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Abstract: Many well-known rank tests can be viewed as score tests under probabilis-

tic index models (PIMs), that is, regression models for the conditional probability

that the outcome of one randomly chosen subject exceeds the outcome of another

independently chosen subject. PIMs provide a natural regression framework for

nonparametric rank tests. In addition, PIMs supplement these tests with effect

sizes and ease the development of more flexible tests, such as tests that allow for

covariate adjustment. Inferences for PIMs are currently based on an estimator,

referred to as the standard estimator, that is derived heuristically. By appealing

to semiparametric theory and a Hoeffding decomposition, we rigorously derive the

class of all consistent and asymptotically normal estimators for the parameters in-

dexing a PIM. We identify the (locally) semiparametric efficient estimator in this

class, and derive a second estimator with a smaller second-order finite-sample bias.

The properties of the estimators are evaluated theoretically and empirically. The

heuristic standard estimator turns out to be the preferred estimator in practice,

because it is computationally superior to both the efficient and the bias-reduced

estimators, and only suffers from a minor loss in efficiency. We also propose a par-

tition strategy to further improve the computational performance of the standard

estimator.

Key words and phrases: Cross correlation, influence function, second-order bias,

semiparametric estimation, U-process.

1. Introduction

Probabilistic index models (PIMs, Thas et al. (2012)) form a class of semi-

parametric models for the probability that the outcome of one randomly chosen

subject exceeds the outcome of another independently chosen subject, as a func-

tion of covariates. Let {ZTi = (Yi,X
T
i ) : i = 1, . . . , n} denote a sample of n

independent and identically distributed (i.i.d.) random vectors, where Yi denotes
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the outcome of interest associated with the p-dimensional vector of covariates Xi.

A PIM is defined by the constraint

P (Yi 4 Yj | Xi,Xj) = m(Xi,Xj ;β0), (1.1)

where P (Yi 4 Yj | Xi,Xj) := P (Yi < Yj | Xi,Xj)+0.5P (Yi = Yj | Xi,Xj). This

probability is referred to as the probabilistic index (PI). The function m(·) is a

known function with range [0, 1], smooth in the p-dimensional parameter vector

β, and satisfying the antisymmetry condition m(Xi,Xj ;β) = 1 −m(Xj ,Xi;β).

The function m(·) typically takes the form m(Xi,Xj ;β) = g−1{(Xj −Xi)
Tβ},

with g(·) an appropriate link function, such as the probit or logit link. We let β0

denote the true, but unknown value of β that corresponds to the observed data

law.

Thas et al. (2012) demonstrate that PIMs form a versatile class of models

applicable to continuous and ordinal outcomes, and they establish connections

with the Cox proportional hazards model and rank regression. De Neve and Thas

(2015) illustrate how PIMs provide a unified regression framework for many rank

tests, such as the Wilcoxon–Mann–Whitney (WMW), Kruskal–Wallis, and Fried-

man rank tests. An attractive feature of a PIM is that, in addition to hypothesis

testing, it enables us to estimate the effect sizes with an informative interpre-

tation; however, as discussed in Section 4, interpreting a PI requires caution.

De Neve and Thas (2015) show how PIMs can be used to construct new rank

tests for complicated designs. This is further convincingly demonstrated in Ver-

meulen, Thas and Vansteelandt (2015), who employ PIMs to increase the power

of the WMW test by including auxiliary covariate information in randomized

designs.

The parameter estimation and statistical inference proposed in Thas et al.

(2012) rely on reformulating the PIM (1.1) as a semiparametric conditional mo-

ment model (Chamberlain (1987); Newey (1988)) for the pseudo-observations

I (Yi 4 Yj):

E{I (Yi 4 Yj) | Xi,Xj} = m(Xi,Xj ;β0),

with I (Yi 4 Yj) := I (Yi < Yj) + 0.5I (Yi = Yj) , (1.2)

where I (·) denotes the ordinary indicator function, such that I (A) = 1 if A is

true, and zero otherwise. Thas et al. (2012) propose a semiparametric consis-

tent estimator of β0 by mimicking quasi-likelihood estimating equations with an

independence working correlation matrix. However, several authors have noted

that this heuristic estimator is not necessarily semiparametrically efficient under
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a correct specification of (1.1) (Van Keilegom (2012); Leng and Cheng (2012);

Oja (2012)). This is because the pseudo observations are cross-correlated. For ex-

ample, I (Yi 4 Yj) and I (Yi 4 Yk) are dependent, because they share the outcome

Yi. The potential inefficiency is a consequence of the limitations of the estima-

tion theory of Thas et al. (2012), which only allows for an independence working

correlation matrix ignoring the cross-correlation of the pseudo observations.

We therefore develop a more general estimation theory. Specifically, we derive

the class of all consistent and asymptotically normal estimators of β in the semi-

parametric model induced by (1.1) by appealing to the theory of semiparametrics,

and identify the efficient influence function of β using a Hoeffding decomposition

(Newey (1990); Tsiatis (2006)). Next, we propose estimating equations based on

the efficient influence function, the solution of which is equal to a locally efficient

estimator of β. A semiparametric locally efficient estimator of β is obtained

by exploiting the relationship between PIMs and semiparametric transformation

models (Cheng, Wei and Ying (1995)), allowing us to empirically evaluate the

efficient estimator under a variety of scenarios. A second estimator is proposed

that reduces the second-order bias of the estimator of Thas et al. (2012), where

the latter is referred to as the standard estimator. Because the standard, ef-

ficient, and bias-reduced estimators have a computation complexity of at least

O(n2), we propose computationally more convenient, but asymptotically equiva-

lent variants of these estimators based on partitioning the data. In practice, this

partition estimator is especially useful for the standard estimator.

The remainder of the paper is organized as follows. In Section 2, we present

the main results of the estimation theory, identify the efficient influence function,

and construct a locally efficient estimator. We also discuss the computational

complexity of these estimators. In Section 3, we study the efficiency and bias

properties of this estimator for a variety of well-chosen data-generating models,

and in Section 4 we illustrate the methodology using a case study. In Section 5,

we discuss our main results.

2. Estimation Theory

We denote the semiparametric model imposed by (1.1) by MPIM, which is

the set of all joint density functions fZ(z;β,η) = fY |X(y | x;β,η1)fX(x;η2) with

zT = (y,xT ) obeying (1.1), with β the p-dimensional parameter of interest and

η = (ηT1 ,η
T
2 )T a (possibly) infinite-dimensional vector of variation-independent

nuisance parameters. Let the data-generating law be f0(z) = fZ(z;β0,η0) =

fY |X(y | x;β0,η10)fX(x;η20).
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For example, a logistic PIM can be formulated as logit{P (Yi 4 Yj | Xi,Xj)} =

(Xj −Xi)
Tβ0, where logit(x) = log{x/(1−x)}. The standard estimator of β0 in

this model solves the estimating equation

n∑
i=1

n∑
j=1

(Xj −Xi)[Iij − expit{(Xj −Xi)
Tβ}] = 0, (2.1)

where Iij = I (Yi 4 Yj) and expit(x) = 1/(1 + e−x). Alternatively, a PIM with

a probit link can be formulated as Φ−1{P (Yi 4 Yj | Xi,Xj)} = (Xj − Xi)
Tβ0,

where Φ−1(·) is the inverse cumulative standard normal distribution function. In

this case, the standard estimator of β0 solves the estimating equation

n∑
i=1

n∑
j=1

(Xj −Xi)
φ{(Xj −Xi)

Tβ}
Φ{(Xj −Xi)Tβ}[1− Φ{(Xj −Xi)Tβ}]

[Iij − Φ{(Xj −Xi)
Tβ}]

= 0, (2.2)

and φ(·) is the standard normal density function.

The solutions to (2.1) and (2.2) ignore the cross-correlation of the pseudo

observations. Hence they may fail to exploit all available information in the

data, and therefore fail to be efficient. To overcome this, we appeal to the theory

of semiparametrics to derive the set of all unbiased estimating functions for β

in model MPIM (up to asymptotic equivalence) and to identify the estimating

function that leads to the (locally) most efficient estimator.

The set of all unbiased estimating functions for the p-dimensional parame-

ter β under model MPIM is obtained by using the relationship between regular

asymptotically linear (RAL) estimators and the geometry of influence functions

(Newey (1990); Tsiatis (2006)). Specifically, an estimator β̂ of β based on the

i.i.d. data {ZTi = (Yi,X
T
i ) : i = 1, . . . , n} is said to be asymptotically linear

under model MPIM if it obeys the expansion

√
n(β̂ − β0) =

1√
n

n∑
i=1

ϕ(Yi,Xi;β0,η0) + op(1) (2.3)

for a p-dimensional function ϕ(·;β0,η0) of the observed data satisfying the fol-

lowing moment conditions: (i) E{ϕ(Yi,Xi;β0,η0)} = 0; (ii) E{ϕT (Yi,Xi;β0,η0)

ϕ(Yi,Xi;β0,η0)} <∞; and (iii) E{ϕ(Yi,Xi;β0,η0)ϕ
T (Yi,Xi;β0,η0)} is nonsin-

gular and op(1) denotes a term that converges to zero in probability under the

true data-generating law f0(z). This p-dimensional function ϕ(Yi,Xi;β0,η0) is

referred to as the ith influence function (i = 1, . . . , n) of the RAL estimator
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β̂, which is consistent and asymptotically normal with an asymptotic variance

of
√
n(β̂ − β0) given by E{ϕ(Y,X;β0,η0)ϕ

T (Y,X;β0,η0)}, the variance of the

influence function. We restrict our development to regular estimators, thereby ex-

cluding estimators that have undesirable local properties (Newey (1990)), such as

super-efficiency. Because the influence function of a RAL estimator β̂ is asymp-

totically uniquely determined, it fully describes the first-order asymptotic be-

havior of the estimator β̂. We therefore focus on identifying the set of all such

influence functions from which we can subsequently construct unbiased estimat-

ing functions for β0. Next, we identify the influence function with the smallest

variance, from which a (locally) efficient RAL estimator can be constructed.

Theorem 1 gives the set of all unbiased estimating functions for β0 in model

MPIM, delivering the class of all RAL estimators of β0 in model MPIM (up

to asymptotic equivalence), together with their corresponding influence function

and asymptotic distribution. The proof of Theorem 1 is given in Section 1 and

Section 2 of the Supplementary Material.

Theorem 1. If β̂ is a RAL estimator of β0 in model MPIM, then there exists a

p-dimensional function Bij(β) = b(Xi,Xj ;β) in the set B of antisymmetric p-

dimensional functions of Xi and Xj (satisfying b(Xi,Xj ;β) +b(Xj ,Xi;β) = 0)

such that β̂ is asymptotically equivalent to the solution of the estimating equation

n∑
i=1

n∑
j=1

Uij(β) = 0, with Uij(β) = Bij(β){Iij −Mij(β)}, (2.4)

Iij = I (Yi 4 Yj), and Mij(β) = m(Xi,Xj ;β). Under suitable smoothness and

regularity conditions (listed in Section 1 and Section 2 of the Supplementary

Material), the estimator β̂ of β0 obeys expansion (2.3) with the influence func-

tion ϕ(Yi,Xi;β0,η0) = C0E{Uij(β0) |Yi,Xi} and normalization constant C0 =

−2J(β0)
−1, with J(β0) = E{∂Uij(β)/∂βT |β=β0

}. It follows that
√
n(β̂ − β)

d→
N(0,Σ0) with the variance-covariance matrix Σ0 = 4J(β0)

−1cov[E{Uij(β0) |
Yi,Xi}]J(β0)

−T .

A consistent estimator for the asymptotic variance Σ0 can be obtained using

the sandwich formula: Σ̂(β̂) = 4Ĵ(β̂)−1K̂(β̂)Ĵ(β̂)−T , with

Ĵ(β̂) =
1

n2

n∑
i=1

n∑
j=1

∂Uij(β)

∂βT

∣∣∣
β=β̂

and K̂(β̂) =
1

n

n∑
i=1

Ūi(β̂)Ū
T
i (β̂), Ūi(β̂) =

1

n

n∑
j=1

Uij(β̂).
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2.1. The standard estimator of Thas et al. (2012)

We denote the estimator of Thas et al. (2012) as β̂ST, and refer to it as

the standard estimator. Before we identify the element of B that corresponds

to the most efficient estimator, we show how the estimating equations proposed

in Thas et al. (2012) are a special case of (2.4). In particular, their equations

(2.1) and (2.2) are obtained by choosing Bij(β) = BST
ij (β) = bST(Xi,Xj ;β) =

{∂Mij(β)/∂β}/[Mij(β){1 − Mij(β)}], where the denominator corresponds to

the conditional variance of the pseudo observations Iij , given the covariates

Xi and Xj , mimicking quasi-likelihood estimating equations with an indepen-

dence working correlation matrix. For the logistic PIM, (2.1) corresponds to

BST
ij (β) = (Xj − Xi), and for the probit PIM, (2.2) corresponds to the choice

BST
ij (β) = (Xj −Xi)φ{(Xj −Xi)

Tβ}(Φ{(Xj −Xi)
Tβ}[1−Φ{(Xj −Xi)

Tβ}])−1.
Thus BST

ij (β) + BST
ji (β) = 0. Because these estimating equations ignore the

cross-correlation structure of the transformed outcomes I (Yi 4 Yj), they may

not deliver an efficient estimator.

2.2. The locally efficient estimator

Different choices of the function Bij(β) result in RAL estimators with differ-

ent asymptotic variances. Theorem 2 identifies the choice BEFF
ij (β) = bEFF(Xi,

Xj ;β) that results in an efficient RAL estimator β̂EFF under modelMPIM. The

proof of Theorem 2 is outlined below; while a detailed proof is given in Section 3

of the Supplementary Material.

Theorem 2. The efficient estimator β̂EFF is obtained by choosing Bij(β) =

BEFF
ij (β) in (2.4), where BEFF

ij (β) is the solution to the integral equation

Dij(β0) = E
{

BEFF
ik (β0)Vijik(β0) + BEFF

jk (β0)Vijjk(β0)
∣∣∣Xi,Xj

}
,

i 6= k and j 6= k, (2.5)

with Dij(β0) = ∂Mij(β)/∂β|β=β0
and with conditional covariance

Vijkl(β0) = V (Xi,Xj ,Xk,Xl;β0) = cov(Iij , Ikl|Xi,Xj ,Xk,Xl).

Proof. The semiparametric nuisance tangent space Λ of model MPIM is equal

to

Λ = {s(Y,X) ∈ H |E[{s(Y,X) + s(Y ∗,X∗)}{I(Y 4 Y ∗) (2.6)

−m(X,X∗;β0)}|X,X∗]=0},
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for (Y,XT ) ⊥⊥ (Y ∗,X∗,T ), and H is the Hilbert space equipped with the covari-

ance inner product of p-dimensional mean-zero and square-integrable measurable

random functions h(Y,X). The orthogonal complement of the semiparametric

nuisance tangent space Λ⊥ is equal to

Λ⊥ = {s⊥(Y,X) ∈ H | (2.7)

s⊥(Y,X)=E[b(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)} | Y,X],b(X,X∗) ∈ B},

for (Y,XT ) ⊥⊥ (Y ∗,X∗,T ), where B = {b(X,X∗) | b(X,X∗) is square integrable

and b(X,X∗) + b(X∗,X) = 0}. The score function for β is equal to sβ(Y,X;

β0,η0) = ∂ log fYX(y,x;β,η0)/∂β|β=β0
, and the efficient influence function is

given by

ϕEFF(Y,X;β0,η) =

E{sEFF(Y,X;β0,η0)s
EFF,T (Y,X;β0,η0)}−1sEFF(Y,X;β0,η0),

with an efficient score sEFF(Y,X;β0,η0) equal to the orthogonal projection of the

score function onto the complement of the nuisance tangent space. In order to

find the efficient score, we thus need to find the function bEFF(X,X∗) ∈ B such

that sEFF(Y,X;β0,η0) = E[bEFF(X,X∗){I(Y 4 Y ∗) − m(X,X∗;β0)} | Y,X].

This means solving the integral equation

E[{sβ(Y,X;β0,η0) + sβ(Y ∗,X∗;β0,η0)}{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗]
= E([bEFF(X,X†){I(Y 4 Y †)−m(X,X†;β0)}+ bEFF(X∗,X†){I(Y ∗ 4 Y †)

−m(X∗,X†;β0)}]× {I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗),

from which expression (2.5) follows, because E[{sTβ(Y,X;β0,η0) + sTβ(Y ∗,X∗;

β0,η0)}{I(Y 4 Y ∗) −m(X,X∗;β0)} | X,X∗] = ∂m(X,X∗;β)/∂βT |β=β0
for an

MPIM.

Unfortunately, the integral equation (2.5) does not admit a closed-form so-

lution for the function BEFF
ij (β), especially when the conditional covariances

Vijkl(β) depend on β. It therefore needs to be solved numerically using com-

putationally demanding iterative procedures. In doing so, we replace the expec-

tation in (2.5) with its empirical counterpart, where the average is taken over

k = 1, . . . , n. Specifically, for a fixed β, we approximate BEFF
ij (β) by B̂

EFF

ij (β),
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where B̂
EFF

ij (β) solves the linear system of equations

Dij(β) =
1

n

n∑
k=1

{
B̂

EFF

ik (β)Vijik(β) + B̂
EFF

jk (β)Vijjk(β)
}
, i, j = 1, . . . , n. (2.8)

From their defining properties, it follows that for arbitrary k, ` ∈ {1, . . . , n}, we

have that Dk`(β) = −D`k(β), B̂
EFF

k` (β) = −B̂
EFF

`k (β), and Vijk`(β) = −Vij`k(β)

= Vk`ij(β). In particular, this implies that for all i ∈ {1, . . . , n}, Dii(β) = 0,

BEFF
ii (β) = B̂

EFF

ii (β) = 0 and Viik`(β) = 0. We conclude that equations for

which i = j do not contribute to the system. The antisymmetry conditions

additionally guarantee that the equation Dij(β) = n−1
∑n

k=1{B̂
EFF

ik (β)Vijik(β)+

B̂
EFF

jk (β)Vijjk(β)} is equivalent to the equation

Dji(β) =
1

n

n∑
k=1

{
B̂

EFF

jk (β)Vjijk(β) + B̂
EFF

ik (β)Vjiik(β)
}
,

and the linear system of equations consequently reduces to those n(n − 1)/2

equations with i < j. When {i, j} ∩ {k, `} = ∅, the pseudo observations Iij and

Ik` are uncorrelated, such that Vijk`(β) = 0. Using this, we conclude that the

linear system of n2 equations (2.8) is equivalent to the linear system of n(n−1)/2

equations

Dij(β) =
1

n

[
n−1∑
k=1

n∑
`=k+1

{
B̂

EFF

k` (β)Vijk`(β)
}

+ B̂
EFF

ij (β)Vijij(β)

]
, i < j. (2.9)

A detailed calculation of this last step is provided in the Supplementary Material

(Section 4). Now, define the [n(n − 1)/2 × p]-dimensional matrices D(β) and

B̂
EFF

(β) such that the [(i−1)(2n− i)/2+j− i]th row corresponds to DT
ij(β) and

B̂
EFF,T

ij (β), respectively. Next, define the [n(n− 1)/2× n(n− 1)/2]-dimensional

matrix V(β) such that Vijk`(β) is on the [(i − 1)(2n − i)/2 + j − i]th row and

[(k−1)(2n−k)/2+ `−k]th column. Finally, define the [n(n−1)/2×n(n−1)/2]-

dimensional diagonal matrix Vindep(β) such that the [(i− 1)(2n− i)/2 + j − i]th
diagonal element is equal to Vijij(β). Using this notation, (2.9) can be written

as the matrix equation nD(β) = B̂
EFF,T

(β){V(β) + Vindep(β)}. It follows that

B̂
EFF

(β) = nDT (β){V(β) + Vindep(β)}−1. (2.10)

A semiparametric efficient estimator β̂EFF can then be obtained by iteratively
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solving the estimating equation B̂
EFF,T

(β){I −M(β)} = 0, with I and M(β)

both n(n − 1)/2-dimensional vectors such that the [(i − 1)(2n − i)/2 + j − i]th
element is given by Iij and Mij(β), respectively.

Remark 1. Theorem 1 does not cover the setting in which B̂(β) is replaced by

an estimator. However, doing so does not affect the asymptotic distribution of the

resulting estimator of β because, by construction, the influence function of the

estimator considered is orthogonal to the nuisance parameter space Tsiatis (2006).

This implies that its asymptotic behavior is the same, regardless of whether it is

evaluated at the true nuisance parameters or the estimated nuisance parameters,

which converge at a rate faster than n1/4 that of the truth.

Remark 2. Let BST(β) denote the [n(n−1)/2×p] dimensional matrix with the

[(i − 1)(2n − i)/2 + j − i]th row equal to BST,T
ij (β). Using the above notation,

we have that BST(β) = DT (β)V−1indep(β). It follows that β̂ST solves the estimat-

ing equation DT (β)V−1indep(β){I −M(β)} = 0. That this estimator ignores the

cross-correlation between the pseudo observations is clearly shown here, because

BST(β) can be obtained from B̂
EFF

(β) by forcing V(β) to be zero.

Remark 2 illustrates how the complex cross-correlation structure of the pseudo

observations is taken into account by the semiparametric efficient estimator β̂EFF.

It is the [n(n − 1)/2 × n(n − 1)/2]-dimensional matrix V(β) in equation (2.10),

consisting of the elements Vijkl(β) (the correlations between the pseudo observa-

tions), that shows how the information contained within these correlation coeffi-

cients is exploited by the semiparametric efficient estimator.

We still need to address one peculiarity. When solving the integral equation

(2.5) numerically, we need reasonable estimators for the covariances Vijkl(β), be-

cause a nonparametric estimation is unstable or even unfeasible in small samples,

owing to the curse of dimensionality (Robins and Ritov (1997)). We therefore

need to impose an additional working model, which we show for a continuous

outcome. In this case, the resulting estimator β̂EFF is only locally efficient and

not globally efficient. That is, the semiparametric efficiency bound is only at-

tained under a correctly specified working model for the covariance structure,

but not necessarily otherwise. Under a misspecification of the working model,

the consistency of the estimator is maintained.

When the outcome Y is continuous, in which case the conditional proba-

bilistic index satisfies P (Yi 4 Yj | Xi,Xj) = P (Yi < Yj | Xi,Xj), the conditional

covariance can be written as

Vijik(β) = P (Yi < min(Yj , Yk) | Xi,Xj ,Xk)−Mij(β)Mik(β)
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Table 1. Relationship between the semiparametric transformation model and the prob-
abilistic index model for two choices of error distribution Fε.

Semiparametric Transformation Model Probabilistic Index Model

H(Yi) = XT
i α+ εi P (Yi < Yj | Xi,Xj) = g−1{(Xj −Xi)

Tβ}
Normal error Fε(a) = Φ(a) g−1(a) = Φ(a) and β = α/

√
2

Gumbel error Fε(a) = exp{− exp(−a)} g−1(a) = expit(a) and β = α

and

Vijjk(β) = P (Yi < Yj < Yk | Xi,Xj ,Xk)−Mij(β)Mjk(β).

Consequently, to compute the efficient estimator, one needs to model probabilities

of the form P (Yi < min(Yj , Yk) | Xi,Xj ,Xk) and P (Yi < Yj < Yk | Xi,Xj ,Xk).

One flexible way of doing so, is to assume a semiparametric transformation model

(STM)

H(Y ) = XTα+ ε, (2.11)

where ε is a zero-mean random error term with a known cumulative distribution

function Fε(·), and H(·) is an unspecified strictly increasing function (e.g., Cuzick

(1988); Cheng, Wei and Ying (1995)). Under such a model, it follows that

P (Yi < Yj | Xi,Xj) = f−1{(Xj −Xi)
Tα}, (2.12)

with f−1(a) =
∫
Fε(a + b)dFε(b). For example, if ε follows a standard normal

distribution, then Fε(a) = Φ(a). From this, it follows that f−1(a) = Φ(a/
√

2),

resulting in a probit PIM with β = α/
√

2. Alternatively, if ε follows a Gumbel

distribution with location parameter zero and scale parameter one,, Fε(a) =

exp{− exp(−a)}, then f−1(a) = expit(a), resulting in a logistic PIM with β = α.

Table 1 summarizes these relationships.

Furthermore for the semiparametric transformation model,

P (Yi < min(Yj , Yk) | Xi,Xj ,Xk) = h−11 {(Xi −Xj)
Tα, (Xi −Xk)

Tα}, (2.13)

P (Yi < Yj < Yk | Xi,Xj ,Xk) = h−12 {(Xj −Xi)
Tα, (Xj −Xk)

Tα}, (2.14)

where h−11 (a, b) =
∫
{1−Fε(a+ c)}{1−Fε(b+ c)}dFε(c) and h−12 (a, b) =

∫
Fε(a+

c){1− Fε(b+ c)}dFε(c). The functions h−11 (·, ·) and h−12 (·, ·) can be obtained by

numerical integration.



SEMIPARAMETRIC ESTIMATION OF PIMS 1013

2.3. A bias-reduced estimator

Obtaining the locally efficient estimator β̂EFF is computationally expensive,

especially when the covariances Vijkl(β) depend on the parameter β. Here, we

propose a simplification to address this problem. Instead of using Vijkl(β), where

β is treated as a running parameter, we fix the value of β to a prespecified

value β∗. This results in the covariances Vijkl(β
∗) and the estimating equation∑n

i=1

∑n
j=1 U∗ij(β) = 0, with U∗ij(β) = B̂

∗
ij(β){Iij −Mij(β)}, in which B̂

∗
ij(β)

solves

Dij(β) =
1

n

n∑
k=1

{
B̂
∗
ik(β)Vijik(β

∗) + B̂
∗
jk(β)Vijjk(β

∗)
}
, (2.15)

yielding B̂
∗
(β) = nDT (β){V(β∗)+Vindep(β∗)}−1. The quantity B̂

∗
ij(β) serves as

the numerical approximation of B∗ij(β), the solution to the integral equation (2.5),

including the aforementioned simplification. This procedure requires that we

invert the (model-based) variance-covariance matrix of the pseudo observations

only once, in contrast to the calculation of the locally efficient estimator, which

requires an inversion of this matrix in every step of the iterative procedure. This

results in a computational gain.

The solution to
∑n

i=1

∑n
j=1 U∗ij(β) = 0 gives the estimator β̂∗. Because this

estimation procedure constitutes a special case of (2.4) (for any choice of β∗),

where the function Bij(β) is set to B̂
∗
ij(β), the estimator β̂∗ is a consistent and

asymptotically normal estimator of β.

An important question that remains is how to choose the value β∗. This

value was selected to minimize the second-order finite-sample bias of β̂∗; see

Proposition 1. A proof and regularity conditions are given in the Supplementary

Material (Section 5).

Proposition 1. Assume that the semiparametric transformation model (2.11)

holds, and let ε follow a symmetric distribution about zero. Then, under regularity

conditions, the second-order finite-sample bias of β̂∗ is minimized at β∗ = 0.

When we set β∗ = 0, we denote the estimator β̂∗ by β̂BR, the bias-reduced

estimator (hence the superscript BR). When the true value β0 is equal to 0, the

covariances Vijkl(β) are correctly modeled, given a correct specification of the

STM. In this case (under the null), the estimator β̂BR is also semiparametric

efficient under model MPIM.

Remark 3. The working model (2.11) is parameterized by the nuisance param-

eter α, which is a function of the parameter of interest β; say, α = k(β). For

the locally efficient estimator, α is treated as a running parameter, and for the



1014 VERMEULEN ET AL.

biased-reduced estimator, it is set to α = 0. Other estimators for β might be con-

structed by estimating α in (2.11) directly, for example using the rank likelihood

(Cuzick (1988)), and treating it as fixed while solving (2.4) for β.

2.4. Computational issues and solutions

Before empirically studying the theoretical properties of the different estima-

tors, we first focus on their computational properties. All three estimators require

solving a system of equations of the form (2.4). The difference between the es-

timators lies in the computation of Bij(β). Equation (2.10) gives an expression

for β̂EFF, and requires inverting a matrix of dimension n(n− 1)/2× n(n− 1)/2.

When an iterative algorithm (e.g. the Newton method) is used to solve (2.4),

this matrix has to be inverted at each iteration. The estimator β̂BR is compu-

tationally less expensive, because the inversion occurs only once and not at each

iteration. Here Bij(β
∗) is not a function of β, but is instead kept fixed at β∗ = 0.

Computationally, the estimator β̂ST is the least demanding of the three because

it does not require inverting an n(n−1)/2×n(n−1)/2 matrix because Bij(β) has

a simple expression of the form Bij(β) = {∂Mij(β)/∂β}/[Mij(β){1−Mij(β)}].
See Section 6 of the Supplementary Material for the computation times of

the three estimators for several sample sizes.

Despite its computational superiority, β̂ST is still computationally demand-

ing because of the double summation in (2.4), which can be problematic for

large n. We therefore propose a partition estimator that is computationally less

demanding, but asymptotically equivalent.

For this purpose, we partition the data into k distinct parts Si (i = 1, . . . , k)

of size |Si| = mi, such that
∑k

i=1mi = n, mi → ∞ as n → ∞ and k → ∞ and

k/
√
n→ 0 as n→∞. Let β̂i denote any RAL estimator applied to part i of the

data. The partition estimator is then given by

β̃ :=
1

n

k∑
i=1

mi · β̂i.

Theorem 3 shows the first-order asymptotic equivalence of the partition estimator

β̃ and the corresponding RAL estimator β̂ applied to the entire data set without

partitioning.

Theorem 3. Under model MPIM, the partition estimator β̃ = n−1
∑k

i=1mi · β̂i
(β̂i is a consistent estimator applied to part i of the data, for i = 1, . . . , k) is a

consistent estimator for β0. It further holds that
√
n(β̃−β0) =

√
n(β̂−β0)+op(1),

with β̂ the estimator applied to the entire data set without partitioning.
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A proof of Theorem 3 is given in Section 7 of the Supplementary Material.

It thus follows from Theorem 3 that
√
n(β̃−β0) and

√
n(β̂−β0) have the same

limiting distribution. A consistent estimator of the variance of β̃ is obtained from

Var
(
β̃
)

=
1

n2

k∑
i=1

m2
i ·Var

(
β̂i

)
,

with Var
(
β̂i

)
replaced by the sandwich estimator from Theorem 1.

In practice, we propose using k = bn0.5−δc with 0 < δ < 0.5 and bxc the inte-

ger part of x, and partitioning the data into k groups such that maxi=1,...,k(mi)−
mini=1,...,k(mi) ≤ 1. The partition estimator is then substantially faster, because

it requires k estimates on a subset of size mi instead of one estimate on the entire

data set of size n. In practice, δ can be chosen to minimize the computational

complexity.

3. Empirical Evaluation

To study the empirical performance of the estimators of Section 2, data are

generated under the linear transformation model (2.11). The strictly increasing

function H(·) is set as the identity function. Table 1 summarizes the relationship

between the data-generating model and the PIM.

All simulations are performed in R (R Core Team (2018)); the R code is

available at goo.gl/UA4mFV.

3.1. Normally distributed error

We start by considering a normally distributed error in model (2.11), which

corresponds to a probit PIM. We consider a univariate covariate X that follows

a discrete uniform distribution, with K support values spaced equally between

(a, u). For the following simulation experiments, we set a to 0.1, K to 10, and

evaluate different values of the upper limit u. By using a discrete covariate,

equation (2.5) reduces to a summation that, following steps (2.8)–(2.10), allows

a closed-form solution for BEFF(β). In this way, we avoid having to approxi-

mate equation (2.5) so that differences in efficiency, if any, are due solely to the

estimators themselves. We can study the range of the potential efficiency gain

empirically by considering specific simulation scenarios in which small and larger

gains in efficiency of β̂EFF over β̂ST are theoretically expected. We do this by

selecting values of the data-generating model so that the difference (in terms

of the Frobenius norm) between the estimating equations of β̂EFF and β̂ST is

https://users.ugent.be/~jrdeneve/EfficiencyBiasPIM/
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maximized (leading to a scenario in which we expect β̂EFF to perform better) or

minimized (leading to a scenario in which we expect similar performance for both

estimators). See the Supplementary Material (Section 8) for more information

on how to obtain these simulation scenarios.

Specifically, we consider u = 2 and α = 0 (leading to a scenario in which the

efficient estimator is expected to perform better than β̂ST) or α = 2 (leading to a

scenario in which β̂EFF is expected to perform similarly to β̂ST); corresponding

to the true values β0 = 0 and β0 =
√

2, respectively. The simulation results are

available in Section 8 of the Supplementary Material. Next, we describe our main

findings.

The simulation results indicate that β̂ST is nearly as efficient as β̂EFF for

both choices of β0, suggesting that the information lost by not considering the

cross-correlation of the pseudo observations is negligible, especially when the

sample size increases. This is interesting, especially from a computational point of

view: computationally β̂ST is substantially less intensive than the semiparametric

efficient estimator β̂EFF, because the latter requires calculating and inverting a

covariance matrix of dimension n(n − 1)/2. This behavior can be explained

intuitively as follows. The number of nonzero elements of {V(β) + Vindep(β)}
in expression (2.10) is equal to n(n− 1)(n− 3/2). The sparsity of this matrix is

equal to (4n−6)/[n(n−1)]; which converges to zero as the sample size increases.

Hence, with an increasing sample size, the variance-covariance matrix of the

pseudo observations becomes sparser, with most of the significant information

on the diagonal. This supports using the standard estimator in larger samples,

rather than the locally efficient or even the bias-reduced estimator, resulting in

the finite-sample bias becoming less of a concern.

The simulation results also show the local efficiency property of β̂BR. Its

relative efficiency, compared with that of β̂EFF, is close to one when β0 = 0, but

increases, that is, β̂BR becomes less efficient than β̂EFF, when the true β0 deviates

from zero. This is because the covariance structure of β̂BR is no longer specified

correctly when β0 6= 0, leading to inefficient, but still consistent estimates. Its

bias reduction property is also noticeable, especially when β0 =
√

2, at small

sample sizes. This bias reduction comes at a price of higher standard errors.

For small sample sizes, especially for n = 25, the empirical variance is under-

estimated by the sandwich estimator of the standard error (for all estimators).

In these small sample settings, one could use resampling techniques, such as the

adjusted jackknife empirical likelihood method (see Amorim et al. (2018)), to

obtain appropriate confidence intervals with correct coverage. The coverage here

using the asymptotic results is better for n = 100.
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3.2. Gumbel distributed error

We now consider the case where the error term ε in model (2.11) follows a

Gumbel distribution with location parameter zero and scale parameter one, which

leads to a logistic PIM; see Table 1. As before, we consider specific simulation

scenarios in which small and larger gains in efficiency are expected of β̂EFF over

β̂ST. The rationale behind these settings is discussed in the Supplementary Ma-

terial (Section 8). Because the Gumbel distribution of the error is not symmetric

around zero, this scenario also allows us to investigate the extent to which the

result of Proposition 1 is retained here.

To better understand the restrictions imposed by PIMs, we also add β̂PH

(the Cox partial likelihood estimator) to the simulation study. A semiparametric

transformation model with a Gumbel error is equivalent to the Cox proportional

hazards model, such that β̂PH is the efficient estimator under this more restrictive

semiparametric transformation model. The simulation results can be found in

Section 8 of the Supplementary Material. We discuss the main findings below.

The estimator β̂PH is more efficient than all competitors; it is around 20%

more efficient than β̂EFF, regardless of the sample size. This is because propor-

tional hazard models or, more generally, semiparametric transformation models,

are more restrictive than PIMs. In the Supplementary Material (Section 9), we

explain in more detail why this is the case, and that this does not contradict

the semiparametric theory. The relationship between these two approaches is

discussed further in Section 5.

For the three PIM estimators (those that are within the class of RAL esti-

mators given in Theorem 1), note that for β0 = 0, there is almost no gain in

efficiency, with all three estimators exhibiting similar performance. When β0 = 2

and for a sample of size 25, both β̂BR and β̂EFF have a lower mean squared error

(MSE) than that of β̂ST. Note that the covariance structure used in the con-

struction of β̂BR is misspecified when β0 = 2, but its smaller bias contributes to

a smaller MSE. Furthermore, even though the assumptions of Proposition 1 are

not fulfilled (the Gumbel distribution is not symmetric around zero), β̂BR shows

a smaller bias than the other estimators do, contributing to a lower MSE when

the sample size is small.

As the sample size increases, all three estimators are nearly unbiased and the

estimator β̂ST shows the largest MSE. The efficient estimator β̂EFF outperforms

both competitors, although the improvement is modest. However, this gain in

efficiency comes with a considerable cost in terms of computing time. Finally,

the empirical coverage of the 95% confidence intervals is again similar.
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3.3. Partition estimator

We also examine the finite-sample performance of the partition estimator β̃

of Section 2.4. We consider only the standard estimator. This is because the par-

tition estimator is only of interest for large sample sizes, and we want to compare

β̃ with β̂. Furthermore, the calculations for β̂BR and β̂EFF (non-partitioned) be-

come infeasible for large sample sizes. Section 8 of the Supplementary Material

shows the empirical results of the partition estimator. For n ≥ 500, the partition

estimator β̃ST is almost as efficient as β̂ST. The partition variance estimator

exhibits a slight underestimation, but this decreases as the sample size increases.

Overall, we can say that the distributions of β̃ST and β̂ST are approximately

equal for n ≥ 500.

3.4. Conclusion

The results of this empirical evaluation suggest that in many settings, there

is no practical difference in efficiency between β̂ST and both β̂EFF and β̂BR,

and when there is a difference, its magnitude is modest. Therefore, β̂ST is the

preferred estimator in practice, given its computational superiority over the other

estimators.

4. Illustration

The Health Evaluation and Linkage to Primary Care study is a clinical trial

for adult inpatients recruited from a detoxification unit. The data are made

available in Appendix B of Horton and Kleinman (2010). To show how PIMs can

supplement conventional analyses, we consider a cross-sectional part of the orig-

inal study with n = 453, and focus on the association between the consequences

of substance abuse and depression symptoms, while controlling for gender (1:

female, 0: male) and homelessness (1: homeless at least one night in the last

six months, 0: otherwise). The analyses are performed using R (R Core Team

(2018)), and all R code for this analysis can be downloaded from goo.gl/UA4mFV.

Substance abuse consequence is the primary outcome, and is measured us-

ing the Inventory of Drug Use Consequences (InDUC, range 0–50) based on 50

items, in which higher scores indicate worse life consequences (Blanchard et al.

(2001)). Because the InDUC score is an ordinal outcome, the probabilistic index

is a relevant summary measure. Depression is measured using the Center for

Epidemiologic Studies Depression Scale (CESD, range 0–60), with higher scores

indicating more symptoms of depression. To visualize the association, Figure 1

(left panel) shows a scatter plot of the InDUC score as a function of the CESD,

goo.gl/UA4mFV
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Table 2. Estimates and standard errors of the three estimators when data are partitioned
for computational reasons. The two columns on the right show the estimates and the
standard errors, respectively when fitted to the data set without partitioning.

With partitioning Without partitioning

β̃ST St. Error β̃BR St. Error β̃EFF St. Error β̂ST St. Error

CESD 0.09708 0.03155 0.09657 0.03284 0.10037 0.03220 0.07704 0.03735

CESD2 −0.00249 0.00112 −0.00232 0.00119 −0.00260 0.00117 −0.00197 0.00127

CESD3 0.00003 0.00001 0.00002 0.00001 0.00003 0.00001 0.00002 0.00001

homeless 0.34356 0.06994 0.33512 0.07621 0.33742 0.07658 0.32386 0.06951

gender −0.59627 0.08633 −0.59858 0.09279 −0.59578 0.09255 −0.61094 0.08684

together with the fit of a linear regression model, controlling for gender and home-

less status. To allow for some flexibility, the CESD is modeled as a third-order

polynomial. There is a positive association between the depression score and the

mean substance abuse consequence score. The plot further shows a decreasing

outcome variability with an increasing CESD score. Transforming the outcome

using a Box–Cox power function stabilizes the variance and makes the residuals

approximately normal; see the Supplementary Material for details (Section 10).

The data-generating model can therefore be approximated using a probit link

PIM. See Section 2.2 for more details on the connection between a transforma-

tion model and a PIM.

For all estimators, we consider the partition estimator of Section 2.4 with

k = bn0.25c = b4530.25c = 4 partitions, and β̂ST is also applied to the data set

without partitioning.

Table 2 displays the results. All estimates are quite similar, which is in line

with the findings of the simulation study. Furthermore note that there is only a

small difference between these and the estimates obtained by fitting the standard

estimator on the full data set. This demonstrates the strength of this estimator: it

is computationally superior and nearly efficient. The partition standard errors are

smaller than those of the estimator applied to the data set without partitioning,

but this is the result of the variance estimator underestimation, as discussed in

Section 3.3.

The regression coefficients of the CESD, gender and homeless status, are

significantly different from zero (p < 0.0001). There is no evidence that the

association between the CESD and the InDUC scores (while controlling for gender

and homeless status) deviates significantly from linearity (p = 0.22).

To illustrate the interpretation, consider two patients of the same gender

and with the same homeless status, but with a difference of 10 on the depression

scale. The probability that the person with the lower CESD score will have a
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Figure 1. Left: scatter plot of the InDUC score as a function of the CESD, together with
the fit of a linear regression model controlling for gender and homeless status. Right:
estimated probability that the InDUC score is lower for a patient with a CESD of x, as
compared with a patient with a CESD that is 10 units higher (both patients have the
same gender and homelessness status) as a function of x. The vertical lines denote the
pointwise 95% confidence intervals.

lower InDUC score is displayed in Figure 1 (right panel) as a function of the lowest

CESD score. From this panel, we see that lower depression scores are associated

with lower substance abuse consequence scores, because the PI is above 0.5. For

example, consider a patient with a score of 25 and a patient with a score of 35.

The probability that the patient with the lower CESD score will also have the

lowest InDUC score is

Φ[0.07704 · (35− 25)− 0.00197 · (352 − 252) + 0.00002 · (353 − 253)] = 56.7%,

where the percentage is calculated using the unrounded values of β̂ST. Hence,

it is more likely that having fewer symptoms of depression is associated with

fewer substance abuse consequences. However, the effect is modest, because the

probability is close to 50%. From the plot, we also see that this effect is not

linear: the impact of a 10 unit difference in the CESD score on the InDUC score

depends on the CESD scores. For low and high CESD scores, the estimated PI

is the largest, although it is less precise.

Note that when interpreting the PI, we are comparing two different subpop-

ulations. In the former example, we are comparing two populations of the same

gender and with the same homeless status, but with a difference of 10 points on

the depression scale and with potentially different values for all other (possibly
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unmeasured) variables. Depending on how heterogeneous these populations are,

the PI will be closer to 0.5 when both subpopulations are more heterogeneous,

and will deviate more from 0.5 when both subpopulations are more homogeneous.

The PI does not indicate how much a specific patient would benefit from/be hurt

by a 10 point increase on the depression scale. Similarly, in a randomized design,

the PI refers to the interpretation of the probability that a randomly selected

treated subject has a higher outcome than an independently randomly selected

untreated subject. This should not be interpreted as the probability of benefiting

from the treatment. For a more detailed discussion, see for example, Senn (2006)

and Greenland et al. (2020).

5. Discussion

We have derived solid semiparametric theory for PIMs and the (locally) effi-

cient estimator β̂EFF of the parameter β indexing these models, where efficiency

is attained under an additional correct specification of an STM. We proposed a

second estimator, β̂BR, which has a local efficiency property and reduced second-

order finite-sample bias.

Our results have shown that the standard estimator is nearly efficient under

several data-generating mechanisms. This is surprising, considering the correla-

tion between the pseudo observations, but can be explained by the sparsity of

their covariance matrix. This degree of sparsity increases with the sample size n.

An intuitive explanation for this behavior is given in Section 11 of the Supplemen-

tary Material. In view of this and its computational efficiency, we recommend us-

ing the standard estimator. We have further extended the standard estimator by

providing a computationally improved partition estimation strategy. Techniques

for sparse matrices will likely result in even better computational properties, and

will be explored in future research.

PIMs might also be used to analyze composite outcomes. Pocock et al. (2012)

proposed the win ratio, which is related to the PI, as a meaningful effect size.

Recently, several authors have proposed methods for modeling the win ratio as a

function of covariates (e.g., Follmann et al. (2020); Mao and Wang (2021)). The

estimators of the model parameters are related to the PIM parameter estimators

of Thas et al. (2012). However, because composite endpoints often involve time-

to-event outcomes (e.g., survival times), censoring is an important issue when

estimating the win ratio. These insights may perhaps be transferred to PIMs so

that the estimation theory can be extended to censoring. We can also consider

the approach of Cheng, Wei and Ying (1995) in the context of transformation
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models for censored data, which relies on the inverse probability of censoring

weighting.

Supplementary Material

This online Supplementary Material contains the development of the semi-

parametric efficiency theory, detailed proofs and calculations, explanations con-

cerning the simulation setup, the tables of the simulation study, and additional

figures for the data analysis.
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