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Abstract: For two variables X and Y with arbitrary distributions, we consider

three general association measures, the mixed derivative of interaction, the partial

derivative of the conditional distribution function and the partial derivative of the

conditional expectation. The sign of an association measure between X and Y

may sometimes be reversed after marginalization over a third variable W . In this

paper, we first compare the stringency of these measures for evaluating a positive

association. Then we present the condition for avoiding the effect reversal after

marginalization over W . Further we show that a modification of the condition can

be used for collapsibility of the association measures over W .
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1. Introduction

For arbitrary distributions of continuous, discrete, or even mixed type vari-

ables, three general measures of association between two variables X and Y

are discussed in this paper. The first measure is the mixed derivative of in-

teraction, ∂2 log f(x, y)/∂x∂y where f denotes a probability density function

(Holland and Wang (1987) and Whittaker (1990)). The second one is the partial

derivative of the conditional distribution function, ∂F (y|x)/∂x where F denotes

a cumulative distribution function, proposed by Cox and Wermuth (2003) and

called the distribution dependence. The third one is defined as the partial deriva-

tive of the conditional expectation, ∂E(Y |x)/∂x, called expectation dependence

below, when the expectation exists. When variables X and Y have a joint normal

distribution N(µ,Σ), we have

∂E(Y |x)

∂x
= ρXY

σY

σX

,
∂2 log f(x, y)

∂x∂y
=

ρXY

(1 − ρ2
XY )σXσY

,

∂F (y|x)

∂x
= − ρXY√

2π(1 − ρ2
XY )σXσY

exp

{
− [y − E(Y |x)]2

2σ2
Y |X

}
,

where µX denotes the mean of X, σ2
X the variance of X, ρXY the correlation

coefficient, and E(Y |x) = µY + (ρXY σY /σX)(x − µX).
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If X and/or Y is discrete, then the partial differentiation for these measures

is replaced by differencing between adjacent levels. For example, if X is binary

and Y has three values 0, 1 and 2, then the expectation dependence becomes∑2
j=1 j[P (Y = j|X = 1) − P (Y = j|X = 0)], the distribution dependence

becomes P (Y ≤ j|X = 1) − P (Y ≤ j|X = 0) for j = 0 and 1, and the mixed

derivative of interaction becomes the log odds ratios log P (X = 1, Y = j +

1)P (X = 0, Y = j)/[P (X = 0, Y = j + 1)P (X = 1, Y = j)] for j = 0 and 1.

It can be shown that the following statements are equivalent:

1. there is no mixed derivative of interaction, that is, ∂2 log f(x, y)/∂x∂y = 0

for all x and y;

2. there is no distribution dependence, that is, ∂F (y|x)/∂x = 0 for all x and

y; and

3. X and Y are independent, denoted as X Y .

See Whittaker (1990, Proposition 2.3.1) for the equivalence of the first and

third statements. The equivalence of the second and the third is immediate since

∂F (y|x)/∂x = 0 for all x and y if and only if F (y|x) = F (y|x′) for all x and x′.

The above equivalences also hold conditionally on a third variable W . However,

for expectation dependence, ∂E(Y |x)/∂x = 0 for all x is only necessary but not

sufficient for the independence X Y .

An association between X and Y may be a consequence of the fact that X

associates with W which in turn associates with Y . On the other hand, omitting

W may sometimes reverse the sign of an association measure between X and

Y . This effect reversal of an association measure is also called the Yule-Simpson

Paradox (Yule (1903) and Simpson (1951)). Cox and Wermuth (2003) presented

a general condition (Y and W are conditionally independent given X, denoted as

Y W |X; or X W ) for avoiding the effect reversal of distribution dependence

after marginalization over W .

In this paper, we first compare the stringency of these measures to evalu-

ate a positive association between X and Y . Note that the mixed derivative

of interaction can be seen as a local-local measure, the distribution dependence

as a local-global measure, and the expectation dependence as a local-expected

measure. Here ‘local’ and ‘global’ are in the sense similar to those of odds ratios

for ordinal variables in Agresti (1984). We show for these three association mea-

sures that a positive association is the most stringent when the mixed derivative

of interaction is positive for all x and y, and that a positive association is the

weakest when the expectation dependence is positive for all x. Then, we propose
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that the two independencies given by Cox and Wermuth (2003) are also appli-

cable separately to other association measures for avoiding the effect reversal

after marginalization over W . In many studies, we may wish to study whether

or not an observed or unobserved W influences the association between X and

Y , and we may also wish to discretize a continuous W without changing the

original association measure. We say that an association measure between X

and Y is simply collapsible over W if the measure conditional on W remains

unchanged after marginalization over W . Further we say that the measure is

uniformly collapsible over W if it remains unchanged conditional on any interval

or subset of W . Uniform collapsibility of distribution dependence was discussed

in Ma, Xie and Geng (2006). This paper discusses uniform collapsibility of the

mixed derivative of interaction and the expectation dependence, and it shows

that modifications of Cox and Wermuth’s general condition is a necessary and

sufficient condition for uniform collapsibility of these two measures. Throughout

our discussion, we assume that the joint distribution of Y , X and W is such that

differentiation and integration are interchangeable.

Section 2 compares the stringency of these association measures for eval-

uating a positive association, and shows the conditions for avoiding the effect

reversal after marginalization over W . Section 3 defines collapsibility of associ-

ation measures, and presents the necessary and sufficient conditions for uniform

collapsibility of association measures over a discrete or continuous W . In Section

4, we apply the collapsibility of association measures to linear models to illus-

trate collapsibility of parameters in the models. We discuss multivariate cases in

Section 5. Finally a discussion is given in Section 6. All proofs of theorems are

given in the Appendix.

2. Stringency of Association Measures and Conditions for Avoiding

Effect Reversal

If ∂F (y|x)/∂x ≤ 0 for all y and x, with strict inequality in a region of positive

probability, then we have P (Y > y|X = x) ≥ P (Y > y|X = x′) for x > x′ and

all y, and we say that the distribution dependence of Y on X is stochastically

increasing with X. If ∂E(Y |x)/∂x ≥ 0 for all y and x, with strict inequality in a

region of positive probability, then we have E(Y |x) ≥ E(Y |x′) for x > x′ and all

y, and we say that the expectation dependence of Y on X is average increasing

with X. It can be seen that the sign of these association measures indicates the

direction of the association between X and Y . The following theorem compares

a positive mixed derivative of interaction, a stochastic increasing dependence, an

average increasing dependence, and a positive correlation for their stringency.
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Theorem 1. The association measures have the following implications

∂2 log f(x, y)

∂x∂y
≥ 0, ∀x, y ⇒ ∂F (y|x)

∂x
≤ 0, ∀x, y

⇒ ∂E(Y |x)

∂x
≥ 0, ∀x ⇒ ρXY ≥ 0.

Further, for any two of the four inequalities, strict inequality holds with positive

probability for the right inequality if strict inequality holds with positive probability

for the left one.

The first implication of a positive mixed derivative of interaction to a stochas-

tic increasing dependence has been shown by Mari and Kotz (2001). If both X

and Y are binary or both are normal variables, all converses of the implications

in Theorem 1 are also true; in general, any converse of the implications is not

true. From Theorem 1, it can be seen that a positive mixed derivative of inter-

action is the most stringent, a stochastic increasing dependence the second, an

average increasing dependence the third, and a positive correlation is the weakest

positive association measure.

The conditional measures are defined by the conditional distribution of X

and Y given a third variable W . For example, the mixed derivative of interac-

tion conditional on W is defined as ∂2 log f(x, y|w)/∂x∂y, where f(x, y|w) is the

conditional density of Y and X given W = w. Even if an association measure

has the same sign conditionally on any value of W , the sign may be reversed by

marginalizing over W , called the effect reversal of this association measure. For

example, one can have ∂F (y|x,w)/∂x ≤ 0 for all x, y and w, but ∂F (y|x)/∂x > 0

for some x or y. Cox and Wermuth (2003) proposed the general condition (X W

or Y W |X) for avoiding the effect reversal of distribution dependence. We show

below that the independencies (X W and Y W |X) are also applicable sepa-

rately to some other association measures.

Theorem 2. If X W , then the effect reversals of the distribution dependence

and the expectation dependence is avoided. If Y W |X, then the effect rever-

sals of the mixed derivative of interaction, the distribution dependence, and the

expectation dependence are avoided.

In balanced data where W has the same distribution conditional on X, ef-

fect reversal cannot arise for these measures except for the mixed derivative of

interaction for any distribution. A counterexample for the mixed derivative of

interaction can be shown easily by considering log odds ratios conditional on W

when Y has three levels, and X and W are binary.
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3. Collapsibility of Association Measures

In this section we discuss conditions for collapsibility of association mea-

sures. For a discrete or continuous W , we define homogeneity and collapsi-

bility of an association measure as follows. We say that an association mea-

sure between X and Y is homogeneous over W if the conditional association

measure between X and Y , given W = w, equals that given W = w′ for all

w 6= w′. For example, the expectation dependence is homogeneous over W if

∂E(Y |x,w)/∂x = ∂E(Y |x,w′)/∂x for all x and w 6= w′. The simple collapsi-

bility of an association measure between X and Y means that the conditional

association measure between X and Y , given W = w, equals the marginal associ-

ation measure between X and Y for all w. For example, the simple collapsibility

of the expectation dependence means that ∂E(Y |x,w)/∂x = ∂E(Y |x)/∂x for all

x and w.

Definition 1. An association measure between X and Y is uniformly collapsi-

ble over W if the measure conditional on W ∈ I for any I equals the measure

obtained after marginalization over W , where I is a subset of levels for a nom-

inal background variable W , a subset of consecutive levels (i, i + 1, . . . , i + j)

for an ordinal discrete background variable W , or an interval for a continuous

background variable W .

For example, the conditional expectation dependence is uniformly collapsible

over W if ∂E(Y |x,W ∈ I)/∂x = ∂E(Y |x)/∂x for all x and any I. Note that

uniform collapsibility is defined for the general case where W may be discrete or

continuous, and it coincides with strong and consecutive collapsibility when W

is nominal and ordinal respectively (Geng (1992) and Geng and Asano (1993)).

When W is binary, uniform collapsibility and simple collapsibility coincide.

From the definitions, it can be seen that uniform collapsibility implies simple

collapsibility, which in turn implies homogeneity. Uniform collapsibility can be

used to group levels of a discrete W or to discretize a continuous W . If the domain

of W can be partitioned into K regions I1, . . . ,IK , and the association measure is

uniformly collapsible separately for each region Ik, then W can be recategorized

into a crude variable with K levels, such that the association measure in each

region is the same as the original association measure.

Theorem 3. Expectation dependence is uniformly collapsible over W if and only

if

(a) E(Y |x,w) = E(Y |x,w′) for all x and w 6= w′, or

(b) X W and the expectation dependence is homogeneous over W .

If Y is a binary response, X is a binary treatment and W is discrete, ex-

pectation dependence specializes to the risk difference P (Y = 1|X = 1,W =
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w) − P (Y = 1|X = 0,W = w). The condition in Theorem 3 is similar to that

for simple and strong collapsibility of relative risks presented by Wermuth (1987,

Propositions 1 and 4) and Geng (1992, Thm. 2).

Theorem 4. The mixed derivative of interaction is uniformly collapsible over

W if and only if (a) Y W |X or (b) X W |Y .

When Y and X are binary and W is discrete, the mixed derivative of inter-

action specializes to the log odds ratio. The condition in Theorem 4 has been

shown to be necessary and sufficient for simple collapsibility of equal odds-ratios

in 2×2×2 contingency tables by Whittemore (1978), and for strong collapsibility

of odds ratios in 2 × 2 × K contingency tables by Ducharme and Lepage (1986,

Them. 1).

4. Applications to Regression Models

In this section, we apply the conditions for collapsibility of association mea-

sures presented in the previous section to linear and logistic regression models

for collapsibility of parameters.

Let Y be a continuous dependent variable in a linear regression model, or a

binary response with values 0 and 1 in a logistic regression model. X may be

a continuous or discrete independent variable. In the following subsections, we

consider different regression models separately when W is continuous or discrete.

4.1. Linear regression models

For a discrete W with I levels, assume the linear regression model of Y on

X, conditional on W ,

E(Y |X = x,W = i) = α(i) + β(i)x,

for i = 1, . . . , I, and suppose P (W = i) > 0 for any i. Especially, when β(i) =

β(j) = β for all i 6= j, we call this a parallel linear regression model. When

X, Y and W have a homogenous conditional Gaussian (HCG) distribution for

which the continuous variables have a joint normal distribution with a common

covariance matrix, conditionally on the discrete variables, the expectation of Y

conditional on X and W has a parallel regression model. For a discrete W , we

only consider the parallel regression model below.

For a continuous W , assume the linear regression model of Y on X, condi-

tional on W ,

E(Y |X = x,W = w) = α + βx + γw,

for all x and w, and suppose f(w) > 0 for any w.
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We say that the regression coefficient β is uniformly collapsible over W if

the partially marginal regression model

E(Y |X = x,W ∈ I) = α(I) + β(I)x,

always obtains and β(I) = β for any I, where I is a subset of W ’s levels for a

discrete W , a set of consecutive levels (i, i+1, . . . , i+j) for an ordinal discrete W ,

or an interval in W ’s domain for a continuous W . For the linear regression model,

the uniform collapsibility of β is equivalent to that the expectation dependence

∂E(Y |x,w)/∂x is uniformly collapsible over W . In particular, when I is the

whole domain of W , we denote the marginal regression as

E(Y |x) = α̃ + β̃x.

We say that the regression coefficient β is simply collapsible over W if the

marginal regression model holds and β̃ = β, which is equivalent to that the

expectation dependence is simply collapsible over W . From Theorem 3, we have

the following corollaries.

Corollary 1. The regression coefficient β is uniformly collapsible over W if and

only if

(a) for a discrete W , α(i) = α(j) for all i 6= j; for a continuous W , γ = 0; or

(b) W X.

Corollary 2. Suppose that X, Y and W have a joint normal distribution for a

continuous W , or that X, Y and W have a HCG distribution for a discrete W .

Then the regression coefficient β is uniformly collapsible over W if and only if

(a) Y W |X or (b) W X.

Corollaries 1 and 2 extend the results on collapsibility of linear models over

a discrete W (Wermuth (1989) and Geng and Asano (1993)) to the cases where

W may be a continuous or an ordinal discrete variable.

4.2. Logistic regression models

For a discrete W with I levels, assume that Y , X and W have a strictly

positive joint density function, and that a logistic regression model of Y on X,

conditional on W = i, is

log
P (Y = 1|X = x,W = i)

P (Y = 0|X = x,W = i)
= α(i) + β(i)x

for i = 1, . . . , I. For a continuous W , assume that Y,X and W have a strictly

positive joint density function, and that a logistic regression model of Y on X,
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conditional on W = w, is

log
P (Y = 1|X = x,W = w)

P (Y = 0|X = x,W = w)
= α + βx + γw.

We say that the logistic regression coefficient β is uniformly collapsible over W

if the partially marginal logistic regression model

log
P (Y = 1|X = x,W ∈ I)

P (Y = 0|X = x,W ∈ I)
= α(I) + β(I)x

always obtains and β(I) = β for any I, where I is a subset of W ’s levels for a

discrete W , a set of consecutive levels (i, i + 1, . . . , i + j) for an ordinal discrete

W , or an interval of W ’s domain for a continuous W . In particular, when I is

the full domain of W , we denote the marginal logistic regression as

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= α̃ + β̃x.

We say that β is simply collapsible over W if the marginal regression model holds

and β̃ = β(i) for a discrete W , or β̃ = β for a continuous W .

Notice that the partial differentiation with respect to the binary Y specializes

to differencing between Y = 1 and Y = 0. In logistic regression models, the mixed

derivative of marginal or conditional interaction becomes the logistic regression

coefficient. Thus uniform collapsibility of the logistic regression coefficient β is

a particular case of unform collapsibility of the mixed derivative of interaction.

From Theorem 4, we have the following corollary.

Corollary 3. The logistic regression coefficient β is uniformly collapsible over

W if and only if (a) Y W |X or (b) X W |Y .

Corollary 3 extends strong and consecutive collapsibility of logistic models

over a discrete and an ordinal discrete W (Guo and Geng (1995)) and Guo, Geng

and Shi (2003)) to uniform collapsibility where W may also be a continuous

variable.

5. Generalization to Multivariate Cases

In the previous sections, we considered the cases that Y , X and W are

univariate. As Cox and Wermuth (2003) mentioned, multivariate responses Y

can often be treated one component at a time, and multivariate X are most

simply studied one contrast at a time while holding other contrasts fixed. We

next consider multivariate W = (W1, . . . ,Wp), say.

Definition 2. An association measure between X and Y is simply collapsible

over W = (W1, . . . ,Wp) if the conditional association measure between X and
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Y given (w1, . . . , wp) is the marginal association measure between X and Y for

all (w1, . . . , wp). Further an association measure between X and Y is uniformly

collapsible over W if the measure, conditionally on any (W1 ∈ I1, . . . ,Wp ∈ Ip),

is the marginal association measure between X and Y , where Ik is a subset of

levels for a nominal Wk, a subset of consecutive levels (i, i + 1, . . . , i + j) for an

ordinal discrete Wk, or an interval for a continuous Wk.

From Theorems 3 and 4, and from Theorem 1 of Ma, Xie and Geng (2006),

treating W as a single variable, we can immediately obtain sufficient conditions

for uniform collapsibility of the mixed derivative of interaction, the expectation

dependence and the distribution dependence. However, these conditions are no

longer necessary for uniform collapsibility since crossed pooling of a multivari-

ate variable’s levels (e.g., (w1, w2) ∈ {(1, 2), (2, 1)}) is not required for uniform

collapsibility.

The sufficient conditions can be weakened for simple collapsibility by par-

titioning W into two disjoint sets U and V (i.e., W = (U, V )) and applying

the conditions for uniform collapsibility to U and V successively. For example,

first applying condition (a) of Theorem 4 to U conditional on V , and then ap-

plying condition (b) of Theorem 4 to V , we obtain that the mixed derivative

of interaction is simply collapsible over W . Notice that it is not sufficient for

uniform collapsibility over W , since the application of condition (a) of Theorem

4 is conditional on V . In this way we obtain the following result.

Corollary 4. For simple collapsibility, we have:

1. The mixed derivative of interaction is simply collapsible over W if either

(a) Y U |(X,V ) and X V |Y , or

(b) Y U |X and X V |(Y,U);

2. The expectation dependence is simply collapsible over W if either

(a) Y U |(X,V ), X V and the expectation dependence is homogeneous

over V , or

(b) Y U |X, X V |U and the expectation dependence is homogeneous over

V conditional on U ;

3. The distribution dependence is simply collapsible over W if either

(a) Y U |(X,V ), X V and the distribution dependence is homogeneous

over V , or

(b) Y U |X, X V |U and the distribution dependence is homogeneous over

V conditional on U .
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Note that in the case of a joint Gaussian distribution, homogeneity of expec-

tation dependence is always satisfied, and thus the independence conditions alone

are sufficient for simple collapsibility of regression coefficients. These conditions

could also be derived by repeated application of the partial inversion operator to

the covariance matrix, a new calculus for real-valued square matrices introduced

by Wermuth, Wiedenbeck and Cox (2006) to study the matrix representations

of various multivariate statistical models.

If sets U and V are independent, conditionally on X (i.e. U V |X), then

sufficient condition (a) for simple collapsibility in Corollary 4 is also sufficient

for uniform collapsibility. Especially, conditional independence U V |X holds in

balanced data when V has the same distribution among groups defined by X

and U .

Theorem 5. Suppose that U V |X. Then we have:

1. The mixed derivative of interaction is uniformly collapsible over W if Y

U |(X,V ) and X V |Y ;

2. The expectation dependence is uniformly collapsible over W if Y U |(X,V ),

X V , and the expectation dependence is homogeneous over V .

3. The distribution dependence is uniformly collapsible over W if Y U |(X,V ),

X V , and the distribution dependence is homogeneous over V .

For the mixed derivative of interaction, we can immediately obtain from the

symmetry of X and Y that another sufficient condition of uniform collapsibility

over W is that U V |Y , X V |(Y,U), and Y U |X.

6. Discussion

The conditions for collapsibility and for avoiding effect reversal can be used

for data analysis, causal inference, observational and experimental designs; the

conditions for uniform collapsibility can also be used to discretize a continuous W ,

or to pool levels of a discrete W without changing the original association. The

marginal independence X W may often be achieved by proportional allocation

of individuals to treatments (or to quasi-treatments), while any independence

involving a response variable Y can in general not be achieved at the planning

stage of a study. Thus the conditions discussed in the paper are of quite different

importance for applications.
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Appendix: Proofs of Theorems

A.1. Proof of Theorem 1

First we prove that ∂2 log f(x, y)/∂x∂y ≥ 0 ⇒ ∂F (y|x)/∂x ≥ 0. Since

∂2 log f(x, y)/∂x∂y = ∂2[log f(y|x) + log f(x)]/∂x∂y = ∂2 log f(y|x)/∂x∂y ≥ 0,

we obtain that [∂f(y|x)/∂x]/f(y|x) ≥ [∂f(y′|x)/∂x]/f(y′|x) for y ≥ y′ and x.

Thus we have for any x and any monotonically increasing function g(·)
∫ ∞

−∞

∫ ∞

−∞

[
∂f(y|x)/∂x

f(y|x)
− ∂f(y′|x)/∂x

f(y′|x)

]
[g(y) − g(y′)]f(y|x)f(y′|x)dydy′ ≥ 0.

Under the regularity condition that integration and derivation are interchange-

able, the above inequality implies that ∂E[g(Y )|x]/∂x ≥ 0 for any x. Letting

g(·) = −I(−∞,y)(·), we obtain ∂F (y|x)/∂x ≤ 0.

Next we show that ∂F (y|x)/∂x ≤ 0 ⇒ ∂E(Y |x)/∂x ≥ 0. By Fubini’s

Theorem, we have

E(Y |x) =

∫ ∞

0
[1 − F (y|x)]dy −

∫ 0

−∞
F (y|x)dy .

Since ∂F [y|x]/∂x ≥ 0 implies that F (y|x) ≤ F (y|x′) for x > x′, we get E(Y |x) ≥
E(Y |x′), which in turn implies ∂E(Y |x)/∂x ≥ 0.

Finally we show that ∂E(Y |x)/∂x ≥ 0 ⇒ ρXY ≥ 0. It is sufficient to show

that E(XY ) − E(X)E(Y ) is non-negative. By simple manipulation, we have

E(XY ) − E(X)E(Y ) = E[E(Y |X)X] − E(X)E[E(Y |X)]

=

∫ ∞

−∞
E(Y |x)xdF (x) −

∫ ∞

−∞
x′dF (x′)

∫ ∞

−∞
E(Y |x)dF (x)

=
1

2

∫ ∞

−∞

∫ ∞

−∞
[E(Y |x) − E(Y |x′)](x − x′)dF (x)dF (x′)

=
1

2

∫ ∞

−∞

∫ ∞

−∞

[∫ x

x′

∂E(Y |t)
∂t

dt

]
(x − x′)dF (x)dF (x′),

which is non-negative.

In the above proof, it can also be shown that strict inequality holds with

positive probability for a right inequality if strict inequality holds with positive

probability for a left one.
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A.2. Proof of Theorem 2

For the distribution dependence, these two conditions have been shown by

Cox and Wermuth (2003).

For the expectation dependence, suppose that ∂E(Y |x,w)/∂x ≥ 0 for all x

and w. By some simple manipulation, we have

∂E(Y |x)

∂x
=

∫ [
∂E(Y |x,w)

∂x
f(w|x) + E(Y |x,w)

∂f(w|x)

∂x

]
dw .

If X W , then the second term in the integral equals zero, and thus we have

∂E(Y |x)

∂x
=

∫ [
∂E(Y |x,w)

∂x
f(w|x)

]
dw ≥ 0.

If Y W |X, then ∂E(Y |x)/∂x = ∂E(Y |x,w)/∂x ≥ 0.

For the mixed derivation of interaction, if Y W |X then

∂2 log f(x, y)/∂x∂y = ∂2 log f(y|x)/∂x∂y = ∂2 log f(x, y|w)/∂x∂y.

Thus it cannot be reversed after marginalization over W .

A.3. Proof of Theorem 3

First we give some lemmas which can be proved by simple manipulations.

Lemma 1. Suppose that I1 and I2 are mutually disjoint sets, then we have

1. E(Y |x,W ∈ I1) = E(Y |x,W ∈ I2) if and only if E(Y |x,W ∈ I1 ∪ I2)

= E(Y |x,W ∈ I1);

2. For the three equalities P (W ∈ Ii|x) = P (W ∈ Ii) for i = 1, 2 and P (W

∈ I1 ∪ I2|x) = P (W ∈ I1 ∪ I2), any two of them imply the third.

For any positive integer n, we partition (−n, n] into 2n× 2n intervals I(n)
i =

(ai, bi], where a1 = −n, b2n×2n = n, ai+1 = bi and bi − ai = 2−n, i = 1, · · · , 2nn.

Then define Γn =
{
I(n)

i : i = 1, . . . , 2n × 2n
}

and Γ =
⋃∞

n=1 Γn.

Lemma 2. For any positive integer n, we have the following implications:

E(Y |x,W ∈ I) = E(Y |x), ∀I ∈ Γn+1 ⇒ E(Y |x,W ∈ I) = E(Y |x), ∀I ∈ Γn;

P (W ∈ I|x) = P (W ∈ I), ∀I ∈ Γn+1 ⇒ P (W ∈ I|x) = P (W ∈ I), ∀I ∈ Γn.

Now recalling that uniform collapsibility and simple collapsibility are equiv-

alent when the background variable W is binary, we have the following lemma.

Lemma 3. When W is binary, the derivative measure of expectation dependence

is uniformly collapsible over W if and only if
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1. [E(Y |x,w) − E(Y |x)]∂P (W = w|x)/∂x = 0 for all x and w, and

2. the derivative measure of expectation dependence is homogeneous over W .

Proof. We first rewrite

∂E(Y |x)

∂x
=

∂

∂x

1∑

w=0

E(Y |x,w)P (W = w|x)

=
∑

w

{
∂E(Y |x,w)

∂x
P (W = w|x) + E(Y |x,w)

∂P (W = w|x)

∂x

}

=
∑

w

∂E(Y |x,w)

∂x
P (W = w|x)

+ {E(Y |x,W = 1) − E(Y |x,W = 0)} ∂P (W = 1|x)

∂x
.

For necessity, we have homogeneity from collapsibility, and thus we obtain

∂E(Y |x)

∂x
=

∂E(Y |x)

∂x
+ {E(Y |x,W = 1) − E(Y |x,W = 0)} ∂P (W = 1|x)

∂x
.

This implies [E(Y |x,W = 1) − E(Y |x,W = 0)] ∂P (W = 1|x)/∂x = 0, which is

equivalent to Condition 1. Condition 2 can be obtained directly from the defini-

tion of uniform collapsibility.

For sufficiency, in the case of a binary W , uniform collapsibility is reduced to

simple collapsibility, and thus we need only show ∂E(Y |x)/∂x = ∂E(Y |x,w)/∂x

for all x and w. This can be obtained from the first formula in the proof.

Proof of Theorem 3. For sufficiency, note that for any subset I given in

Definition 1, we have

∂E(Y |x,W ∈ I)

∂x
=

∂

∂x

[∫
w∈I E(Y |x,w)P (w|x)dw

P (W ∈ I|x)

]
. (1)

If ∂E(Y |x,w)/∂w = 0 for all x and w, we have E(Y |x) = E(Y |x,w) for all x

and w, and thus

∂

∂x

[∫
w∈I E(Y |x,w)P (w|x)dw

P (W ∈ I|x)

]
=

∂E(Y |x)

∂x
.

If X W , we can rewrite (1) as

∂E(Y |x,W ∈ I)

∂x
=

1

P (W ∈ I)

∂

∂x

∫

w∈I
E(Y |x,w)P (w)dw.
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Since the derivative measure is homogeneous, it becomes

1

P (W ∈ I)

∫

w∈I

∂E(Y |x,w)

∂x
P (w)dw =

∂E(Y |x,w)

∂x

for any w. Thus sufficiency is proved.

For the necessity part, we discuss separately the cases that W is binary,

nominal (including ordinal) with more than two levels, and continuous.

(i) The case of a binary W

According to Lemma 3, we need only to show that the two conditions of

Lemma 3 imply Condition (a) or (b). Suppose that (a) does not hold, that

is, there exists x∗ such that E(Y |x∗,W = 1) − E(Y |x∗) 6= 0. According to

the definition of uniform collapsibility of the derivative measure of expectation

dependence, we have that ∂[E(Y |x,W = 1)−E(Y |x)]/∂x = 0 for all x. Thus we

obtain E(Y |x,W = 1) − E(Y |x) 6= 0 for all x. From Condition 1 of Lemma 3,

we have ∂P (W = 1|x)/∂x = 0 for all x, which means X W . The homogeneity

of the measure is directly shown by Definition 1. We have thus shown that at

least one of (a) or (b) holds.

(ii) The case that W is nominal or ordinal with more than two levels

We use mathematical induction to show that Condition (a) or (b) holds.

The homogeneity of the derivative measure of expectation dependence follows

directly from Definition 1. Assume that W ∈ {1, . . . ,K} with K ≥ 3. In the

following proof of the necessity, we only use subsets of W ’s consecutive levels

(i, i + 1, . . . , i + j) for a nominal W in an arbitrary level ordering.

First, we consider the case of K = 3. In case (i), we have shown that

Condition (a) or (b) of Theorem 3 holds for K = 2. Applying it repeatedly to

the case of K = 3, we have that for a binary background variable with two levels,

one combined level {i, i + 1} and the other single level {1, 2, 3} \ {i, i + 1} for

i = 1 or 2,

E(Y |x,W ∈ {i, i + 1}) = E(Y |x) (2)

or

P (W ∈ {i, i + 1}|x) = P (W ∈ {i, i + 1}), (3)

and that for a binary background with two single levels i and i + 1:

E(Y |x,W = i) = E(Y |x,W = i + 1) = E(Y |x,W ∈ {i, i + 1}) (4)

or

P (W = i|x,W ∈ {i, i + 1}) = P (W = i|W ∈ {i, i + 1}). (5)
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We show below that the above equations implies Condition (a) or (b). For

simplicity, let (j)i denote that equation (j) holds for i. For example, (2)1 means

that (2) holds for i = 1. Enumerate all possible equations as follows

(2)1 (2)2 (4)1 (4)2
(3)1 (3)2 (5)1 (5)2,

where the first row corresponds to Condition (a), and the second (b), for each

binary background. Thus, at least one equation holds for each column. From

this, we obtain that at least two equations in {(2)1, (2)2, (4)1, (4)2} hold, or at

least two in {(3)1, (3)2, (5)1, (5)2} hold. From the first result in Lemma 1, we

can show that any two in {(2)1, (2)2, (4)1, (4)2} imply that Condition (a) holds.

From the second result in Lemma 1, it can be shown that each pair of {(3)1, (3)2}
and {(3)i, (5)j} for i, j = 1, 2, implies that condition (b) holds. Below, we show

that {(5)1, (5)2} also implies X W . If the pair {(5)1, (5)2} holds, then for i = 1

and 2,

P (W = i|x)/P (W ∈ {1, 2}|x) = P (W = i)/P (W ∈ {1, 2})
and, for i = 2 and 3,

P (W = i|x)/P (W ∈ {2, 3}|x) = P (W = i)/P (W ∈ {2, 3}).

Dividing them side-by-side, we obtain

P (W ∈ {1, 2}|x)/P (W ∈ {2, 3}|x) = P (W ∈ {1, 2})/P (W ∈ {2, 3}),

which implies

P (W ∈ {1, 2}|x)/P (W ∈ {1, 2}) = P (W ∈ {2, 3}|x)/P (W ∈ {2, 3}).

From the above equations, we have that for i = 1, 2 and 3,

P (W = i) = P (W = i|x)P (W ∈ {1, 2})/P (W ∈ {1, 2}|x).

Summing over i, we get P (W ∈ {1, 2})/P (W ∈ {1, 2}|x) = 1. Thus we have

proved that P (W = i) = P (W = i|x) for i = 1, 2 and 3, i.e., Condition (b)

holds.

Next we suppose that the conclusion is true for K = n. As in the above

proof going from K = 2 to K = 3, we merge consecutive levels, j and j +1, of W

to obtain a background Wj with n levels: 1, . . . , j − 1, {j, j + 1}, j + 2, . . . , n + 1.

By supposition, Condition (a) or (b) holds for Wj . Since K = n + 1 ≥ 4, one of

(a) and (b) holds for at least two different backgrounds, say Wj′ and Wj′′ . Below

we show that (a) or (b) holds for the case of K = n + 1.
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If (a) holds for Wj′ and Wj′′ , we have E(Y |x,Wj′ = {j′, j′+1}) = E(Y |x,Wj′

= i) = E(Y |x) for i 6= j′ or j′+1, and E(Y |x,Wj′′ = {j′′, j′′+1}) = E(Y |x,Wj′′ =

i) = E(Y |x) for i 6= j′′ or j′′ + 1. By the first part of Lemma 1, we have

E(Y |x,W = i) = E(Y |x), i = 1, . . . , n + 1, that is, Condition (a) holds.

If Condition (b) holds for Wj′ and Wj′′ , we have P (Wj′ = {j′, j′ + 1}|x) =

P (Wj = {j′, j′ + 1}) and P (Wj′ = i|x) = P (Wj′ = i) for i 6= j′ or j′ + 1

and P (Wj′′ = {j′′, j′′ + 1}|x) = P (Wj′′ = {j′′, j′′ + 1}) and P (Wj′′ = i|x) =

P (Wj′′ = i) for i 6= j′′, j′′ + 1. By the second part of Lemma 1, we have that

P (W = i|x) = P (W = i) for i = 1, . . . , n + 1, that is, (b) holds.

Thus the necessity for K = n + 1 holds, and we have proved necessity.

(iii) The case of a continuous W

Define a sequence of ordinal random variables

Zn = −nIW∈(−∞,−n] + nIW∈(n,∞] +

2n×2n∑

i=1

biIW∈I
(n)
i

, n = 1, 2, · · · .

Then Zn converges pointwise to W as n → ∞.

Uniform collapsibility of the expectation dependence over W implies uni-

form collapsibility over Zn. According to case (ii), we obtain that for each Zn,

condition (a) or (b) holds.

Condition (a) holding for Zn implies that for any zn ∈ Ran(Zn),

E(Y |x,Zn = zn) = E(Y |x). (6)

By Lemma 2, (6) also holds for all Zk with k ≤ n. Condition (b) holding for Zn

implies that for any zn ∈ Ran(Zn),

P (Zn ≤ zn|x) = P (Zn ≤ zn). (7)

Again by Lemma 2, (7) also holds for all Zk with k ≤ n. Thus we have that (6)

holds for all n < ∞ or that (7) holds for all n < ∞. We consider these situations

separately.

Suppose (6) holds for all n < ∞. By the Continuous Mapping Theorem, we

have

E(Y |x,W ) = lim
n→∞

E(Y |x,Zn) = lim
n→∞

E(Y |x) = E(Y |x).

Thus Condition (a) holds for W .

Next suppose (7) holds for all n < ∞. Again, by applying the Continuous

Mapping Theorem twice, we get

F (W |x) = lim
n→∞

F (Zn|x) = lim
n→∞

F (Zn) = F (W ).

This means that (b) holds for W .
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A.4. Proof of Theorem 4

For sufficiency, note that for any subset I specified in Definition 1, we have

∂2 log f(x, y|W ∈ I)

∂x∂y
=

∂2 log[f(x|y,W ∈ I)f(y|W ∈ I)]

∂x∂y

=
∂2 log[f(y|x,W ∈ I)f(x|W ∈ I)]

∂x∂y
.

If Y W |X, we get

∂2 log[f(y|x,W ∈ I)f(x|W ∈ I)]

∂x∂y
=

∂2 log[f(y|x)f(x|W ∈ I)]

∂x∂y
=

∂2 log f(x, y)

∂x∂y
.

If X W |Y , we get

∂2 log[f(x|y,W ∈ I)f(y|W ∈ I)]

∂x∂y
=

∂2 log[f(x|y)f(y|W ∈ I)]

∂x∂y
=

∂2 log f(x, y)

∂x∂y
.

Thus sufficiency is proved.

For necessity, as in the proof of Theorem 3, we divide our proof into three

parts. When W is binary we have, for i = 0 and 1,

∂2 log f(x, y|W = i)

∂x∂y
=

∂2 log[f(W = i|x, y)f(x, y)]

∂x∂y
=

∂2 log f(x, y)

∂x∂y
.

Thus we have ∂2 log f(W = i|x, y)/∂x∂y = 0 for i = 0 and 1, which can be

rewritten as

f(W = i|x, y)
∂2f(W = i|x, y)

∂x∂y
=

∂f(W = i|x, y)

∂x

∂f(W = i|x, y)

∂y
. (8)

From (8), we get

∂2f(W = 1|x, y)

∂x∂y
=

∂f(W = 1|x, y)

∂x

∂f(W = 1|x, y)

∂y
= 0. (9)

Actually, (9) implies Y W |X or X W |Y . If X / W |Y , then there exist x∗ and

y∗ such that ∂f(W = 1|x∗, y∗)/∂x 6= 0. Since ∂2f(W = 1|x, y)/∂x∂y = 0, we

have ∂f(W = 1|x∗, y)/∂x 6= 0 for all y, and furthermore ∂f(W = 1|x, y)/∂x 6= 0

for all x and y. Thus, according to (9), we have ∂f(W = 1|x, y)/∂y = 0 for all x

and y, which means Y W |X.

Similar to the proof of Theorem 3, we can prove the necessity for the cases

that W is nominal or ordinal with more than two levels, or W is continuous.
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A.5. Proof of Theorem 5

For mixed derivative of interaction, we have from U V |X and Y U |(X,V )
that

∂2 log f(x, y|U ∈ I1, V ∈ I2)

∂x∂y
=

∂2 log f(x, y, U ∈ I1, V ∈ I2)

∂x∂y

=
∂2 log

∫
u∈I1,v∈I2

f(y|x, u, v)f(x, u, v)dudv

∂x∂y

=
∂2 log

∫
u∈I1,v∈I2

f(y|x, v)f(x, v)f(u|x)dudv

∂x∂y

=
∂2 log{

∫
v∈I2

f(y|x, v)f(x, v)dv
∫
u∈I1

f(u|x)du}
∂x∂y

=
∂2 log

∫
v∈I2

f(y|x, v)f(x, v)dv

∂x∂y

=
∂2 log f(x, y|V ∈ I2)

∂x∂y
.

Further, from X V |Y , we have

∂2 log f(x, y|V ∈ I2)

∂x∂y
=

∂2[log f(x|y, V ∈ I2) + log f(y|V ∈ I2)]

∂x∂y
=

∂2 log f(x, y)

∂x∂y
.

We proved that the mixed derivative of interaction is uniformly collapsible over
U and V .

Next, for the expectation dependence we have, from U V |X and Y U |(X,
V ),

∂E(Y |x,U ∈ I1, V ∈ I2)

∂x
=

∂

∂x

[∫
u∈I1,v∈I2

E(Y |x, u, v)f(u, v|x)dudv

P (U ∈ I1, V ∈ I2|x)

]

=
∂

∂x

[∫
u∈I1,v∈I2

E(Y |x, v)f(v|x)f(u|x)dudv

P (U ∈ I1|x)P (V ∈ I2|x)

]

=
∂

∂x

[∫
v∈I2

E(Y |x, v)f(v|x)dv

P (V ∈ I2|x)

]
=

∂E(Y |x, V ∈ I2)

∂x
.

Since X V and the expectation dependence is homogeneous over V , we have
from Theorem 3 that ∂E(Y |x, V ∈ I2)/∂x = ∂E(Y |x)/∂x. Thus, under the con-
ditions stated in 2, we have proved that the expectation dependence is uniformly
collapsible over U and V .

Replacing E(·) with F (·) in the above proof, we can immediately prove suffi-
ciency of conditions in 3 for uniform collapsibility of the distribution dependence
over U and V .
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