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Abstract: In modern economic studies, the population heterogeneity of multiple

strata and high dimensionality of predictors pose major challenges. In this study,

we introduce an integrative procedure that can be used to explore group and sparsity

structures of high-dimensional and heterogeneous stratified models. Furthermore,

we propose K-regression modelling as a hybrid of complex and simple models that

exhibits arbitrary dependence on the stratum features, but linear dependence on

the other variables. K-regression models exhibit the following features:(i) they are

essentially nonparametric with respect to the stratified feature, and have parametric

linear effects in the other variables with a potentially integrative pattern, because

the effects and the corresponding sparsity structures can be the same for the strata

in common groups, but vary across different groups; (ii) the devised K-regression

algorithm automatically integrates the strata pertaining to a common regression

model, and simultaneously estimates the corresponding effects; (iii) the proposed

method quickly recovers subpopulation and sparsity structure of the K-regression

models within massive high-dimensional strata; and (iv) the resulting estimators

exhibit two-layer oracle properties, that is, the oracle estimator obtained using the

known group and sparsity structures is the local minimizer of the objective function,

with high probability. The stratum-specific bootstrap sampling scheme improves

the integration accuracy. The results of simulation show that the proposed method

performs appropriately for finite samples, and we demonstrate the usefulness of the

method using real data.

Key words and phrases: Group fixed effect, heterogeneity, high-dimensionality, in-

tegrative analysis, K-regressio, massive data, stratum-specific bootstrap.

1. Introduction

Researchers use strata to fit stratified models for the value of each categorical

feature. For example, financial shares may be classified based on their prices

or trading volumes, with firms classified into subgroups based on the pairwise

interactions of their credit ratings and industry attributes. With the explosive
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growth of raw data available in the social and econometric sciences (Varian (2014);

Einav and Levin (2014)), come from a variety of sources. This provides multiple

strata from, for example, different experimental methods, geographic locations

(census, tract, county, state, etc.), external classifications, observable explanatory

categories, nested (hierarchical) or non-nested data sets, pooled cross-sectional

data sets and panel data sets.

Although the homogeneous assumption (Phillips and Sul (2007); Browning

and Carro (2007); Su and Chen (2013)) facilitates the estimation and inference

procedures for certain specified common parameters, the results may be mislead-

ing if multiple strata exhibit heterogeneous structures. The stratum phenomenon

in big data arises because populations can be heterogeneous across strata because

they are based on data sets from different sources (Zhao, Cheng and Liu (2016)).

Several studies have investigated the importance of stratified models and control-

ling the latent heterogeneity of panel data models by regarding an individual as

a stratum (Pesaran and Tosetti (2011); Su and Jin (2012); Song (2013); Chudik

and Pesaran (2015); Yang, Yan and Huang (2019); Li, Cui and Lu (2020)). How-

ever, modeling in each stratum is inadvisable, because having too few observa-

tions in each stratum cause “incidental parameter” issues, such as in panel data

models (Hsiao and Pesaran (2008); Lu, Cheng and Liu (2016)). Therefore, many

works assume that multiple strata belong to several homogeneous groups within a

broadly heterogeneous population (Lin and Ng (2012); Bester and Hansen (2016);

Bonhomme and Manresa (2015); Yan, Yin and Zhao (2021); Yan et al. (2022)).

That is the regression parameters exhibiting group patterns are identical within

each group, but different across groups, and the observations in each stratum are

obviously associated with a common population ( Su, Shi and Phillips (2016);

Su and Ju (2018); Sarafidis and Weber (2015)). We can also generate a time-

specified stratum (Bai (2010); Kim (2011)) in panel data, where multiple strata

are obtained at different times, and one stratum includes observations of some

subjects at a particular time point (Qian and Su (2016); Li, Qian and Su (2017)).

Ma and Huang (2016, 2017) proposed a pairwise-fusion penalized approach

to conduct a subgroup analysis for heterogeneous intercepts and coefficients.

The heterogeneity of big data is usually coupled with high dimensionality.

However, existing methods cannot be used directly to analyze stratified mod-

els subject to different sparsity structures across latent groups to simultaneously

achieve high dimensionality and heterogeneity. Here, we explore common features

among multiple strata that exhibit high dimensionality by combining the strata

that originally belonged to a common group into one group, and estimating the

sparsity structure of group-specific parameters. Our devised penalty-based K-
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regression demonstrates the following. First, the K stratified regression models

serve as a hybrid of complex and simple models. They implies that it depends

arbitrarily on the stratum feature, but is simply (typically linearly) dependent

on the other covariates. That is it is essentially nonparametric with respect to

the stratified features, and parametric with a simple form in the case of other

variables. Second, the numerical algorithm exhibits the computational ease and

speed with respect to the integration of the common structure and the recovery

of the sparsity information in each stratum. Third, the resulting oracle estima-

tor with a priori knowledge of the group direction and sparsity information in

each stratum is a local minimizer of the proposed objective function, with high

probability.

The rest of this paper is organized as follows. Section 2 describes the proposed

K-regression model and a fast iterative algorithm. Section 3 establishes the

theoretical properties. The finite-sample performance of the proposed method is

evaluated in Sections 4 and 5. Section 6 concludes the paper. Proofs are provided

in the online Supplementary Material.

2. Models and Estimators

2.1. The K-regression method

Let us assume that we observe data items or records of the form (Zi, Xi, Yi),

for i = 1, . . . , n, with a triple population form (Z,X, Y ). Here, Zi is an ordered

or unordered categorical variable with M classes Z = {z1, z2, . . . , zM}, based on

which we create strata, and the corresponding sample size with respect to stra-

tum zm is nm =
∑n

i=1 I(Zi = zm), where I(·) denotes the indicator function.

Furthermore, n1 + · · · + nM = n, Xi is another type of p-vector covariate with

support Rp, and Yi is the response or dependent variable. The stratified models

are characterized based on their dependence on a set of arbitrarily selected cat-

egorical features, and linear dependence on the remaining features. This implies

that

Yzm = Xzmβzm + εzm , m = 1, . . . ,M, (2.1)

where Yzm = {Yi, i = 1, . . . , n, Zi = zm}, which induces the notation of Xzm

and εzm in a similar manner. In addition, βzm = (βzm1, . . . , βzmp)
> denotes the

stratum-specific coefficient vector. The stratified models (2.1) exhibit homogene-

ity within each stratum and heterogeneity across strata.

Big data in econometrics typically comprise multiple data sets obtained from

various sources (Varian (2014); Einav and Levin (2014)). For instance, data may
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be corrected from several locations, during different periods, or using different

data collection procedures, thus generating a set of strata Z. In econometrics,

financial data are often collected from more than one thousand daily transactions

for tens of thousands of stocks, resulting in M=10,000 strata. Big data in real

estate might include 10,000 daily accumulated observations obtained over 10 years

from 344 communities. Here, we calculate and the number of strata (3,440) as

the product of the numbers of communities and years. This implies that we

need to generate the stratum set Z flexibly through the interaction of different

categorical variables. Furthermore, Z can be formed based on the values of a

continuous variable by adopting a slicing technique. For example, by slicing the

confidence interval [10,50] of stock prices into four partitions [10,20), [20,30),

[30,40), [40,50], we obtain four strata.

Stratified models are more flexible than single or average models in terms of

representing the heterogeneous stratum-specified characteristics. However, simi-

larity or generality may exist across strata, owing to homogeneous characteristics,

implying that the distinct stratified models may belong to one common model.

Furthermore, there may be very few observations in some strata. Even when

nm = 1 or when the stratum-specified number of covariates is considerably larger

than the number of observations, that is, p � nm, we should borrow strength

from neighborhood models. In reality, we do not know which strata arise from

the same regression model, or which strata can be borrowed to improve their own

power. Therefore, we assume that the M strata arise from K (i.e., 1 ≤ K ≤M)

regression models, and introduce another group set G = {G1, . . . ,GK} as a mutu-

ally exclusive partition of {z1, . . . , zM}, for zm ∈ Gk, βzm = αk, where αk is the

common value of βzm . Furthermore, we propose K-regression models using

Yzm = Xzmαk + εzm , zm ∈ Gk. (2.2)

The K stratified regression models, simplified as the K-regression models in (2.2),

inherit the advantages of the stratified models in (2.1). For instance, the K-

regression models exhibit arbitrary dependence on the stratum categorical vari-

able, Z, but simple (typically linear) dependence on other variables X. Therefore,

they are essentially nonparametric with respect to the stratified feature, and para-

metric with a simple form in relation to the other variables. Compared with the

classical mixture model, the K−regression model (2.2) inherits the semiparamet-

ric superiority and robustness. In contrast to the model of Li et al (2022), the

K− regression model characterizes the group-specific heterogeneity by introduc-

ing the latent group pattern parameter Gk.
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The K-regression model in (2.2) can flexibly accommodate heterogeneity

for multiple strata in econometric analysis of pooled cross-sectional data sets

and panel /longitudinal data sets. In the former case, strata are collected from

M different time periods by observing different subjects during each temporal

interval; the mth stratum contains nm individuals. K-regression modelling is

designed to detect K populations across the M strata, and specify which strata

belong to common groups. In the case of panel/longitudinal data sets, where

M strata are generated from M subjects (e.g., individuals, firms, countries, or

regions) over nm repeated measurements on the mth stratum. These data sets

denote balanced panel/longitudinal data if n1 = · · · = nm. The K−regression

model specifies the K subgroup structures and integrates individuals belonging

to a common subgroup.

Remark 1. We obtained an interesting discovery related to integrative analyses

of balanced panel data sets by generating the M strata from M time points

(not subjects), where the mth stratum covers nm observations on nm respective

subjects. As such, the indices {z1, . . . , zM} are ordered categorical values, and

do not exhibit a qualitative nature. Therefore, an integrative procedure searches

for the locations of structural break jumps (Qian and Su (2016); Li, Qian and

Su (2017)). Specifically, K subgroup divisions imply K-1 structural breaks, and

the temporal intervals of structural breaks can be obtained as {(max{Gk−1},
min{Gk}) : k = 2, . . . ,K}, where max{A} and min{A} denote the maximum and

minimum values, respectively, in set A.

Remark 2. Apart from being generated across multiple time periods, as in the

case of pooled cross-sectional or panel/longitudinal data sets, M strata can also be

collected from different geographic locations or by using experimental methods.

We can also divide n observations into M strata based on s observable categorical

variables, such as gender or race.

2.2. Estimator and computation

The K-regression models in (2.2) can be used to achieve our main objective

of statistical estimation and inference with respect to the Kp coefficient vector

α = (α>1, . . . ,α
>
K)> and the group parameter G. Given the value K and the

tuning parameter λ, the estimators of G and α in model (2.2) can be defined as

the minimizer of the following objective function:
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`p(α,G;K,λ) =
1

2

K∑
k=1

∑
zm∈Gk

‖Yzm −Xzmαk‖2 +
n

K

K∑
k=1

p∑
j=1

pλ(|αkj |). (2.3)

Although only the sparsity structure of αk is considered, note that each of the

potential K strata can also share information on αk. For example, we can use a

group penalty (Yuan and Lin (2006)) to detect the group structures and strata-

specific coefficients, and can use a fused penalty (Tibshirani et al. (2005)) on the

pairwise difference between αkj and αkl to check their order values.

The penalized objective function (2.3) is nonconvex; for the given values of

α, the kth group set can be obtained as

Gk(α) =

{
m :

{
argmin
k∈{1,...,K}

‖Yzm −Xzmαk‖2
}

= k

}
. (2.4)

Furthermore, we perform a plug-in procedure to update the estimator α̂ using

the following profiled objective function:

α̂ = argmin
α∈RKp

{
1

2

K∑
k=1

∑
zm∈Gk(α)

‖Yzm −Xzmαk‖2 +
n

K

K∑
k=1

p∑
j=1

pλ(|αkj |)

}
. (2.5)

Subsequently, we can estimate G as Ĝ = (Ĝ1(α̂), . . . , ĜK(α̂))>.

In addition, we explore the close connection between (2.3) and the well-

known k-means clustering algorithm to obtain a fast and efficient computing

procedure. The simple and fast iterative algorithm, presented in Algorithm A.1

in the Supplemental Materials, generates a group estimator Ĝ and the coefficient

estimator α̂ in (2.3) using the optimizations in (2.4) and (2.5), respectively. This

algorithm is repeated until some convergence criterion is obtained as the input.

The computation of this algorithm under fixed K and the tuning parameter

λ is fast, for two reasons. First, it quickly alternates between the integrative

and update steps. The “integrative” step minimizes the objective function with

respect to the membership assignment given fixed αk and determines the inte-

gration of stratum m into the kth subpopulation with respect to the minimum

quadratic loss, resulting in a rapid computation. In the “updated” step, we

update the estimator α
(s+1)
k separately for k = 1, . . . ,K as

α
(s+1)
k = argmin

αk

{
1

2

∑
zm∈G(s+1)

k

‖Yzm −Xzmαk‖2 +
n

K

p∑
j=1

pλ(|αkj |)

}
, (2.6)

and the fast coordinate descent algorithm is used to calculate α
(s+1)
k . Second,
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the objective function becomes non-increasing during the iterative procedure,

resulting in rapid numerical convergence. However, Algorithm A.1 in the Sup-

plemental Materials is sensitive to the starting point α(0). Therefore, we use a

k-means computational strategy to generate several initial values, and thus obtain

stable estimators. We also consider a more efficient alternative in which we use

the variable neighborhood search method as the heuristic to solve the minimum

sum-of-squares partitioning problem (Bonhomme and Manresa (2015)), allowing

for high-dimensional covariates. The procedure is presented as Algorithm A.2 in

the Supplementary Material.

3. Theoretical Results

3.1. Notation

We assume the prior information that the true number K is known, and

characterize the asymptotic properties of the estimators to study the theoretical

results of the proposed K-regression estimator.

First, we introduce some notation and regularity conditions. Under the

sparsity assumption of every subpopulation in high dimensionality, we obtain

αk = (α>k1,α
>
k2)
>, where αk1 ∈ Rqk and αk2 ∈ Rp−qk are the nonzero and

zero components, respectively, of αk. Using this notation, α0k can be written

as α0k = (α>0k1,0
>)>, where α0k1 is the true value of αk1. Then, by ranking

the nonzero part of the parameters ahead of the zeros, α can be rewritten as

α = (α>K1,α
>
K2)
>, where αK1 = (α>11, . . . ,α

>
K1)
> and αK2 = (α>12, . . . ,α

>
K2)
>.

Then the true coefficient vector α0 = (α>0K1,0
>)>, supp(α0K1) =

∑K
k=1 qk = qK,

and the estimator α̂ = (α̂>K1, α̂
>
K2)
>. Furthermore, G0 = {G01, . . . ,G0K} and

Ĝ = {Ĝ1, . . . , ĜK} denote the true and estimated group parameter values, respec-

tively.

Let Π̃ = {πmk} denote an M ×K matrix, with πmk = 1 for zm ∈ G0k, and

πmk = 0 for m /∈ G0k. Let Π = Π̃ ⊗ Ip, Y = diag(Y1, . . . ,YM ) and Y = (Y Π̃)+,

where A+ denotes a vector obtained from the row sums of matrix A. In addition,

ε = (ε>z1 , . . . , ε
>
zM )> = (ε1, . . . , εn)>, X = diag(Xz1 , . . . ,XzM ), X = (XΠ)n×(Kp),

and X1 and X2 are n× qK and n× (Kp− qK) submatrices, respectively, X corre-

sponding to the decomposition of α = (α>K1,α
>
K2)
>.

Note that Π>Π = diag(|G01|, . . . , |G0K |)⊗Ip. For a given vector b = (b1, . . . , bt)

∈ Rt and a symmetric matrix At×t, define ‖b‖∞ = max1≤s≤t |bs|, ‖A‖∞ =

max1≤i≤t
∑t

j=1 |Aij |, ‖A‖ = ‖A‖2 = maxb∈Rt,‖b‖=1 ‖Ab‖ and ‖A‖2,∞ = max1≤i≤t
‖Ai,‖, where Ai, denotes the vector of the ith row of A. Let γmin(A) and γmax(A)
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be the smallest and largest eigenvalues, respectively, of A, and let

bn = min
k 6=k′
‖α0k −α0k′‖

be the minimum difference between the coefficient vectors of all combinations of

between every two populations.

Denote dn = (1/2) min1≤j≤qK |α0K1j | as the half of minimum signal. Let

Nk =
∑

zm∈G0k nm, and let Nmin = min1≤k≤K Nk and Nmax = max1≤k≤K Nk

represent the true minimum and maximum sample sizes among all populations.

Furthermore, let nmin = min1≤m≤M nm and nmax = max1≤m≤M nm denote the

minimum and maximum sample sizes, respectively, among all strata, and let p′λ(a)

and p′′λ(a) denote the first and second derivations, respectively, of the 5 penalty

pλ(a) about a. Let c and c′js denote some positive constants.

3.2. Oracle property with a known group structure

If the underlying group parameter G0, that is, the matrix Π, is known, we

can define an estimator as

α̃ = argmin
α∈RKp

{
1

2

K∑
k=1

∑
zm∈G0k

‖Yzm −Xzmαk‖2 +
n

K

K∑
k=1

p∑
j=1

pλ(|αkj |)

}
,

= argmin
α∈RKp

{
1

2
‖Y− Xα‖2 +

n

K

K∑
k=1

p∑
j=1

pλ(|αkj |)

}
. (3.1)

Furthermore, α̃ can be rewritten as α̃ = (α̃>K1, α̃
>
K2)
>. However, the group rela-

tionship of the strata, that is, G0, is typically unknown in advance, and the oracle

estimators are infeasible in practice. Nevertheless, this can provide some insight

into the theoretical properties of the proposed estimators. Hereafter, we consider

the following conditions:

(C1) pλ(t) is symmetric, increasing, and concave in t ∈ [0,+∞), and pλ(0) = 0.

The derivative p′λ(t) is continuous and nonincreasing in t ∈ (0,+∞), and

p′λ(t) is increasing in λ and λ−1p′λ(0+) ≡ λ−1p′(0+) = c > 0.

(C2) The noise vector ε has sub-Gaussian tails, such that P (|a>ε| < ‖a‖x) ≥
1 − 2 exp(−c1x2) for any vector a ∈ Rn and x > 0, and E(ε4i ) < ∞ for

i = 1, . . . , n.

(C3) (i) p′λ(dn) = O(K
√
Nmin/n) and dn �

√
qK/Nmin; (ii) p′λ(0+) � KqK√

qK/Nmin; (iii) For b ∈ N0, where N0 = {b ∈ RqK : ‖b − α0K1‖ ≤ dn},
maxj p

′′
λ(|bj |) = o(KNmin/n).
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(C4) (i) γmin(X>1X1) ≥ c2Nmin, γmax(X>1X1) ≤ c3n. (ii)
∑

zm∈G0k ‖Xmj‖2 = Nk;

(iii)‖X>2X1‖2,∞ = O(qKn); (iv) supi ‖X1i‖ ≤ c4
√
qK; (v) Nmin = O(Nmax).

Lv and Fan (2009) considered the family of concave penalty functions in Con-

dition (C1), including the SCAD (Fan and Li (2001)) and MCP (Zhang (2010)).

The requirement with respect to the sub-Gaussian tails of the noise vector in

Condition (C2) is basic of the high-dimensional regression scenario and is invari-

ant across multiple strata. The penalty assumption in Conditions (C3) (i) and

(ii) implies a penalized level with respect to non-zero and zero components, re-

spectively. With respect to LASSO penalty, Conditions (C3) (i) and (ii) cannot

be simultaneously satisfied to ensure that λ = p′λ(dn) = O(K
√
Nmin/n) is in-

compatible with λ = p′λ(0+) � KqK
√
qK/Nmin. This contradiction implies that

the LASSO-based K-regression estimator cannot, in general, attain the consis-

tency rate obtained from Theorem 1 and the oracle property achieved in Theorem

2. Fan and Lv (2011) observed this issue under homogeneous high-dimensional

data with K = 1, and Nmin = n, and the corresponding penalty conditions

p′λ(dn) = O(1/
√
n), dn �

√
s/n, and p′λ(0+)�

√
s/n, where s denotes the true

number of nonzero coefficients in a homogeneous setting. Bounding the small-

est eigenvalue of the transposition of the active covariate matrix multiplied by

the active covariate matrix under a heterogeneous structure is unavailable by cn,

because

X>1X1 = diag

( ∑
zm∈G0k

X>zm1Xzm1, k = 1, . . . ,K

)
,

and γmin(X>1X1) ≥ γmin{
∑

zm∈G0k X
>
zm1Xzm1} ≥ c2Nmin, for some constant c2,

whereXzm1 denotes the submatrices ofXzm , formed by the columns in supp(α0k).

Without loss of generality, the covariates can be scaled in every subpopulation,

as assumed in Condition (C4) (ii), and then tr(X>1X1) =
∑K

k=1 qkNk.

Theorem 1 (Consistency for estimator α̃K with group pattern known).

Under Conditions (C1)–(C4) and the additional condition log(Kp) = o(n2qK/N
2
min),

there is a local minimizer α̃K = (α̃>K1, α̃
>
K2)
> of the objective function (3.1) such

that α̃K2 = 0 with probability tending to one as Nmin →∞ and

‖α̃K1 −α0K1‖ = Op

(√
qK
Nmin

)
.

Theorem 1 establishes the consistency of the proposed penalized K-regression

estimator α̃K1; that is, there is a root-(Nmin/qK)-consistent K-regression esti-

mator of α0K1 under dimensionality p and population number K that satisfies

Kp = o{exp(n2qK/N
2
min)} at an exponential rate. The sparsity property of the
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proposed K-regression estimator α̃0K2 is still valid, that is, zero components in

α0K are estimated as zero, with probability tending to one. Theorem 1 also ad-

dressed the strength of minimum signal, its dimensionality, and the minimum

sample size of the population that can be handled by the K-regression methods.

Theorem 2 (Oracle property of estimators with group pattern known).

(i) (Sparsity). Under the conditions of Theorem 1, with probability tending to

one as Nmin →∞,

α̃K2 = 0.

(ii) (Asymptotic normality). Under the conditions of Theorem 1, with Condi-

tion (C3) (i) replaced by p′λ(dn) = O(K/n), and attaching the additional

conditions qK = o(Nmin), and

Nmin � n5/6q
1/2
K ,

we conclude that

sn(an)−1an(α̃K1 −α0K1)
D→ N (0, 1),

where

sn(an) = σ{an(X>1X1)
−1a>n}1/2,

and an is a 1×qK row vector such that ‖an‖ = 1, and
D→ denotes convergence

in distribution.

Theorem 2 shows that the sparsity and asymptotic normality of the proposed

K-regression estimator still hold when the nonsparsity size qK diverges more

slowly than Nmin does. Combined with the conditions Nmin � n5/6q
1/2
K and

Nmin ≤ n/K, we conclude that K = o(n1/6), and thus Theorem 2 indicates that

the number of subpopulations K is assumed to grow more slowly than n1/6.

3.3. Theoretical property with group structure unknown

In practice, the group structure is usually unknown. In this section, we

provide sufficient conditions under which the induced local minimizer of the ob-

jective function (2.3) is equal to the oracle least squares estimator α̃ under a

priori knowledge of the group structure, with high probability. We also derive

the lower bound of the minimum difference between the coefficients of the sub-

populations in order to estimate the K effects. Then, we impose the following

additional conditions.
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(C5) (i) bn �
√
qK log(n)/nmin; (ii) γmin(XzmXzm) ≥ c5nm, γmax(XzmXzm) ≤

c6nm, for some constants c5, c6.

Theorem 3. If the conditions of Theorem 2 and (C5) hold, any local minimizer of

the objective function can achieve the oracle estimator α̃ with probability tending

to one when nmin →∞.

Theorem 3 implies that if the minimum difference of the common effects be-

tween any two subpopulations satisfies bn �
√
qK log(n)/nmin, then our method

can actually recover the true group structure, which means any local solution

produced by the proposed K-regression algorithm can achieve the oracle perfor-

mance.

Corollary 1. Under the conditions of Theorem 2 and (C5), we have

sn(an)−1an(α̂K1 −α0K1)
D→ N (0, 1),

where

sn(an) = σ{an(X>1X1)
−1a>n}1/2,

and an is a 1× qK row vector such that ‖an‖ = 1, and
D→ denotes convergence in

distribution.

The asymptotic distribution of the K-regression estimators provides a the-

oretical justification for further statistical inference, such as testing for hetero-

geneity. Based on Corollary 1, we present a unified framework for conducting

hypothesis tests and constructing confidence regions for α. Specifically, we con-

sider H0 : Bα = 0 versus H1 : Bα 6= 0, where B is a d × Kp matrix and d =

rank(B). This hypothesis includes many special cases, for example, H0k: αk = 0,

k ∈ {1, . . . ,K}, which can be used to construct a confidence region for αk, and

H0 : αj −αk = 0, j, k ∈ {1, . . . ,K}, which can be used to test for the existence of

effect heterogeneity among strata. We develop a χ2-test statistic for testing H0:

Bα = 0,

Tn(B) = (Bα̂)>(BV̂nB>)−1(Bα̂), (3.2)

where V̂n = σ̂2(X>1X1)
−1 and σ̂2 = (1/K)

∑K
k=1(1/

∑
zm∈Ĝk nm)

∑
zm∈Ĝk ‖Yzm −

Xzmα̂k‖2.

Theorem 4. Under the null hypothesis and the conditions in Theorem 3, we

have Tn(B)
D→ χ2

d as n→∞, where χ2
d denotes a chi-squared distribution with d

degrees of freedom.
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Theorem 4 provides the asymptotic distribution of the test statistic Tn(B)

under the null hypothesis H0: Bα = 0, indicating the validity of Wilk’s theorem.

The 100(1− τ)% approximated confidence region for Bα is given by

Rτ =
{
ι : (Bα̂− ι)>(BV̂nB>)−1(Bα̂− ι) ≤ χ2

d(1− τ)
}
,

where χ2
d(1 − τ) is the (1 − τ)-quantile of the χ2 distribution with d degrees of

freedom.

4. Simulation Studies

Next, we consider an example in which we evaluate the performance of our

method. The preliminaries we adopt to measure the simulated results and addi-

tional examples are provided in the Supplemental Materials.

Example 1. In this example, we generated data from 2-regression models,

Yzm = Xzmαk + εzm , zm ∈ Gk, k = 1, 2,

where Xzm is assumed to be generated from a multivariate normal distribution

with zero mean and covariance matrix Φ = (djl), with djl = 0.7|j−l|, εzm is

assumed to follow the normal distribution N (0, 0.72). We randomly assigned

the strata to two subpopulations, with equal probabilities; that is, K = 2 and

P (zm ∈ G1) = P (zm ∈ G2) = 1/2, so that the coefficients are equal to α1 for

zm ∈ G1, and are equal to α2 for zm ∈ G2, where α1 = (1, 0.8,0>p−2)
>, and

α2 = (−1,−0.8,0>p−2)
>. We choose n = 600, and p = 500 or 1,000 with two

numbers of strata, that is, M = 100, 200, and examine the performance of our

proposed method under three penalized methods: the SCAD, MCP, and LASSO.

Table 1 and Figure 1 present the estimated results for Example 1. The

results in parentheses denote the oracle estimates with known G0. We note

several points. First, the simulated results in Table 1 in the considered mea-

surements using the SCAD, MCP, and LASSO penalties are similar, and the

estimates obtained using the three methods are close to their corresponding or-

acle estimates. Second, the K-regression method can accurately integrate the

strata with a common population for estimated RI values that are approxi-

mately one. Third, based on sparsity-induced penalties, the proposed method

behaves satisfactorily because the corresponding average numbers of accurately

estimated zero components are similar to the true number p − 2 of zero com-

ponents in each population, whereas their corresponding average numbers of

inaccurately estimated zero coefficients approach zero with respect to the PIZ
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Figure 1. Box plots of RMS under the three penalized methods with 100 replicates and
M = 100, p = 500 (left), and p = 1,000 (right) in Example 1.

Table 1. Simulation results for different variable selection methods in Example 1 with n
= 600; the results in parentheses denote the oracle estimates with known G0.

Selection p=500 p=1,000

method Criterion M=100 M=200 M=100 M=200

SCAD CP(%) 100.00(100.00) 95.00(100.00) 99.00(100.00) 93.00(100.00)

PCZ(%) 100.00(100.00) 100.00(100.00) 100.00(100.00) 100.00(100.00)

PIZ(%) 0.00 (0.00) 5.00 (0.00) 1.00 (0.00) 7.00 (0.00)

PER(%) 100.00(100.00) 97.00(100.00) 99.00(100.00) 93.00(100.00)

RI(%) 100.00(100.00) 96.04(100.00) 99.48(100.00) 95.05(100.00)

AMS(%) 2.00 (2.00) 1.90 (2.00) 1.98 (2.00) 1.86 (2.00)

TIME 2.08 (0.77) 3.57 (0.89) 2.48 (1.23) 3.81 (1.41)

MCP CP(%) 99.00(100.00) 99.00(100.00) 98.00(100.00) 96.00(100.00)

PCZ(%) 100.00(100.00) 100.00(100.00) 100.00(100.00) 100.00(100.00)

PIZ(%) 1.00 (0.00) 1.00 (0.00) 2.00 (0.00) 4.00 (0.00)

PER(%) 98.00(100.00) 96.00(100.00) 98.00(100.00) 95.00(100.00)

RI(%) 99.49(100.00) 97.87(100.00) 98.98(100.00) 96.43(100.00)

AMS(%) 1.98 (2.00) 1.98 (2.00) 1.96 (2.00) 1.92 (2.00)

TIME 2.51 (0.77) 3.87 (0.99) 2.51 (1.29) 4.21 (1.45)

LASSO CP(%) 99.00(100.00) 91.00(100.00) 97.00(100.00) 82.00(100.00)

PCZ(%) 99.98 (99.98) 99.98 (99.98) 100.00(100.00) 100.00(100.00)

PIZ(%) 1.00 (0.00) 9.00 (0.00) 3.00 (3.00) 18.00 (0.00)

PER(%) 99.00(100.00) 90.00(100.00) 97.00(100.00) 82.00(100.00)

RI(%) 99.47(100.00) 94.01(100.00) 98.46(100.00) 89.66(100.00)

AMS(%) 2.06 (2.06) 1.92 (2.12) 1.99 (2.06) 1.71 (2.09)

TIME 1.31 (0.66) 2.07 (1.11) 1.98 (0.96) 2.67 (1.60)
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and PCZ indices. Here, PCZ denotes the percentage of correct zeros with PCZ

(%)=(1/MT )
∑M

m=1

∑T
t=1{(100%/(p− |Dzm |))[

∑p
j=1 I(β̂mj(t) = 0)I(β0mj = 0)]},

and PIZ is the percentage of incorrect zeros with PIZ (%) = (1/MT )
∑M

m=1

∑T
t=1

[(100%/(|Dzm |)){
∑p

j=1 I(β̂mj(t) = 0)I(β0mj 6= 0)}], where Dzm = {j : β0mj 6= 0}
is the index of the true model in the mth stratum. Note that a larger PCZ and

a smaller PIZ imply a good model-fitting procedure. Fourth, the K-regression

can recover the subpopulation and sparsity structure in just a few seconds, even

when the sample size n is large and the dimension p is high. Fifth, in Figure 1,

the RMS values of the SCAD/MCP-based K-regression methods are smaller than

those of the LASSO estimators and attain the oracle estimates with the known

group structure G0. This verifies that the concave penalty-based K-regression

method achieves the oracle property and
√
Nmin/qK consistency, whereas the

LASSO penalty does not. Sixth, the proportion of the specified numbers of sub-

populations K̂ equal to the true number is close to one using the K-regression

method, based on the BIC. Seventh, increasing the number of strata (i.e., M) or

the dimensionality (i.e., p) decreases the performance of the proposed method in

relation to all the considered indices; Eighth, the level plots in Figure 2 adopts use

to denote the component value of a coefficient matrix, and are generated based on

the average estimates after 200 replicates, that is, the estimated M×p coefficient

matrix β̂ = (1/200)
∑200

t=1 β̂(t), under a fixed partition. The results imply that

separate statistical modelling in each stratum (i.e., an M-penalty) dramatically

reduces the quality of the estimates, whereas our proposed integrative analysis

(i.e., the K-penalty) using K-regression methods ensures an the efficient estima-

tion of the coefficient matrix by accurately recovering each subpopulation and its

corresponding sparsity structure. Our simulation results show that the proposed

K-regression method exhibits desirable behaviour in terms of integration, vari-

able selection, parameter estimation, and computational speed, implying that the

empirical results are consistent with those presented in Theorem 1.

To verify the existence of treatment heterogeneity in Example 1 for a case in

which M = 200 and p = 1000, we apply the test statistic

Tn(B̂) = (B̂α̂)>(B̂V̂nB̂>)−1(B̂α̂).

Here, B̂ = D̂ ⊗ IqK , where D̂ = {(ei− ej), i < j}>((K(K−1))/2)×K , with ei being the

ith K × 1 stratum vector, with the ith element equal to one and the remaining

equal to zero. Furthermore, IqK is a qK×qK identity matrix and⊗ is the Kronecker

product. Theorem 4 indicates that rank(B̂) = qK(K − 1), and the mean of the p-

values based on 200 replicates is given by (1/200)
∑200

j=1 χ
2
qK(K−1)(T

(j)
n (B̂)), where
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Figure 2. Level plots for the coefficient matrix estimation with n = 60, M = 15, and
p = 15 in Example 1. 38TRUE shows a level plot of the true coefficient matrix; M-penalty
represents methods that conduct statistical modelling based on each stratum separately;
K-penalty denotes our penalty-based K-regression.

T (j)
n (B̂) is the value of Tn(B̂) from the jth replicate, χ2

qK(K−1)(t) = P (ZqK(K−1) >

t), and ZqK(K−1) follows a χ2 distribution with qK(K − 1) degrees of freedom.

The mean p-values are all less than 0.001 in Example 1, which strongly supports

the existence of effect heterogeneity in this example. The simulated results in

Example 1 also suggest that the consistency of the estimation of the group-

specific coefficient under the K-regression method is completely dependent on

the integration accuracy, that is, Ĝ.
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Figure 3. Subfigures (a) and (b) responds to K-SCAD and K-MCP, respectively. The
proportion of crimes in the United States; the dark and light blues areas denote Popula-
tions 1 and 2, respectively.

5. Empirical Study

In this section, we apply our proposed K-regression method to communi-

ties and crime (CAC) data obtained from the UCI Machine Learning Repository.

The data sets comprises information from different communities in the United

States, socio-economic data from the 1990 U.S. Census and the 1990 U.S. Law

Enforcement Management and Administrative Statistics Survey, and crime data

from the 1995 U.S. FBI Uniform Crime Report. Apart from specific informa-

tion used to identify the community or state, explained by its corresponding

abbreviated name, the data sets includes 125 variables and 18 crime indices. We

selected the number of murders per 100K population in 1995 as a response of

interest. After eliminating the covariates suffering from missingness, we obtained

a dataset containing M = 48 states, n = 2,215 communities, and p = 102 covari-

ates. Assuming that the samples of 48 states originate from K populations, the

K-regression models can be defined as

Yzm = Xzmαk + εzm , k = 1, . . . ,K, zm ∈ Gk, (5.1)

with
∑K

k=1 |Gk| = 48. We also estimate the number of regression models K, group

parameters Gk, and coefficients αk.

Based on the superior performance of the concave penalties in terms of esti-

mation and variable selection, we applied SCAD- and MCP-based K-regression

methods to recover the subpopulation and sparsity structure in the assumed

model (5.1) on the CAC data set. We specify the optimal K using introduced
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Table 2. Performance of the estimates of the CAC data using SCAD-based and MCP-
based K-regression methods.

SCAD MCP

Population 1 Population 2 Population 1 Population 2

AK AZ DC AL AR CA AK AZ DC AL AR CA

IA IN KS CO CT DE IA IN KS CO CT DE

MN ND SD FL GA ID MN NH SD FL GA ID

UT WV ME IL KY LA UT WV ME IL KY LA

MA MD MI WY MA MD MI

MO MS NC MO MS NC

NH NJ NM NH NJ NM

NV NY NH NV NY ND

OK OR PA OK OR PA

RI SC TN RI SC TN

TX VA VT TX VA VT

WA WI WY WA WI

Variable Est. P-value Est. P-value Est. P-value Est. P-value

RPB 13.17 0.00 3.99 0.00 12.94 0.00 1.62 0.01

RPW 0.00 – 0.00 – 0.00 – -3.04 0.00

MPD 0.00 – 0.92 0.05 0.00 – 1.45 0.03

PWMYK 0.00 – -0.03 0.45 0.00 – -0.39 0.33

PWM 0.00 – -0.12 0.39 0.00 – 0.00 –

PPDH 0.00 – 1.93 0.02 0.00 – 0.00 –

HV 0.00 – 0.90 0.04 0.00 – 0.99 0.04

PVB 0.00 – 1.83 0.01 0.00 – 1.78 0.01

MRPHI 0.00 – 0.00 – 0.00 – 0.02 0.79

NIST 2.47 0.00 0.00 – 2.72 0.00 0.00 –

LPODU 0.00 – 0.03 0.82 0.00 – 0.00 –

Note: RPB: racepctblack; RPW: racepctwhite; MPD: MalePctDivorce; PWMYK: PctWorkMomYoungKids;
PWM: PctWorkMom; PPDH: PctPersDenseHous; HV: HousVacant; PVB: PctVacantBoarded; MRPHI: Me-
dRentPctHousInc; NIST: NumInShelters; LPODU: LemasPctOfficDrugUn.

the BIC criterion in the Supplementary Materials. The eventual integration re-

sults are presented in Figure 3 and Table 2. First, as shown, the SCAD and

MCP methods estimate the common population number K = 2 and similar

group structures Ĝ1 and Ĝ2, where the state ND is integrated into Ĝ1 by the

SCAD, whilst belonging to Ĝ2 by the MCP, and the states WY and NH are par-

titioned into Ĝ2 by the SCAD, regardless of being merged into Ĝ1 by the MCP.

Second, the result of the coefficient estimation (Est.) and the corresponding

p-values in Population 1 by the two concave penalties commonly and signifi-

cantly specify the positive effects of the RPB and NIST on the murder ratio,

whereas the NIST feature imposes zero effect on the response of interest in Pop-

ulation 2. Third, although the covariates HV, MPD, and PVB do not affect

the murder ratio in Population 1, they exhibit considerable influence in Popula-

tion 2. Fourth, the existence of heterogeneity is verified through Tn(B) in (3.2),
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where B = D ⊗ IqK , with D = {(ei − ej), i < j}>((K(K−1))/2)×K and K = 2,

and qK = 10 and qK = 9 for the SCAD and MCP penalties, respectively. The-

orem 4 indicates that rank(B) = qK(K − 1). Then, the calculated p-value is

χ2
rank(B)(Tn(B)) = 0.008 and 0.010 by the SCAD and MCP penalties, respectively,

which confirms the existence of heterogeneity. Another interesting phenomenon is

the tight connection of the model populations and the population density, where

a bigger population density corresponds to Population 2. In addition, the num-

ber of significant factors influencing the number of murders in Population 2 is

apparently much larger, which may be attributed to a more complex environment

along with a high population density.

6. Conclusion

In this study, we have developed a K-regression model to simultaneously inte-

grate strata with a common regression structure and to estimate stratum-specific

fixed effects, thus accommodating to accommodate the unobserved heterogeneity

in the multiple strata. In simulations and real-data examples, the K-regression

method exhibits superior performance with respect to fast integration and ac-

curate variable selection. This is because massive data often comprise multiple

high-dimensional strata, derived from a growing number of heterogeneous sub-

populations with an unknown common structure and sparsity information, K-

regression modelling is naturally scalable and can deal with heterogeneous issues

related to massive data sets. We have also learned that the statistical inference

in integrative analysis depends on the subpopulation and sparsity recovery, re-

sulting in inference uncertainty. Thus, a “post-integration and selection” issue

arises, requiring additional future research.

7. Supplementary Material

In the Supplementary Material, subsection 1 introduces the Stratum-specific

bootstrap. Subsection 2 shows additional results of Monte Carlo simulations.

section which contains a brief description of the online supplementary materials.

Subsection 3 display further empirical analysis on CAC data sets. Subsection 4

provides the proofs of the theorems in this paper.
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