surfaces with smaller variance but higher bias.

Our strategy here is to reduce the bias through “undersmoothing” and “choosing

smaller λ”. Conditions (A3’), (A4’), and (A5) give a sufficient condition for the

bias term to be negligible compared with the noise term.

Let X be the collections of Xi, i = 1, . . . , n. The next theorem gives upper

and lower bounds on the conditional variance of the noise term sλ,ϵ(x) for each

x ∈ Ω.

Theorem 2. Fix x ∈ Ω. Under (A1) – (A4), if λ = o(n/N2) we have, with

probability approaching 1 as n → ∞,

C1c
2
σ

n(1 + (n|△|4)−1λ)2|△|2
≤ Var (sλ,ϵ(x)|X) ≤

C2C
2
σ

n|△|2

for positive constants C1 and C2 that depend only on β.
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Remark 4. According to Theorem 1.1 of Lai and Schumaker (2007),

∥g∥∞ = ∥g∥∞,τ ≤ KA−1/2
τ ∥g∥L2(τ) ≤

K

2ρ△
∥g∥L2(τ) ≤

K

2ρ△
∥g∥L2(Ω)

≤
Kβ

|△|
∥g∥L2(Ω) ,

where Aτ stands for the area of triangle τ andKβ is a positive constant dependent

on β. This implies that Hn := supg∈S ∥g∥∞,Ω / ∥g∥L2(Ω) ≤ Kβ/ |△|. Thus, for

λ = 0, our result is comparable with Corollary 3.1 in Huang (2003a), where the

supreme conditional variance is of the order n−1H2
nσ

2 {1 + oP (1)}.

Theorem 3. Under (A1), (A2), (A3’), (A4’) and (A5), as n → ∞, for each

x ∈ Ω,

m̂λ (x)−m (x)√
Var (m̂λ (x) |X)

⇒ N (0, 1) .

This asymptotic distribution can be used to construct asymptotic confidence

intervals. For example, if we estimate m(x) using piecewise constant splines,

Lemma 5 in Section S3 (online supplement) gives the size of the pointwise vari-

ance

Var {m̂λ (x)} =
σ2 (x)

nf (x)Aτ
(1 + o(1)), x ∈ Ω,

so that an asymptotic 100(1− α)% pointwise confidence envelope for m(x) over

Ω is

m̂λ (x)± zα/2
σ (x)

{nf (x)Aτ}1/2
,

where f stands for the density function of X.

Theorem 3 can be strengthened to hold uniformly.

Theorem 4. Set

Dn = sup
z

∣∣∣P{m̂λ (x)−m (x)√
Var (m̂λ (x))

≤ z
∣∣∣X}− Φ(z)

∣∣∣,
where Φ(z) is the standard normal. Under the conditions of Theorem 3, if

limη→∞E
[
ϵ2I{ϵ2 ≥ ηE(ϵ2)}

]
/E(ϵ2) = 0, one has supx∈Ω P (Dn > η) = o(1) for

any η > 0, and then

sup
x∈Ω,z∈R

∣∣∣P {
m (x) ≥ m̂λ (x)− z

√
Var (m̂λ (x) |X)

}
− Φ(z)

∣∣∣ = o(1).
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When λ = 0, the result recovers Theorem 4.1 in Huang (2003b). This uni-
form asymptotic normality result can be used to construct asymptotic confidence
envelops whose coverage probability converges uniformly to its nominal level.

4. Simulation

In this section, we provide numerical results from our preliminary computa-
tional experiments to compare the performance of BPSOT with thin plate spline
(TPS). We wrote our BPSOT codes in MATLAB based on the computational
algorithms given in Awanou, Lai, and Wenston (2006), and these programs are
available on www.math.uga.edu/~mjlai/2Dsplines.html.

The TPS smoothing method has been a standard tool for high-dimensional
data smoothing. In our examples, we also implemented the TPS for compar-
ison. We used the function Tps() in R package fields (Furrer, Nychka, and
Sainand (2011)) to produce the TPS fit (TPS1). We also included a fast (low-
rank approximation) version TPS2 (Wood (2003)) using the function gam() in R
package mgcv. In the examples, we report the simulation results for BPS, TPS1,
and TPS2 with various ranks.

To obtain the BPSOT estimators, one first needs to determine the spline
space Sr

d. A general principle here is to use a degree d ≥ 3r + 2 for r ≥ 1. One
could also use a degree d < 5 for r = 1 if the triangulation △ is special; see
a summary of special triangulations in Lai and Schumaker (2007). Throughout
the simulation study, we set r = 1. In the examples, we first found a polygon
containing all the design points; next we triangulated it to obtain an initial
triangulation and repeatedly applied a suitable number of uniform refinement
(see details below). To select our penalty parameter λ, we used K-fold cross
validation. For TPS1 and TPS2, λ was selected by GCV. Each smoothing method
was evaluated on 100 randomly generated independent datasets.

Example 1. We generated the data from a rectangular domain [0, 1]2 using
the regression model Y = m(X1, X2) + ϵ. We considered a linear regression
m(x1, x2) = 10x1 + x2 +19, and the sinusoid m(x1, x2) = 24+ 5 sin{π(x21 + x22)},
with standard Gaussian random noises. We created a 101× 101-point grid with
values evenly spaced between 0 and 1. We obtained the true signal and noisy
observation for each coordinate pair (x1, x2) lying on the grid in the unit square.
Next we took a random sample of size n =1,000, 2,000, 3,000, 4,000 from the
101× 101 points.

In this example, we used the triangulation given at the bottom of Figure 3.
There are 32 triangles and 25 vertices in each triangulation. For each case we
solved for the BPSOT estimator, m̂λ, with respect to different sample sizes. Fig-
ure 3 illustrates an example of the BPSOT estimated surface based on n =2,000
observations.

www.math.uga.edu/~mjlai/2Dsplines.html


BIVARIATE PENALIZED SPLINES 1411

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

10

20

30

40

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

10

20

30

40

(a) (b)

Figure 3. The triangulations and BPSOT estimators (a) the linear surface
and (b) of the sinusoid surface.

Table 1. Averages of the RMSEs in Example 1

Model Method
Sample Size

1000 2000 3000 4000

Linear

BPSOT (d = 5) 0.0502 0.0403 0.0307 0.0287
TPS1 0.0540 0.0438 0.0307 0.0298
TPS2 (k = 10) 0.0524 0.0412 0.0314 0.0301
TPS2 (k = 30) 0.0530 0.0439 0.0322 0.0307
TPS2 (k = 50) 0.0539 0.0431 0.0321 0.0310

Sinusoid

BPSOT (d = 5) 0.2142 0.1705 0.1369 0.1205
TPS1 0.2198 0.1715 0.1443 0.1303
TPS2 (k = 10) 0.7498 0.7443 0.7420 0.7409
TPS2 (k = 30) 0.2342 0.2016 0.1846 0.1773
TPS2 (k = 50) 0.2143 0.1689 0.1429 0.1315

To see the accuracy of the data fitting, we evaluated the BPSOT fit over the

101×101 grid points on the domain compared with the true function. We ran 100

Monte Carlo samples under each model, and for each replication we calculated

the root mean square errors (RMSE)

RMSE =
[ 1

1012

1012∑
i=1

{m̂λ(xi)−m(xi)}2
]1/2

.

Table 1 shows the average RMSE based on the 100 replications for BPSOT,

TPS1, and TPS2. For TPS2, we smoothed the surface using rank k = 10, 30, 50

thin plate regression spline bases. From Table 1, one sees that the RMSE for

all the methods decreases as sample size increases. As expected, the BPSOT is
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(a) (b)

Figure 4. (a) a triangulation for the domain delimited by the US frontiers
with n = 2,000 random locations; (b) the BPSOT surface fitting.

Table 2. Averages of the RMSEs in Example 2

Method Sample Size
BPSOT (d = 5) 0.2232 0.1688 0.1276 0.1152
TPS1 0.2793 0.1729 0.1464 0.1319
TPS2 (k = 10) 0.5785 0.5575 0.5516 0.5495
TPS2 (k = 30) 0.2381 0.2004 0.1868 0.1772
TPS2 (k = 50) 0.2222 0.1680 0.1440 0.1313
TPS2 (k = 100) 0.2274 0.1708 0.1443 0.1300

statistically indistinguishable from TPS1 and TPS2 in terms of RMSE because
the data were generated from a rectangular domain. From our simulation, we also
found TPS2 far superior in terms of computing speed. For the same accuracy,
TPS2 could be 100 times faster than BPSOT and/or TPS1.

Example 2. In this example, we compared the BPSOT, TPS1, and TPS2 es-
timators on a 101 × 101-point grid with values equally spaced on the rectan-
gular domain containing the U.S. frontiers. We removed those points lying
outside the U.S. leaving 6,132 points. We took the test function m(x1, x2) =
{(x1 − 30)2 + (x2 − 40)2}/25 + 20, and sampled it at n randomly chosen points,
with function values at these points were perturbed with standard Gaussian
random noise. We generated 100 replicate data sets of size n =1,000, 2,000,
3,000, 4,000. We used the triangulation △ in Figure 4(a) to obtain the BPSOT
smoother. There are 302 triangles and 174 vertices in this triangulation.

We examined the three smoothing methods, and we used rank k = 10, 30, 50,
100 for TPS2. An example of the estimated BPSOT surface is shown in Figure
4(b), created based on sample size 2,000.
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(a) (b)

(c) (d) (e)
Figure 5. The face of Lena and its triangulation: (a) noise-free image; (b)
noisy image based on σ = 5 and n =2,000; (c) triangulation △0, (d) trian-
gulation △1, and (e) triangulation △2.

Table 2 reports the average RMSE of the methods over the equally-spaced

grid points located inside the U.S.. BPSOT is clearly superior, in terms of RMSE,

to TPS1 and TPS2.

Example 3. We consider smoothing a dataset of an image, the standard test

image Lena Sjooblom, as an example. The noise-free image is 155× 94 pixel and

we cropped the picture as illustrated in Figure 5 (a). Among the 8,401 pixels on

the cropped picture, we randomly selected n pixels and added Gaussian noises

with σ = 5 to the gray scale values over the selected pixels. We replicated this

100 times to obtain 100 noisy images. An example of the noisy image is shown

in Figure 6(b) with n =2,000.

We triangulated the domain to get the initial triangulation △0 shown in

Figure 5(c), then uniformly refined it to get △1 and △2 as shown in Figure 5(d)

and (e). We used the BPSOT method with triangulations △0, △1, and △2 to

smooth the noisy gray scale image values. After finding the penalized splines, we

evaluated the fittings over all 8401 data points and computed the average RMSE

and PSNR (Peak signal-to-noise ratio) PSNR = 20 log10(255/RMSE) to measure

the goodness of fit. The resulting BPSOT images for one random sample are

shown in Figure 6(d), (e), and (f) based on three triangulations.

For the same noisy image we used TPS1 and TPS2, the recovered images

are shown in Figure 6(a)−(c). According to the definition of TPS, it uses a
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(a) (b) (c)

(d) (e) (f)

Figure 6. (a) TPS1 fit; (b) TPS2 fit (k = 50); (c) TPS2 fit (k = 200); (d)
BPSOT (d = 5) fit based on △0; (e) BPSOT (d = 5) fit based on △1; and
(f) BPSOT (d = 5) fit based on △2.

minimization defined over the entire R2 space. When the observations are located

within a bounded domain Ω with irregular boundary, there is a leakage of the total

thin-plate energy to the outside of Ω. This explains the blur of the fitted image

near the boundary of the data domain as shown in Figure 6(a)−(c). Although

one can define a TPS by minimizing thin-plate energy over Ω instead of R2, one

has to find the kernel function that depends on Ω. When Ω has an irregular

boundary, such a kernel is difficult to find. This explains why BPSOT are more

flexible and convenient for data fitting than the TPS.

Tables 3 and 4 present the RMSE and PSNR of the three smoothing meth-

ods for sample sizes 1,000, 2,000 and 3,000. For BPSOT, the triangulation △2

was applied with various degree d ≥ 5. For TPS2, we considered the ranks

k = 10, 30, 50, 100, 200. From the two tables, one sees that TPS1 and BPSOT

have a similar performance when a small degree d of BPSOT was applied. The

performance of BPSOT improved when d increased, and BPSOT outperformed

TPS1 for sufficiently large d. In contrast, TPS2 performed much worse than

BPSOT and TPS1 even when we increased the rank k to be 200.

From our simulation, we also observed that the computing time of the TPS1

depended critically on sample size while the computing time of BPSOT was

primarily based on the number of triangles and the spline degree. In this image

example, TPS1 could smooth a data set of size less than 5,000 reasonably quickly,
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Table 3. Averages of the RMSEs in Example 3

Method
Sample Size

1000 2000 3000
BPSOT (d=5) 12.8019 9.8526 8.2467
BPSOT (d = 6) 12.7094 9.949* 8.100*

BPSOT (d = 7) 12.6633 9.866* 8.098*

BPSOT (d = 8) 12.6202 9.785* 8.094*

BPSOT (d = 9) 12.6168 9.659* 8.083*

BPSOT (d = 10) 8.099*

BPSOT (d = 11) 8.083*

TPS1 12.6844 9.7028 8.0880
TPS2 (k = 10) 27.2443 27.1591 27.1381
TPS2 (k = 30) 20.9694 20.7907 20.7922
TPS2 (k = 50) 19.2849 19.0611 18.9436
TPS2 (k = 100) 17.1238 16.6686 16.4991
TPS2 (k = 200) 15.2322 14.3763 14.1055

* λ = 0.05 was fixed so that the simulation could be done much faster than using the
K-fold cross validation.

Table 4. Averages of the PSNRs in Example 3

Method
Sample Size

1000 2000 3000
BPSOT (d = 5) 25.993 28.165 29.809
BPSOT (d = 6) 26.056 28.180* 29.964*

BPSOT (d = 7) 26.088 28.252* 29.966*

BPSOT (d = 8) 26.111 28.329* 29.975*

BPSOT (d = 9) 26.120 28.436* 29.981*

TPS1 26.075 28.398 29.978
TPS2 (k = 10) 19.425 19.452 19.459
TPS2 (k = 30) 21.699 21.774 21.773
TPS2 (k = 50) 22.427 22.528 22.582
TPS2 (k = 100) 23.459 23.693 23.782
TPS2 (k = 200) 24.478 24.979 25.143

* λ = 0.05 was fixed so that the simulation could be done much faster than using the
K-fold cross validation.

but crashed when the size of the dataset increased to 8,000. Our BPSOT program

can smooth the 8,000 observations easily.

5. Discussion

The BPSOT-smoother is a good choice when data are located in domains

with complex boundaries and/or possible holes. In this paper, we have estab-

lished the consistency and asymptotic normality of the BPSOT estimators, and
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studied their convergence rates. The proposed BPSOT estimator worked well in

smoothing various simulated datasets.

Triangulation is a convenient tool to partition domain of arbitrary shape.

In practice, one would like to use a minimal number of triangles to fit the data

well. A basic strategy is to find a polygonal domain Ω that includes all the

data locations, and to create a triangulation △ of Ω such that each triangle is as

regular as possible in the sense that a small value of the shape parameter β at

(2.1) holds for all triangles.
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