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ESTIMATION FOLLOWING SEQUENTIAL TESTS INVOLVING
DATA-DEPENDENT TREATMENT ALLOCATION

D. S. Coad

University of Sussex

Abstract: A sequential test is considered in which two treatments are compared and
treatment allocation is data-dependent. Brownian motion approximations are ob-
tained for the bias and variance of the maximum likelihood estimator of treatment
difference at the end of the trial. For normal responses, simulation indicates that the
approximations work well for several data-dependent allocation rules.
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1. Introduction

Suppose a clinical trial is conducted in which patients can be allocated to one
of two treatments A or B. We assume that the response variable for treatment i
at time j, X;; (j = 0,1,...), is normally distributed with mean p,; and variance
unity. Interest lies in testing Hy : 4 < 0 against H; : p > 0, where p = ug — p4.
For this, Robbins and Siegmund (1974) derived the following sequential test.

Choose b > 0, and at stage (m,n), that is, after m patients have been
allocated to treatment A and n to treatment B, let

Zmn = m(TBn ~ Zam), (1)

where Z 4,, and ZTp, are the sample means on treatments A and B, respectively.
Let (M, N) be the first (m,n) such that z,,, & (—=b,b). Then for M + N < oo,
we accept Hy or H; according as z,,, < —b or > b, respectively. Robbins
and Siegmund showed that for this test the error probability is approximately
independent of the allocation rule used. For a generalisation of this test, see
Coad (1991).

Upon termination of the test, our data consist of M responses from treatment
A and N from treatment B. The maximum likelihood estimator of treatment
difference is it = Ty — Tam. If M and N were fixed sample sizes, i would
be unbiased. However, because M + N is a stopping time, i is biased. The
purpose of this paper is to derive approximations for the bias and variance of



694 D. S. COAD

. by considering the sequential test in continuous time. The work provides a
generalisation of Bather and Coad (1992), where only pairwise allocation was
studied.

We begin in Section 2 by considering the sequence {zm .} as a Brownian
motion process. General expressions are then obtained for the bias and variance
of a randomly stopped process. A simple modification is described which corrects
for the effect of overshoot of the stopping boundaries in the discrete-time case.
In Section 3, the approximations are compared with simulated values for three
data-dependent allocation rules. The paper concludes with some remarks on the
use of the approximations for nonnormal responses, the correction of i for bias
and the calculation of approximations for general sequential tests.

2. Brownian Motion Approximations for the Bias and Variance

Let {W(t),t > 0} be a Brownian motion with positive drift 4 and variance
one per unit time, and define the stopping time

T = inf{t : |W(t)| = b}.

Then it is well known that the density function of T can be expressed as a
linear combination of inverse Gaussian densities. This result, together with the
following lemma due to Robbins and Siegmund (1974), form the basis for our
approximations for the bias and variance of .

Lemma 1. For any sequence of pairs (m,n) of positive integers, nondecreasing
in each coordinate, the random sequences {zmn} and {W(mn/(m + n))} have
the same joint distributions.

The derivation of the approximate bias and variance of i = Ty — T4 can
be simplified by using the following property.

Lemma 2. Let T = inf{t: |W(¢t)| = b}. Then W(T) and T are independent.

Proof. Let P, denote a probability measure on the space of paths generated by
a Brownian motion with drift 4 and variance one per unit time. Then we can
write

dP,
Tedt,w(T)=b} AP,

= e®™P_,{T € dt, W(T) = b},

PAT € dt, W(T) = b} = /{ dP_,

by using the fact that dP, o exp{uW (t)—3ux°t). Now, by symmetry, P_,{T € dt,
W(T) =b} = P,{T € dt, W(T) = —b}. It follows that

P{W(T)=b|T € dt} = ?*P,{W(T) = =b|T € dt},
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and hence P{W(T) = b|T € dt} = e**/(1 + e®*), which does not depend on ¢.
This completes the proof of the lemma.

In the continuous-time case, i = W(T')/T, and the bias and variance can be
calculated exactly. For discrete time, it follows from the proof of Lemma 2 that,
neglecting any overshoot of the stopping boundaries, z);, v and MN/(M + N) are
independent. So our approximations for the bias and variance of i = Tgy — T ans
will be no-overshoot approximations. However, as we shall see later, a simple
modification can be made to correct for the effect of overshoot.

An expression for the mean of i can be calculated by using a general theorem
due to Woodroofe (1990). The following theorem summarises his result and gives
the corresponding expression for the variance.

Theorem. Suppose that X, X,,... are independent random variables with a
common density

#(2:6) = exp{6z — (6)).
This exponential form is valid for real values of the parameter 6 in an open
interval 0, and v is an analytic function on this interval. Let S, = X;+-- -+ X,
and let N > 1 be any stopping time. Then

Eo () =40 + 5550 (7) )

o (55) - 5 () -vodn (D) - {55 (D)

Proof. The first assertion is proved in Woodroofe’s paper. To prove the second
assertion, write

o (5) -8 [{%-vo) |- [ {5 -vol|

Let L,(w) = exp{wS, — ny(w)} for all w € @ and n = 1,2,.... Then we have

and

L) = {2 - @)} L) ()
n n
and
Sn ! 2 1 1 n 1
{Z-v0)} L) = L) + ¥@) 5 L) (5)
Further, let 6, € Q2 with 8, < 6 and, for each n > 1, let B,, denote the set of all
vectors (zi,...,Z,) representing the first n observations in a sequence that stops

at N =n. Then

m {5 vo) |- [ (S -ve) now.
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where dv, = dz,dz; - - - dz,. Thus, from (5)

/GE{{'&”" ”dw"/fﬁ/ {3y >} () dvgdes

0 n=1

/00 < / L ”)d”ndw+/ @b”(w)Z/ = Ln(w)dvndw
2,2/3 HE{L;(") ~ La(Go)}don + | ' $()E, (%) du. (6)

Using (4), observe that the first term in (6) becomes

E, (;’2) —/(6)E, (%) _ By, (ig) 4/ (8) Ea, (;) |

By differentiating (6) with respect to 6, the second assertion of the theorem
follows immediately.

From Lemma 1, expressions (2) and (3) can be used as approximations
for the mean and variance of 4 = Tgy — Tax by replacing Sy by zm, N and
N by MN/(M + N). Using the martingale property of the sequence {2, —
mnu/(m +n), m,n = 1,2,...} established by Robbins and Siegmund (1974)
and the independence, apart from overshoot, of zjs, vy and MN/(M + N) implied
by Lemma 2, we obtain

0 1
B())~pu+ —F [ —— 7
=+ 7 ( ) "
and
0 MN 1 0 1
Var(i) ~ — uE( >E —_— —y—E( )
ou """\ M+ N (Ayﬁvy ou s

8 1))’
{5 ()} ©

Furthermore, Robbins and Siegmund (1974) have shown that for p > 0,

MN b [1—e2¢
p(2 )b (1) o
M+ N p\1+4e-2bn
where the approximation is due only to overshoot of the stopping boundaries.

Approximations for the first two negative moments of MN/(M + N) can be
obtained by approximating the distribution of M N / (M + N) by the distribution
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of the first time that the Brownian motion W (t) exits from (—b,b). Specifically,
by putting o = 1.0 in (4.8) and (4.9) of Bather and Coad (1992), we have

E 1 ( bu +€—b,u i 1)1+1 e—(2i—-1)bu
AN (26 — 1)

M+N i=1

+1
= —__ —(2i-1)bp
+62§(2i—1)26 }, (10)

2
1 .
E ~ (eb“ + e_b“ { e~ (2i—1)bu
{(%—)} 2 e

3u ~-1) 2i—1)bu 1)1 —(2i—1)bu
+7§Z((2i—)1)3 B )+b42((2z))e( )}'(H)

1=1

In each case, the approximation in (10) and (11) is due to the above approxima-
tion and also to overshoot of the stopping boundaries.

By substituting (10) in (7), it follows from (4.14) of Bather and Coad (1992)
that

)i‘ —szu + 2 Z (422 + 1) e 2’1:b/.b.

1
E(“)2“+b+4“z(42 v

The variance formula (8) can be evaluated by using (9), (10) and (11). However,
in general, no simple expression is available.

The above expressions for the mean and variance of u do not depend on the
data-dependent allocation rule used. Thus, for the stopping rule considered in
this paper, we can use a data-dependent allocation rule instead of equal allo-
cation, knowing that the estimation bias and the precision of our estimator of
treatment difference are approximately unchanged. These conclusions are rea-
sonable because the error probability for the test is approximately independent
of the allocation rule used.

Our expressions for the bias and variance of 4 have been derived using a
continuous-time approximation. At this point, it is natural to ask whether any
correction can be made for the effect of overshoot in discrete time. Results of
Siegmund (1985, Chap. X) suggest that better numerical accuracy in discrete
time is obtained by replacing b by b + p(u), where

p(p) = lim E(zp,n = b). (12)

Now, the right-hand side of (12) can be approximated by 0.583./A(u), where
A(u) denotes the limiting interval between successive values of mn/(m+n). For
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simplicity, we have taken M ~ N, in which case A(u) =~ 3. As we shall see in
the next section, there is a substantial improvement in accuracy of these modified
approximations over the direct Brownian motion approximations.

3. Simulation Results

Three data-dependent allocation rules were considered. These are briefly de-
scribed below. For details of some of their properties, see Robbins and Siegmund
(1974) and Coad (1991).

The Robbins and Siegmund rule (RS). For this rule, choose a constant ¢ > b
and initially allocate one patient to each treatment; subsequently, allocate the
next patient to treatment B if (n — m)/(m +n) < Zm,n/c; otherwise, allocate to
_ treatment A.

Proportionate randomisation rule (PR). This rule is based on the standardised
estimated treatment difference 2, = /{mn/(m + n)}i. The rule is: initially
allocate one patient to each treatment; subsequently, if |i,] < 2, randomise
equally to the two treatments; otherwise, randomise in the proportions 1 : 2
or 2 : 1 to treatments A and B, respectively, according to whether 4, > 2 or
fis < —2.

The Gittins rule (GS). For a given discount factor a € (0,1) and given inde-
pendent normal priors for the u; (i = A4, B), the Gittins index for treatment i is
defined as

E(Yim o Xy)
sup
>0 F (Z;—__-(:)l aj)

where 7 is any stopping time. The Gittins rule is based on these indices for a
normal response variable with known variance. The rule is: initially, allocate
one patient to each treatment; subsequently, if m” < n or n” < m (r > 1),
allocate the next patient to treatment A or B, respectively; otherwise, allocate
the next patient to the treatment which currently has the larger Gittins index,
randomising in the case of ties.

We performed 10,000 simulations of the sequential test defined by statistic (1)
and computed the empirical bias and variance of i = Zgy—7F Am by averaging over
the simulations. Results for the three data-dependent allocation rules described
above are presented in Table 1. The boundary b is 6. The value of ¢ for the
Robbins and Siegmund rule is 6, and the discount factor and r for the Gittins
rule are 0.99 and 1.5, respectively. The first column of approximations in Table 1
corresponds to the direct Brownian motion approximations derived in Section 2
while the second column corresponds to the modified approximations described
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at the end of Section 2. Note that the standard errors of the estimated biases

are approximately 0.004 and the standard errors of the estimated variances are
between 1% and 2%.
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Table 1. Approximate and simulated values for the bias and variance

Brownian
approximation

0.0407
0.0596
0.0768
0.1149
0.1412
0.1591
0.1646
0.1665
0.1667
0.1667

Brownian
approximation

0.1617
0.1581
0.1538
0.1406
0.1306
0.1305
0.1430
0.1809
0.2223
0.3889

of i =ZpN ~Tam-
(a) Bias

Modified
approximation

0.0407
0.0593
0.0763
0.1129
0.1373
0.1529
0.1574
0.1589
0.1589
0.1589

(b) Variance
Modified

approximation

0.1468
0.1433
0.1390
0.1267
0.1181
0.1199
0.1330
0.1700
0.2095
0.3684

RS

0.0394
0.0637
0.0734
0.1171
0.1385
0.1554
0.1625
0.1587
0.1572
0.1466

RS

0.1465
0.1419
0.1468
0.1325
0.1208
0.1201
0.1330
0.1666
0.2068
0.3604

PR

0.0363
0.0581
0.0762
0.1111
0.1320
0.1516
0.1519
0.1579
0.1602
0.1390

PR

0.1421
0.1395
0.1421
0.1244
0.1136
0.1212
0.1297
0.1625
0.2027
0.3462

GS

0.0389
0.0615
0.0760
0.1120
0.1252
0.1527
0.1606
0.1566
0.1563
0.1510

GS

0.1533
0.1403
0.1359
0.1244
0.1131
0.1147
0.1333
0.1713
0.2073
0.3597

RS, Robbins and Siegmund rule; PR, proportionate randomisation rule; GS, Gittins rule.

We see from Table 1 that the direct Brownian motion approximations tend
to overestimate the true values. The effect is more noticeable when u is large.
In many cases, the modified approximations provide substantial improvements.
For example, when p = 1.0 the true variance is about 0.205. The direct Brow-
nian motion approximation gives 0.2223, but the modified approximation yields
0.2095. By comparing the three allocation rules, we see that the particular data-
dependent allocation rule has little effect upon the bias and variance of f.
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4. Concluding Remarks

In this paper, we have obtained approximations for the bias and variance of
the maximum likelihood estimator of treatment difference following a sequential
test in which response is normal. When response is nonnormal, we can use large-
sample theory to construct suitable sequential tests. This has been shown for
Bernoulli responses by Whitehead (1978), while exponential responses, where
there is the possibility of censoring, are treated by Coad (1994). For these tests,
approximations for the bias and variance can also be obtained by using formulae
(2) and (3): Sy would now be replaced by the new test statistic and N by some
measure of information.

It was shown in Section 3 that the approximations for the bias and variance
work well. In fact, little accuracy is lost by using only the first two terms in the
series in (10) and (11). Moreover, we can use these terms to correct our estimate
for bias: for further details, see Whitehead (1986).

We have restricted our attention to sequential tests with horizontal stopping
boundaries. Approximations for more general tests, such as those with converging
or diverging stopping boundaries, may also be obtained. For some work in this
direction, see Bather and Coad (1992).
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