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Abstract: A data-driven method for frequentist model averaging weight choice is
developed for general likelihood models. We propose to estimate the weights which
minimize an estimator of the mean squared error of a weighted estimator in a local
misspecification framework. We find that in general there is not a unique set of
such weights, meaning that predictions from multiple model averaging estimators
might not be identical. This holds in both the univariate and multivariate case.
However, we show that a unique set of empirical weights is obtained if the candidate
models are appropriately restricted. In particular a suitable class of models are the
so-called singleton models where each model only includes one parameter from the
candidate set. This restriction results in a drastic reduction in the computational
cost of model averaging weight selection relative to methods which include weights
for all possible parameter subsets. We investigate the performance of our methods
in both linear models and generalized linear models, and illustrate the methods in
two empirical applications.
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1. Introduction

We study a focused version of frequentist model averaging where the mean
squared error plays a central role. Suppose we have a collection of models S €
S to estimate a population quantity u, this is the focus, leading to a set of
estimators {fig : S € S}. The focus can be vector-valued. In this paper we
study properties of the weight choice for constructing a combined, weighted, or
aggregated, estimator

fo = Y wgifis. (1.1)

Ses

Focused model selection (FIC, Claeskens and Hjorfi (2003)) assigns a single weight
wg+ = 1 to the estimator for which the estimated mean squared error (MSE) is
the smallest amongst all considered models, MS\E(/:LS*) = mingegﬁs\E(ﬂs),
and wg = 0 for all other S € S. Due to the estimation of the MSE (the true
model is unknown, hence unavailable for use in MSE computations), the collec-
tion of weights wg is random. Similar random selection results from using any
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other information criterion such as the Akaike information criterion (AIC, Akaikd
(I973)), the Bayesian information criterion (BIC, Schwarz (T97R)) and Mallows’
Cp (Mallows (T973)).

Small fluctuations in the data may cause the weights indicating the single
best model to change from one to zero and vice versa. For this reason model
averaging with weights outside the values {0, 1} are considered as a more stable
compromise. This paper concentrates on frequentist model averaging in a likeli-
hood setting. For an overview of model averaging in a Bayesian framework see
Hoeting et all (1999).

Weight selection methods for regression models estimated via least squares
include the Mallows’ criterion for determining the weights to be used in model
averaging for nested models (Hansen (2007)) and its extension to non-nested
models (Wan, Zhang, and Zou (P010)). Hansen and Racind (2012) defined a
jackknife model averaging estimator for heteroskedastic errors and showed the
optimality of that model averaged estimator. Model averaging in econometrics is
often used for improving forecast accuracy (Bates and Granger (1T969); Granger
and Ramanathan ([984); Hansenl (200R)). For a further literature overview, see
Cheng and Hansen (2015H).

Liang et al] (2001) proposed to select the weights such that the estimated
MSE of the weighted estimator fi,, is minimal. In that paper, their ‘optimal’
set of weights for frequentist model-averaged estimators is, however, restricted
to a specific ad hoc parametric form. They used their method for least squares
estimation only, but explain that it could be extended to maximum likelihood
estimation. For linear regression models with heteroscedastic errors Lau (201H)
proposed a model averaging estimator in a local asymptotic framework and de-
rived the asymptotic distribution of the so-called plug-in averaging estimator
based on the asymptotic mean squared error expression. Multinomial regres-
sion was considered by Wan, Zhang, and Wang (2013) by minimizing a plug-in
estimator of the asymptotic mean squared error for defining the weights.

In this paper we consider estimators obtained by maximum likelihood esti-
mation in general. First, we propose an estimator of the mean squared error of
11 under local misspecification, replacing the unknown localizing parameters by
their plug-in estimators. We then propose selecting the weights that minimize
this estimator of the MSE. This method can be considered as an extension of [Lit
(2015) to likelihood models. We also extend the approach of [Liang et al] (2011T)
as we do not restrict the empirical weights to have a certain parametric form nor
to lie in the unit simplex, although we impose that the sum of weights is equal to
one as is necessary for consistency of the model averaging estimator (Hjort and
Claeskend (2003)). In absence of imposing inequality restrictions, unlike other
weight selection methods, no quadratic programming or nonlinear optimization
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is required. When the aim of the model averaging is to improve estimation ef-
ficiency as compared to using a single models estimator, the interpretation of
the separate weights is not of direct interest. By not restricting the weights to
be between zero and one, more flexibility is allowed in the construction of the
weighted estimator, and thus there is the possibility for reduced MSE.

A second part of this paper entails a study of the set of models S for which
we can assign unique weights to the corresponding estimators. Perhaps surpris-
ingly, it turns out that most of the studied weight selection methods result in a
non-unique set of weights. This can be problematic when interpreting the weight
values. We show that there are multiple weight vectors that yield equal model
average predictions in linear regression using different sets of models. It is there-
fore sufficient to restrict attention to a subset of such models for which we can
construct a unique MSE-minimizing weight vector. It turns out that one conve-
nient choice is the class of singleton models, dramatically reducing the number of
models to estimate. For example, if there are ¢ candidate parameters for inclu-
sion, then there are 27 models consisting of all possible subsets of g parameters,
but only ¢ + 1 singleton models (the baseline or narrow model which fixes all ¢
parameters and the ¢ models which each include only a single parameter) that
suffice for model averaging.

Section 2 introduces notation, defines the local asymptotic framework and
the asymptotic mean squared error. Estimators for the MSE are constructed and
discussed in Section 3. Section 4 contains an extension of the weight selection
method for vector-valued focuses. Simulations and data examples are given in
Sections 5 and 6. Section 7 concludes.

2. Notation and Setting

Consider a likelihood regression model where it is uncertain which regression
variables should best be included for the estimation of a population quantity u.
Different ‘configurations’ of covariates lead to define different models. A local
misspecification setting avoids making the strong assumption that the true model
is contained in the set of considered models. Take {Y;;i = 1,...,n} independent
with the ith density f,(y;zi) = f(y;2i, 00,7 + 6/y/n), where the p-vector 6 is
included in every model and is not subject to selection. Components of the ¢-
vector v may or may not be relevant, these are subject to variable selection. The
vectors f and ~ are non-overlapping. The true values of the parameter vector
(0,v) are (6p,vo + 0/+/n) under the local misspecification setting, and (6p, 7o)
under a narrow model where the vector g is completely specified and known.
For example, when  represents regression coefficients, typically 79 = 0 in the
narrow model, the smallest model one is willing to consider, indicating absence of
the extra regression coefficients. The full model includes all ¢ components of ~,
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other models are indexed by a set S C {1,...,¢}. The narrow model corresponds
to S = . Since our method of finding weights is based on minimizing a mean
squared error expression, see also Liang et al] (2011), this setting is justified
since it balances the squared bias and the variance of the estimators in order
for the mean squared error to be computable. Indeed, when not working under
local misspecification, for a fixed true model not contained in the set of studied
models asymptotically the bias would dominate, pointing toward always working
with the most complicated model (Claeskens and Hjorf (200R)).

In a regression setting the response values are typically not identically dis-
tributed due to the presence of the covariate vector z;. We define the score
vector, the vector of first derivatives of the log-likelihood,

dlo 2,00,
Ue(y; x) _ w
U’Y(y§$) %ﬁ;ﬁﬁoﬁo) )

and let the Fisher information matrix

B Up(Y;x) 1 . A
J(x) = Var (UV(Y; ) and J, = - ; J (i),
be partitioned according to p and ¢, the lengths of 8 and ~, as

_ Joo(z)  Jo1(z) _ Jn00 Jn01 -1 _ Jgo ng
J<x)_<J10(37) Jii(z) ) In= Jn1o JIn11 I = JW gl )-

We assume that J, converges to an invertible matrix J when n — oo. Subma-
trices of J and J~! are defined as above, though without using the subscript
n.

The purpose of the model averaging procedure is to estimate a population
focus p = p(0, 7). Examples include a prediction of the response given covariate
values (a forecast), a quantile of the response distribution, as well as a single
coefficient of interest. Working with a population focus is more general than the
commonly studied averaging of the regression coefficients. We assume that the
first derivatives of p with respect to 6 and «y exist in a neighborhood of (6y,70).

Maximum likelihood estimation is used in each submodel indexed by S. Un-
der classical assumptions, each such submodel estimator of (6,), and hence of
the focus u, has an asymptotically normal distribution with both the mean and
the variance specific to the used model. Let fig = ,u(gsﬁs). Following the
notation of Claeskens and Hjorf (P00R), it holds that

Vn(fis — ftrue) 4 Ag = Ao+ V(6 — GgD) ~ N(meang, Varg), (2.1)
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where Ag ~ N (0,72) with the narrow model’s variance 72 = (9p1/90)! Jog- 01/ 90,
the vector v = JioJog Op/00 — Op/dy, D ~ Ny(5,Q) with Q@ = J''. Further,
define a |S| X ¢ projection matrix g that selects those rows with an index be-
longing to S and let Qs = (msQ '7L)™1, Q% = 7LQgsms, and Gs = QLQ L.
We denote by I, an identity matrix of dimension ¢ x ¢q. By adding the squared
bias and the variance, the asymptotic distribution in (21) implies that the mean
squared error (MSE) of a single estimator jig converges to

MSE(fis, 0) = 75 + 'Q%v + v' (I, — Gs)dd' (I, — Gs)'v. (2.2)

While selecting a model based on the estimator’s estimated MSE value is the
idea underlying the focused information criterion (Claeskens and Hjorf (2003)),
we here consider the choice of the weights via the mean squared error, similar as
Lin (2015) and Liang et all (2011), though for general likelihood estimation and
a general choice of weights summing to one.

3. Estimation of the Mean Squared Error
3.1. Weight choice via minimum mean squared error

Rather than working with the estimator in a single model, we consider a
finite set of M different models, this number not depending on the sample size.
A weight is assigned to the estimator in each of the considered models to reach
the model averaged estimator ji,, in ().

Some common possibilities of sets of models to average over are (i) all possible
subsets, these are M = 29 models, with g the length of the parameter vector ~;
this is currently the most common construction for model averaging. (ii) A
sequence of ‘nested’ models. Here one starts with a model with a single variable,
then adds a second one, etc. Thus S; = {1} € Sy = {1,2} C ... C S, =
{1,...,q}. When including also the narrow model, containing only € and none of
the components of ~, this leads to M = ¢+ 1 models that depend on the order of
inclusion of the variables. (iii) A collection of ‘singleton’ models. For singleton
models, we only allow one variable v; to be present in the model, in addition to
6, implying that S; = {j}. A major advantage is that only simple models need
to be fit. Such a collection consists of M = ¢+ 1 models when the narrow model
is included.

When considering a non-random set of weights in H = {(wl, coo,wp)
Z].\il w; = 1}, then (see Hjort and Claeskens (2003)) for the weighted estimator

J
it holds that

M
Vil — pere) 5 > wihs; = S wi{Ao + v4(6 — Gs, D)},

M
J=1 Jj=1
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from which, by (E72), the limiting mean squared error is found to be MSE(fi,,) =
78 + R(J), where
M

M - M . =
Jr(ijQOSj)Q_I(ijQ%j) }1/. (3.1)
J=1 j=1

It is convenient to rewrite (Bl) as a quadratic function of the weights, R(d) =
w!F(§)w, where the (j,k)th entry of F = F(§) is defined by (with j,k =
1,...,M)

Fip(0) = v { (I, - Q3,700 (1, - Q,Q7") + (@4, Q7'Q% ) fr. (32)

The theoretical weights that minimize the MSE are

Wse = argmin w' Fw. (3.3)
weH
In practice, the MSE needs to be estimated in order to estimate the optimal
weights.

3.2. Estimating the MSE and uniqueness of the weights

While almost all quantities in the MSE can be estimated by inserting con-
sistent estimators for unknowns formed by plugging in estimators for (0,~) and
using empirical Fisher information matrices, the situation is different for 6. With
5 = V(A — Y0) —a D ~ Ng(6,Q), we cannot achieve the same accuracy as
for the other estimators. To not overload the notation, we focus here on the
estimation of 4, and leave the other quantities as they are, assumed to be known.
However, all unknown quantities are consistently estimated for practical use.

Using the above defined unbiased estimator 5 results in estimating the MSE
by M@(\ﬁw) =78+ w'Fw where the M x M matrix F = F(6), see (82). The
minimum MSE weights are defined by @Wmse = argmin,, .y, w tFw.

The estimated weights are unique 1f and only if the matrix F is positive
definite. By using (B2) we can rewrite F = f ft + Q where the M x 1 vector f
has jth element equal to v* (I, — Q%JQ )té and the M x M matrix Q has (4, k)th

element Vthva_lQ%kV. Thus a sufficient condition for F° (and F' as well) to be
positive definite is that () be positive definite. Lemma 1 presents a sufficient
condition for this occurrence. All proofs are contained in the Appendix.

Lemma 1. If Q is positive definite, v is not equal to Opr, and the matrices Q%j

(j=1,..., M) are linearly independent, then @ is positive definite.
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Under the conditions of Lemma 1, the theoretical optimal weights that min-
imize (B33) are unique and can be written as wmse = 14, F~1/(15,F~1,/); this
is a well-known result for minimizing quadratic forms. The vector 1;; denotes
a vector of all ones of length M. Our proposed model averaging weights are
the values that minimize the MSE estimator MS/E(\ﬂw) Given the conditions of
Lemma 1, also these weights are unique and can be written as

R . R 1t ﬁ—l
W = argmin w' Fw = —24

weH 1t F\fll ‘ (34)
M M

We call these the minimum MSE weights (mMSE).
Since @ has rank ¢, at most ¢ linearly independent components Qosj can

be constructed, meaning that the rank of @ (and hence of ﬁ) is bounded by
q. Together with the narrow model (the ‘null’ component), this means that the
maximum number of models M needed to create a unique set of weights is g+ 1.
This can be achieved by considering the class of nested models, or the class of
singleton models. Each class has M = ¢ + 1 models and an estimate F which is
positive definite with rank equal to ¢ + 1, resulting in a unique set of weights.
Note that several more situations lead to unique weights. For example, with
g = 7, one model may contain the variables (v1,72), a second model 73, and a
third model (v4,...,77). Here Lemma 1 guarantees uniqueness of the selected
mMSE weights. Section 3.3 works out uniqueness properties of the predictions
in the case of linear regression models.

Another conclusion of Lemma 1 is that we cannot find unique ‘optimal’
weights for the case of averaging over all 29 subsets without considering more
assumptions (Dosfal (2009)). This may open a discussion about averaging over a
set of not more than g+ 1 submodels only for which there are linearly independent
Q% matrices and for which we can find unique optimal weights versus the current
common practice of averaging over all subsets resulting in a set of non-unique
weights.

Remark 1. The above uniqueness property is tied to the estimation of §. Al-
ternatively, if we use 6! — @Q in (B23) as an unbiased estimator of 36! then, after
removing some terms independent of the weight vector w,
Winse,1 = argmin{wtﬁw +2w'T}
weH
with, for j,k=1,..., M, Py, = v'(I; — Q%jQ_l)éét(Iq — ngQ_l)tl/ and T =

vt %j v. The matrix P can be rewritten as a product aa’ where the M-vector @

has jth component 5*/([ q—Q%jQ_l)tV. Obviously, Pis positive semi-definite only,
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having rank one. An important consequence is that there is no unique solution for
the weights, regardless of which models are averaged over. Nonetheless, we can
find weights by using elther generalized inverse matrices or by means of quadratlc
programming. With P- denoting such a (non-unique) generalized inverse of P
the (non-unique) weight is

Wamen = P [(—Ing + 1y (15, P~ 1) " 8, POYT + 1a (14, P 130) 74,

Adding such constraints as having all weights positive and not larger than 1 is not
a guarantee to get unique weights when P is not positive definite (Propositions
2-10 and 2-20 Dostal (2009); Harvillé (2000)).

The mMSE weighted estimator with random, data-driven weights, as in (84),
has different statistical properties as when using the unreachable theoretically
optimal weights (B33). Theorem 1 shows the limiting behavior of both the weights
and of the mMSE weighted estimator.

It is straightforward to show that the estimator F = F (;5\) of F in (B2)
converges, for n tending to infinity, in distribution to F* of which the (j, k)th
element (j,k=1,...,M) is

Fiy=v'(I; - Q%,Q ") DD' (I, - Q% Q") 'v + ' (Q% Q'Q%, v,

with D ~ N(4,Q). Hence, it follows that w'Fw % wt F*w as n — co. While the
explicit form of the weights in (B3) is useful for direct computation, it hints at
a complicated limiting distribution.

Theorem 1. Assume that F and F* are invertible. Let Wirse = argmin,, .4, w! Fw
and w* = argming, ey w'F*w. Then (i) s i) w*; (ii) the model averaging
estimator satisfies

M=

—~ d *
\/ﬁ(,u@rgs\e - ,Uftrue) — ijSj-

1

J

Since the weights w* are random, the limiting distribution is not Gaussian,
despite every Ag; being Gaussian. For deterministic weights the limiting distri-
bution is normal.

The randomness of the weights complicates inference for the model averaged
estimator and, as a special case, also for the estimator post-selection when the
uncertainty involved with the selection is taken into account. For more infor-
mation about post-selection inference, see, e.g., Patschern (1991), Kabaila (T995),
Claeskens and Hjort (2003) and Danilov and Magnus (2004).
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3.3. Uniqueness of predictions in linear regression models

While uniqueness of the weights is important, we investigate the uniqueness
of the weighted predictions when different sets of models {S7,...,Sy} are used
to construct the weights. This discussion is restricted to linear models only.

In this subsection we consider the normal linear regression models Y =
X0+ Z~ + e. The intercept is always present and is included in the vector 6
that may also include coefficients of other fixed covariates, resulting in a design
matrix X. In addition, there are ¢ potential covariates z1,...,z, which are
collected in the design matrix Z with corresponding coefficients . Take the ideal
situation that o2 = var(e) is known to simplify the notation and calculations;
this assumption is not necessary since we can include o2 in the vector 6 and add
one row and column to the Fisher information matrix J,. For a linear model,
the empirical Fisher information matrix is

g 1 (XtX XtZ> - <J00 J01>
"o \ZtX Z'Z) \Jw Ju)’

The focus is on model-averaged prediction. We estimate the mean of Y at a
given covariate vector (x, z), denoted by p(z, z) = 2'0+2'y withy = (71,...,79)"
We find minimal MSE weights for this purpose.

In Theorem 2 we show that model averaged predictions with mMSE weights

for singleton and nested models result in identical predictions. We can best
explain this phenomenon via the selection matrices.

Definition 1. The selection matrix ({) is an M x ¢ matrix with {0, 1} elements,

constructed as
t

_ (1t t tt
¢= (1q7r5171'51, ey 1q7TSM7rSM) ,
where each row represents a model such that elements equal to 1 correspond to
auxiliary variables present in the model.

For example, the selection matrices for a set of singleton ({s) and nested (¢ )
models for ¢ = 3 can be written as

100 100
001 111

To facilitate the proof, we orthogonalize the design matrix X = (X, Z) so
that the matrix Q = J'! is diagonal. There is no loss of generality as, by the QR
decomposition, for any matrix X', there is an orthonormal matrix A and upper
triangular matrix R for which X = AR. The matrix R is the transformation
matrix which can be used to convert X to the orthonormal matrix A. If one
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uses the original matrix X’ and the estimated weights Wy via the proposed
mMSE method, and calculates the prediction value for the new observation X ey
resulting in finew, or uses the orthonormal matrix A as the design matrix, uses
the mMSE estimator of the weights @7}, and calculates the prediction fiz,, for
the XyewR !, then the prediction values are equal, ﬁfew = [new- This means
that for prediction purposes, the orthogonalized version of X and the original X
give the same results.

For any such diagonal matrix @ it follows that 35 = w7g. This means that
the estimators of y; in the full model and in each considered model that contains
v; are identical. Thus in particular, 7; in the nested model is identical to 7; in
the singleton models (for all j = 1,...,¢). In the case of a diagonal matrix @, it
is readily obtained that having linearly independent rows in a selection matrix ¢
is equivalent to having linearly independent matrices Q%j, where the sets S; are
induced by the rows of (. Hence, finding models that satisfy the assumption of
Lemma 1 is aided via the selection matrices.

The estimated weights for estimation of the value u(z,z) are obtained via
mMSE in (B4). Consider the weighted prediction at a value (z,z) using a se-
quence of nested models with mMSE nested weights @w"*'. Since the weights

sum to 1, g+1 q g+1
Anest Z Anestlul — 9 Z zz’Yz Z Anest) ) (35)
=1 Jj=i+1

Next consider the weighted prediction at the same value (z,z) in the set of

singleton models with mMSE singleton weights "8,
) N q+1 )
ﬁil)ng =20 + Z Zi_lfy\i_lﬁ)\fmg. (36)
i=2

In Theorem 2 we prove the equality of the mMSE averaged prediction values for
singleton models and nested models when we use all ¢ covariates.

Theorem 2. Let p > 1 and q¢ > 2. When using mMSE weights (B4) for av-
eraging predictions in linear regression models with least squares estimation, the
weighted predictions are equal for averaging over singleton models and for aver-

aging over nested models, [ fioms — = [nest,

Our calculations have illustrated that the result holds true more generally,
the prediction values are equal for all sets of models that have the same number of
linearly independent rows in the selection matrix and that use the same covariates
to construct the models. The proof of such cases proceeds along the same lines
as the proof of Theorem 2.

Another nice property of our method has appeared in the simulations for
linear models. It turns out that the mMSE weighted predictions for the set
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of models for which the corresponding matrices Q% form a basis of the matrix
space of that dimension, are precisely the same as the mMSE weighted predic-
tions formed by using these models and some extra ones. Hence, no information
is lost when restricting to such a subset of models. Consequently, there is no need
to consider all possible models anymore and the weight choice by mMSE can be
considered as a screening method for which we do not lose any information re-
garding prediction. This suggests a simplification in the choice of models used for
model averaging. This result allows a drastic simplification of the computational
aspects. Indeed, one need not consider all 2¢ submodels for model averaging, only
q singleton models suffice and they yield for linear models identical predictions
when the mMSE weights are used. Also determining the order of the variables
in nested models becomes irrelevant with this choice of weights.

When the number of models is more than ¢ + 1, the matrix F' is not posi-
tive definite, yet we get the same weighted prediction values for averaging over
singleton models and over all possible models. This remarkable fact is explained
by finding the weights via a quadratic programming application that searches
the minimum of the estimated MSE. Since the matrix F' is positive semi-definite
when using all possible submodels, the solution for the weights is not unique but
all solutions are global ones (Anfoniou and Tail (2007, Chap. 13)), thus yielding
the same prediction values for singleton models and for all possible subset models.

4. Weight Choice for Multiple Focuses

Here we consider a vector-valued focus. This is useful for example when
considering predictions at more than one position or when considering a vector
of regression coefficients for model averaged estimation.

Let i = (pu1,..., )t Then 72 = (9(j7)/00)! Ty,  0fi/00 is a r x r matrix
and v = (v1,...,1,) is ¢ X r with v; = J10J&)18,u2-/8c9 — Ou; /0. So, for a single
submodel, N J - .
\/ﬁ(ﬁs - ,UJtrue) - AS = AO + Vt(6 - GSD)a
where Ao ~ N, (9, 73), and D and 4 are as before. Here the MSE of ﬁs is defined
as a matrix E[(fig — fitrue)(flg — ftrue)!] with diagonal elements the MSE of the
individual focus component estimators. Similarly,

M M
\/ﬁ(ﬁw _ Mtrue) i ijj_\,sj = KO =+ ijyt(d — GSjD)7

Jj=1 Jj=1

in which fi, = Z]]Vi1 wjﬁ;. The r x » MSE matrix can be written as

MSE (fi,,, 0) = 73 + R(0), (4.1)

where
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M M

t 0 —1 t 0 —1\¢

R(5) = v { S (T, — Q2,018 S w1, — Q% QY
j=1 j=1

M M ‘
+(ijQOSj>Q_1(ijQg’j) }V.
j=1 j=1

As in the univariate case, all unknowns have consistent estimators except for 4.
An additional issue with the multiple focuses case is deciding on the criterion
for which we optimize the weight choice. Since the MSE is a matrix we consider
both minimizing the trace and the determinant.

4.1. Minimizing the trace of the MSE matrix

The trace of the MSE matrix is the expected squared error loss function
E[||fty — fitrue||?], the summation of the MSE values for the individual, univariate,
focuses. Then

tr{MSE (i, 0)} = tr(73) + tr{R(6)} = tr(73) + w' Fuw, (4.2)
where F' is a M x M matrix similar to the matrix F' in (B2) with (4, j)th entry
Fyj =t {(Z, — Q%Q )05 (I, - Q% Q)" + Q%,Q Q% v

The optimal weights in (E=2) can be found as

Winge = argmin w! Fw. (4.3)
wEH

If the unbiased estimator of 6, 6 = Vn(y — 7o) is plugged in to (E=3) using R(ZS\)
and F', minimizing the trace of the MSE matrix leads to

. 14, F1
Wgme = argminw! Fw = —M (4.4)
weH (lﬁwFfllM)

This results in a unique weight vector under the assumptions of Lemma 1. Also,
Theorem 1 can be stated for a multivariate focus.

The motivation for not using the unbiased estimator of §6°, 5ot — Q, is as
in the univariate case. Indeed, in that case the weight would equal argmin,, .4
{w'Pw + 2wT}, where P and T are similar to P and 7T in the univariate case,
with

Py = tr{v'(1, - Q%j@fl)ggt(lq - QOSkal)tu} and Tj = tr <I/thva/) .

-

Rewriting P = AAt with At = (Ay,...,Apy) and ffj = gt(lq — QOSjQ_l)V,
yields that rank(P) < min(r, g, M). In order to have unique weights, a necessary
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Figure 1. Geometrical representation of a matrix A with columns ¢;, ¢ and
C3.

assumption is rank(P) = min(r,q, M) = M which is true when v is a full rank
matrix and M < min(r, q). The necessary assumptions for the unicity of weights
by using an unbiased estimator of & are more restrictive than the necessary
assumptions for the unbiased estimation of §. Moreover, the simulation results
show that the biased estimator of the MSE performs better than the unbiased
estimator with respect to out-of-sample mean squared prediction error.

4.2. Minimizing the determinant of the MSE matrix

The trace of the MSE matrix ignores the information stored in the off-
diagonal elements. To use it, we consider the parallelepiped generated by the
MSE column vectors, a geometric representation of the MSE matrix. For ex-
ample, Figure 1 draws the parallelepiped produced by the three columns c¢; =
(1,1,0), c2 = (1,1,3) and ¢3 = (1,3,1) of a matrix A.

In Section 4.1., the weights were found by minimizing the trace of the MSE
matrix which results in a parallelepiped with minimum sum of squares of the axes.
In this section we assign weights to each model in such a way that the volume
of the parallelepiped is minimized, equivalent to minimizing the determinant
of the MSE matrix. The D-optimality criterion of experimental design studies
seeks designs that minimize the covariance matrix of the parameter estimators
(Atkinson, Denov, and Tobiag (2007)). However, with the presence of d, the
estimators in our case are not unbiased, which motivates the use of the MSE
matrix instead of the covariance matrix.

Our aim is to minimize the determinant of the MSE matrix in (B=T), hence

W) i5e| = alzugem;n det(MSE (ﬁw,g)) (4.5)

It should be noted that this is a nonlinear optimization problem with a linear
constraint for the weights and the results are no longer unique. The simulation
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results in the next section show that the proposed method performs well in
comparison with other methods.

Remark 2. The necessary assumption for starting the optimization in (B23) is
that the MSE matrix is non-singular with a non-zero determinant. In (21), R(6)
plays the crucial role, since 7¢ is zero when p = 0. If v! is a matrix with full
column rank ¢, then the rank of the MSE matrix is equal to the rank of the middle
part, B, of R(§) = v!Bv. In singleton models B is positive definite (rank=gq)
if all the weights are nonzero (starting values for optimization); moreover, the
length of the focus vector cannot be more than ¢, else the MSE matrix is positive
semi-definite, hence singular.

5. Simulation Studies

In this section, we consider linear models and generalized linear models.
Since almost all previous studies insisted on linear regression, we first compare
our method with other methods in this setting. Then, we present the results for
generalized linear models and compare the proposed method with some other
methods of model averaging.

5.1. Linear models

We investigate the finite sample performance of the minimum MSE estimator
(mMSE) and compare the results with other methods of averaging, in particu-
lar by the plug-in estimator (i (2015)), the so-called optimal estimator (OPT,
Liang et all (2001)), Mallows model averaging (MMA, Hansen (2007)) and jack-
knife model averaging (JMA, Hansen and Racind (2012)). All of these methods
are defined for averaging over all possible submodels. While the mMSE method
is also applicable to using all submodels, we insist on unique weights (unique
prediction) which entails using row linearly independent selection matrix mod-
els. By Theorem 2 and its discussion, we present the results only for singleton
models for the mMSE weight choice method. Some methods such as the OPT
estimator do not result in unique weights even for the singleton models because
of using nonlinear optimization for constructing the weights. In Setting 1.2, av-
eraging over singleton models and all possible models for different methods is
compared.

General settings for the simulations in this section are summarized here. The
data were generated from a finite order regression model of the form

p q
1)
k=1

j=1
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We set p = 3, ¢ = 8, x1; = 1 as an intercept and (w9, x3i, 214, ,28i) ~
Np—144(0,v). The covariance matrix v for the regressors contains a diagonal
equal to 1 with off-diagonal entries p. The error term e; was standard normal
and independent of the regressors. We generated n 4+ 1 observations from this
model, the last observation acting as an out-of-sample value.

Setting 1. This setting compares different methods of model averaging for
singleton models in different settings. The plug-in method is for linear models
theoretically the same as the proposed method but with different assumptions
for the weights (the weights are positive and sum to 1) and the implementation
is based on least squares theory which causes some differences in the results. For
that method the prediction values are unique, but not the weights since those
authors used semi-definite quadratic programming for minimizing the MSE of
the focus parameter, resulting in global minimizer weights that are not unique.
Hence, if the goal is finding the most influential covariate or model, there is no
unique answer given by those methods.
Three scenarios were considered,

K3
NG
5

Scenario 1.1: (6,

¢(3.9,4.75,4.2,3.5,4.95, —3.75,4.4, —4)
7i )
¢(3.9,4.75,4.2,0,4.95,0,4.4, —4)
7 7 )
5. c(0,4.75,4.2,0,4.95,0, 4.4, 0)

7= v )
The effect of the importance of the § values relative to 6 is controlled by the
constant ¢ which varied in the set {0.5,1,2}. In Scenarios 1.2 and 1.3, the
effect of true zero coefficients in the true model is studied. The sample sizes
varied in {50, 100,200, 500, 800, 1,500} and the off-diagonal value p of v varied
in {0,0.25,0.5,075}. All Monte-Carlo simulations were repeated 2,000 times and
the numbers in Tables 1—3 are the mean squared prediction errors (MSPE) for
the out-of-sample value (the n + 1st value that is not used in the estimation nor
weight determination) over the simulation runs.

It is observed that the mMSE works better than the other methods for mod-
erate and high values of ¢ (Tables 2 and 3) in all scenarios. For small ¢ (Table

)= ((5, —4,3.5),

Scenario 1.2: (6, —=) = <(5, —4,3.5),

Scenario 1.3 : (6, 5,—4,3.5),

1), in Scenarios 1.1 and 1.2 when the collinearity amongst the covariates is small
(p =0 and 0.25), the mMSE has the best performance, whereas higher collinear-
ity cause better performance of the plug-in method but with small differences
with mMSE. In Scenario 3, the plug-in method works well for low and moder-
ate collinearity while MMA and JMA outperform for high collinearity. For high
values of ¢, the difference between the proposed method and other methods is
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remarkable, even with the plug-in method which is the theoretically closest
method to the mMSE, the difference arising from the fewer restrictions for the
weights in the mMSE. If we remove this additional constraint for the weights for
the plug-in method, it performs similarly to mMSE in linear regression. Explic-
itly allowing for heteroscedasticity in order to improve prediction accuracy, the
plug-in method of L (201H) results in different estimated Fisher information
matrices as compared to mMSE, explaining the slightly different results between
the two methods. Tables 1—3 reveal the stability of the mMSE values for differ-
ent choices of ¢ and n for the three scenarios, whereas other methods are sensitive
to the particular setting.

To investigate potential information loss by other methods when using sin-
gleton models as compared to all subsets, we ran a simulation with all possible
models for Scenario 1.2 with ¢ = 1. To ease the comparison, the mMSE method
is also shown in Table 4. This simulation using all subsets took around 45 hours
on a supercomputer. As Table 4 shows, all competing methods improved signif-
icantly by using all possible models, especially the OPT method which performs
the best in all settings. The plug-in method with the additional constraint for
the weights to belong to [0, 1] using all available models performs equally well
as mMSE with singleton models. An important drawback, however, is that the
computational intensity grows exponentially by adding extra auxiliary covariates;
adding one covariate doubles the number of models. The mMSE performance for
singleton model averaging is almost as good as all subsets model averaging for
other methods, and Table 4 shows that except for the smallest sample size the
difference is in most cases negligible.

Table 5 gives the computation time in seconds, using the same computer, for
the OPT and mMSE method for the average time over five runs in the simulation
when p = 0.5. The other values of p give similar computation times. With
practically the same accuracy as OPT, mMSE benefits from a much shorter
computation time, regardless of the sample size.

5.2. Generalized linear models: Poisson regression

Here we explore the performance of the mMSE method in Poisson regression
by using five out-of-sample observations of which we estimate the mean.

Setting 2. The response values Y; have a Poisson distribution with mean
wi = exp(ztd/y/n), with p = 0 (no core regressors), ¢ = 8 with (z14,...,xs;) ~
Npiq(0,v) in which v;; = 1 for ¢ = j and v;; = p for i # j. The value of
p varied in the set {0,0.25,0.5,0.75}. The value of 7y was set to zero and ¢
values were considered according to Scenario 2.1:§ = (—1, —4, 3, —4,0.6,4,2,5)¢,
Scenario 2.2:6 = (—1,-4,3,—4,0,4,0,5)!, and Scenario 2.3:6 = (0,—4,3, —4,
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Table 4. Simulation study for linear models. MSPE for averaging over all
possible models for OPT, MMA, JMA, plug-in and singleton averaging for
the mMSE weighted estimator for Scenario 1.2 and ¢ = 1.

Method
P n OPT MMA JMA Plug-in mMSE
50 0.273 0.291 0.297  0.285 0.285
0 100 0.120 0.126 0.127  0.120 0.120
500 0.021 0.022 0.022 0.022 0.022
1,000 0.011 0.011 0.011  0.011 0.011
50 0.259 0.294 0.295 0.272 0.273
0.25 100 0.115 0.123 0.124  0.120 0.119
500 0.022 0.023 0.023 0.023 0.023
1,000 0.011 0.011 0.011  0.011 0.011
50 0.272  0.323 0.327  0.296 0.297
05 100 0.125 0.147 0.147 0.132 0.132
’ 500 0.021 0.024 0.024  0.022 0.022
1,000 0.011 0.012 0.012 0.011 0.011
50 0.260 0.309 0.307 0.301 0.303
0.75 100 0.112 0.136 0.136  0.127 0.129
500 0.020 0.025 0.024 0.022 0.023
1,000 0.010 0.012 0.012 0.011 0.011

Table 5. Simulation time in seconds for the average time over five repetitions
of the simulation for p = 0.5 in Table 4.

n
method 50 100 500 1,000
OoPT 1.87 263 17.04 60.21
mMSE 0.04 0.03 0.03 0.04

0,4,0,0)%. The considered sample sizes were {50, 100, 200,500, 1,000}. All Monte
Carlo simulations were based on 2,000 replications. The multivariate focus had
length five, fixed for each setting, and was generated randomly for each setting;
the focus was the same for all ng,, = 2,000 simulation runs in each setting. Each
method was evaluated based on the empirical mean squared error matrix of di-
mension 5 X 5, MSEemP = (1/nsim) Z?iuln (ﬁzﬁ,z - Ntrue)(ﬂ@,i - Mtrue)t, where for
each test data set with values z, Jig; = exp {Z]Ail @]xtg]/\/ﬁ}

In this simulation, we estimated the weight vector w by minimizing sepa-
rately the trace and the determinant of the MSE matrix. In order to distinguish
the multivariate mMSE methods, we used mtrMSE and mdetMSE. Although,
by minimizing the trace of the MSE matrix, we lose some precision in compar-
ison with estimating a separate weight vector for each out-of-sample value, the
comparison with other methods that estimate one weight vector for all test data
is fairer; moreover, the computations were faster in the multivariate case than
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when performing separate univariate optimizations. Table 6 reports the ratios
of the trace of the empirical MSE matrix for the mtrMSE method divided by
those for each other method. For the weight choice minimizing the determinant
we report the ratio of the generalized standard deviations {det(MSE)}'/® of the
empirical MSE matrix over the simulation runs when using the weight choice by
mdetMSE and that resulting by the other methods; if the number is bigger than
1, that other method performs better than the proposed method mMSE, and
vice versa.

For singleton models, the AIC and BIC values are identical (the penalty does
not have an effect in singleton models), hence, we show the results for AIC, SAIC
and the mMSE methods. The AIC selects a single model, assigns weight 1 to
that model and weight zero to all other models. The smoothed AIC, SAIC, gives
weights proportional to the value of the AIC, the better the AIC value, the larger
the weight. All weights in SAIC were rescaled to be in the interval [0, 1].

Table 6 shows that in almost all settings and scenarios the mtrMSE method
performs well, in some cases ten times better than other methods. The averag-
ing method, SAIC, works better than AIC. In two settings, the SAIC method
outperforms the mtrMSE method slightly, while in most of the other settings
the mtrMSE method performs at least two times better than the other averaging
method. In all settings, the mdetMSE method results in a relative low determi-
nant value in comparison with the AIC and SAIC methods. The AIC and SAIC
methods always perform worse than mdetMSE, while SAIC performs relatively
better than the AIC selection method.

6. Data Analysis
6.1. Growth model, linear regression

We employed the proposed method of model averaging in a dataset used in
several studies, including L (2015) and Magnus, Powell, and Prufer (2010). The
economic growth measured as the gross domestic product per capita (GDPc), is
modeled as a function of several covariates. A rise in GDP per capita shows
growth in the economy and usually results in an increase in productivity. In
the dataset there are 74 observations for average growth rate of GDP per capita
between 1960 and 1996.

We compared the application of mMSE by the frequentist model averaging
approach of Liu (P01H). We adopted the model setup A in their study and fit a
linear model as

GDPc; = X;0+ Z;vy + ¢,

with the same fixed regressors (X), a constant for the intercept, GDP60 which
is the logarithm of the GPD in 1960, ‘equipinv’ the investment part of the GDP
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during 1960-1985, ‘school60’ primary school enrollment rate in the year 1960,
‘1ife60” the life expectancy at birth in 1960 and ‘dpop’ the population growth
between 1960 and 1990. As potential regressors (Z) we took ‘law’ referred to
as a rule of a law index, ‘tropics’ the fraction of tropical area of the country,
‘avelf’ which is an average index of ethnolinguistic fragmentation and ‘confuc’,
the fraction of Confucian population. For more details see Magnus, Powell, and
Prufer (2010).

Liu (2015) performed model averaging for all possible submodels and pre-
sented the estimated coefficients and weights for each model for the plug-in
method and other methods of averaging, including OPT, MMA, and JMA. Those
estimated coefficients and weights are not unique and one can find another esti-
mate for the coefficients by changing the optimization routine. Table 7 presents
two such sets of estimators by changing the optimization method (using fmincon
instead of quadprog in Matlab, or changing the starting point). For the plug-
in method we observed a large difference for the estimate of ‘dpop’. The JMA
estimates did not change that much, while MMA resulted in different estimates
for ‘dpop’ and for the four potential z-variables. The method OPT showed the
largest changes in values for nearly all of the variables, except for ‘life60’ and
‘avelf’.

Lii (20015) used GDP60 as a focus, while here the goal was estimation of
the coefficients for all regressors. We used the results on a multivariate focus of
Section 4 defining p! = (0%,~%)!, the full parameter vector, and we minimized
the trace and next the determinant of the MSE matrix for this focus vector.
Singleton models were used to ensure a unique solution for the trace method; for
the determinant method the weights are not unique. Table 8 gives the estimated
weighted coefficients when averaging over singleton models.

As Table 8 illustrates, some of the coefficients were estimated to be equal
to zero. This is not surprising since this indicates that those variables are not
correlated with growth per capita (see Magnus, Powell, and Prufer (2010)). The
sign of ‘dpop’ that is found for the plug-in and mtrMSE methods is in line with
Solow’s model, see Solow (1956) and Durlauf, Kourtellos, and Tan (2008). The
results for the mdetMSE method are close to those of the OPT method.

We further used 10-fold cross-validation and calculated the mean of the av-
erage squared prediction error (ASPE) for both averaging over singleton models
and over all possible submodels. The chosen focuses are now the out-of-sample
mean values. Table 9 reports the relative out-of-sample prediction errors. En-
tries larger than one indicate an inferior performance of that method relative to
mtrMSE method. It should be noted that the focuses are out-of-sample obser-
vations not the coefficients. While all methods perform close to the mtrMSE
method, especially using all subsets, the mtrMSE weight choice method outper-
forms all others.
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Table 9. GDP data. Relative average out-of-sample squared prediction
errors of competing methods relative to the mtrMSE method.

Method

models OPT MMA JMA Plug-in mMSE

singleton models 1.157 1.086  1.087 1.060 1.000
all submodels 1.013 1.021 1.042 1.015 1.000

6.2. The automobile dataset, Gamma regression

Insurance companies wish to predict the losses that a car incurs based on its
characteristics. The automobile dataset contains the normalized losses in use as
compared to other cars. This dataset was obtained from the Machine Learning
Repository at UCI (Bache and Lichman (2013)). There are 14 variables that can
be used to model the losses. A description of all the variables is presented in
Table 12 in the Appendix.

The response variable is ‘nloss’, positive and skewed to the right, motivating
one to use gamma regression with a logistic link function. Out of 205 observa-
tions, we used the subset of 160 observations with no missing records. None of
the variables was forced to be in a model. As a focus we took the vector of the
regression coefficients. In this multivariate setting we minimized the trace of the
estimated MSE matrix to determine the weights.

Table 10 presents the estimated coefficients for smoothed AIC and mMSE
for singleton models, the corresponding weight for the singleton model is given
between parentheses. The estimated coefficients are different even in the sign of
each covariate. The highest weight is related to the biggest coefficient, width.
This variable has been selected by the AIC method as the best model in singleton
models.

Because of the large differences between SAIC and mMSE averaging methods
in estimated coefficients, we assessed these methods by 5-fold crossvalidation.
Four parts of the data set were used as training data and one part as a test data
set. This procedure was repeated five times to consider each part in turn as a
training data set. The focus vector was the expected response for the covariates
included in the test data, u = exp(zy). We estimated the mean of the response in
gamma regression with a logistic link function and calculated the average squared
prediction error (ASPE) for the test data sets,

5 n;
1 RN ~ 2
ASPE = 5 ;:1 " jEZl(yz'j — Hij)”
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Table 10. Automobile data. The estimated coefficients and between paren-
thesis the weights assigned to the singleton models.

Variable  AIC SAIC mMSE
wheelb 0 0.0055 (0.1118) -0.0038 (-0.0773)
length 0 0.0029 (0.1038) -0.0003 (-0.0089)
width 0.0732  0.0097 (0.1324)  0.0862  (1.1780)
height 0 0.0094 (0.1049) -0.0331 (-0.3690)

cwel 0 0.0001 (0.0549) -0.0001 (-0.0264)
engi 0 0.0020 (0.0465)  0.0029  (0.0675)
bore 0 0.1372 (0.0934) -0.0571 (-0.0389)
stroke 0 0.1167 (0.0779) -0.0524 (-0.0350)
compr 0 0.0205 (0.0395) -0.0032 (-0.0061)
hpower 0 0.0019 (0.0346) -0.0009 (-0.0154)
peak 0 0.0001 (0.0944)  0.0002  (0.2436)
cmpg 0 0.0078 (0.0395) -0.0472 (-0.2403)
hmpg 0 0.0071 (0.0447)  0.0522  (0.3278)
price 0 0.0000 (0.0217)  0.0000  (0.0003)

Table 11. Automobile data. Crossvalidation results of relative AMSPE for
singleton and all possible models as compared to that of the mMSE using
only singleton models. For values smaller than one mMSE is best.

models AIC SAIC BIC SBIC

Singleton models 0.8396 0.2924 0.8396 0.2924
All submodels 1.1531 1.0457 1.0224 0.9932

Table 11 shows the relative risk of AIC, BIC, smooth AIC, and smooth BIC
as compared to that of mMSE for weight selection. The average squared predic-
tion error of the mMSE method in singleton models was divided by each other
method’s ASPE value. We calculated the crossvalidation results for singleton
models with the mMSE method, but for other methods both the singleton mod-
els and all possible submodels were fitted. It can be seen that the mMSE method
performs best in singleton models. The SAIC performs worse than the AIC re-
sulting in some of the coefficients being weakly estimated. For singleton models
there is no difference between AIC and BIC. The results for all possible sub-
models show that the singleton model averaging by the mMSE method performs
comparable, and even better for SBIC to an all subsets averaging. The mMSE
method here uses only 14 models instead of 2' for the other methods. This small
difference in performance often does not outweigh the increased computational
cost.
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7. Discussion

Minimum mean squared error weight choice is studied in a general setup,
not restricting to linear normal models and not restricting the weights to belong
to certain parametric classes. The broadness of the model scope avoids a case by
case treatment for model averaging. All likelihood-based models can be averaged
in this way. Existing studies of the mean squared error expression under local
misspecification in settings such as generalized additive partially linear models
(Zhang and Liang (2011)), Cox proportional hazard models (Hjort and Claeskens
(2006)), and for quantile regression (Behl. Claeskens and Dette (2014)) open the
way to construct similar extensions of the proposed mMSE weight choice method
to those settings.

To the best of our knowledge we have not found other work dealing with
the issue of non-unique estimators. Our work in linear models shows that even
though the weights might not be unique, there are occasions where the predic-
tions using mMSE weights are unique. This is a welcome relief when considering
high-dimensional models. A reduction to singleton models, resulting in the same
predictions as when using all subsets may be an interesting alternative to screen-
ing methods that first try to reduce the set of potential variables and then perform
averaging. This topic is currently under investigation.

An interesting extension is the investigation of the limiting distribution for
inference on the weighted estimator and on the post-selection estimator. The
explicit form of the estimator for the mMSE method may aid the construction
of confidence intervals and tests. This research is beyond the scope of this paper
and deserves further attention.
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Appendix. Proofs
Proof of Lemma 1. For all z € RM \ 0,

M M
xt@x = Z Z xjkar(Q%ijlQ%kyut)

=1 k=1
’ M M
= Tr<( Z ij%j)Q_l ( Z kuOSk)l/ut> > 0.
j=1 k=1

The last inequality results from the fact that Q! is a positive definite matrix.
By the linear independence assumption for the Q%j, 23{1 ij%j #0. Also, v/t
is positive semi-definite. This proves the Lemma.

Proof of Theorem 1. (i) To connect with the notation of Theorem 2.7 of
Kim and Pollard (T990), take Z,(w) = w'Fw and let t, = @Wx=s, then since
w' Fw — 4 w' F*w and @gme = Op(1), we have that Z,(t,) < inf,, Z,(w) + a, for
random variables a, of order o,(1). Hence all conditions of that theorem hold
and we may conclude that Wgs —¢ w*. (ii) is proven by the joint convergence
of wj and i (j =1,...,M).

Proof of Theorem 2. Without loss of generality, we present the proof for
Q =1,,p=1, and o = 1; it can be generalized, but with more calculations. We
consider sets of singleton models and of nested models and denote the matrix
F for nested and singleton models by Flest and Fying, respectively. Moreover,
we use the exact values for v and § instead of their estimation for the ease of
presentation.

First, consider nested models with partitioned matrices

t nest,1x1 nest,1xq\t

F .= Tnest,1><1 Unest,lxq and F—l _ T (U q)
nest — nest — nest,gx1 nest,qx ’

Unest,qxl Wnest,qxq U 1 W 7

where Tyest = 2221 Z?:l 2k210k07, Unest,i = Z%:H_l Z?:l 221010 for i =1,.. .,
q— 1, Unest,q = 0 and Wit is a symmetric matrix with entries

q q ]
Z szzl&gél—i—i:zz if ]S’l, i:1,...,q—1,
k=1

Wnest,ij = kji—’—l t=itt
Zzz if j=q and i=1,...,q.
k=1
We follow Harvilld (2000, Thm. 8.5.11) to calculate the inverse matrix F,.L;

this requires the invertibility of the symmetric matrix Npestgxg = Whest
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_ yomin(gg) 2 . -
—Uhest neStUneSt, guaranteed by Lemma 1, where Npest,ij = ) 1 1 zi 1,J =
1,...,q; Npest is a symmetric matrix and its inverse matrix Nl contains the
entries
( 2; 2422 . . ..
Ayolif i=4 and 4,5=1,...,q—1,
Zi ZH»

1 . . . .
, if i=j74+1 and =1,...,q—1,
(Npek)ig = {1 ’ ’ !

nest 1
27 if 1=]=4q,

0, otherwise.

Using some matrix calculation,

k=2 k=2 [=2
Tnost q q )
PIPBEELN
k=11=1
q
Z ZE0k2o + Z%dg
—h=2 Jf i=1,
Z zkékz%zg
b~ 216,
Zi+1 zZ 1 . .
Unest.i = H‘—’” it i=2,...,q—-1,
Z 20k 2iZiv1
qiq, if i=gq
Z zkékzq
\ k=1
and Wiest = Nooki. From (B3), wiet follows after computing
F 1+ ZZ:I 51% (A 1)
t . .
nest M T S S 2k 0k
Considering the singleton models, we again partition the matrices Fngs and
—1
Fsing as
T.: U _ Tsing,lxl Using,lxq t
Fsing _ < sing,1x1 Yging 1xgq and Fsmg — (Wsing,qxq) ,
Using,qxl Wsmg,qxq

where Tsjng = Tnest, Using,z' = (Zz:1 zkék — zzéz)(zzzl zkék), 1=1... q, and
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Wiing is a symmetric matrix with (4, j)th entry equal to

q
(Z:zkék—zlZ szék—zlz +22ifi=jand i=1,...,q,
Weing.ij =4 "¢ i

(Z 2L0k — zi5i)(z 2,0k — 2j05) ifi£jand i,5=1,...,q.
k=1 k=1

Here Ngng = diag(z2) fori=1,...,q.
By some cumbersome calculations it can be shown that, with S; = {ix; k =

1,...,q—1},

2 3 J+1 q
2
2 Z > 3 (T A)(X w) +HZ
1=1122=14 Z]:ij_l—l-l iq 1_iq o+1 ’ikGSZ’ i €S;
Tsing q 2 5

q
[T Dy DY AN

q
sing Zk:l Zk(sk) — zid; -
Ui ==-=55y7 .5 i=1,.
27D e 0k

and Wsing = Smg = diag(—1/2?). It follows that 1% FsmlglM =14, Frlidr, see
From (BH) and (88), showing 4%t = fi5, ¢ is equivalent to showing that

"7q7

nest nest sing
Wy T W = Wy T,
wist 4+ wf;‘j_slt = wgmg,
(A.2)
nest __ ,,.sing
Wot+1 = Wyt1-

Since the denominators of the weights in nested and singleton models are equal,
we need to consider the numerators which are equal to the sum of the elements
in each column of F, L and Fsmlg The first weight wp, which is related to the
narrow model, does not have an effect in (BA=2). By using the structure of F~!

in nested and singleton models, we can show that

2i+10; — 2i0i41 £
( F-1q ) nest __ Zzzl(szkékziziff

i=1,....q—1,
nest
q . .
~q _ ¢ _ > lf Z = q7
ZZ:I zkzékzq
and (1%, FsmlglM) sing _ = 6/ #k0kzi), @ = 1,...,¢. It is not difficult to
show that (A=) is satlsﬁed and this completes the proof.
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Description of the variables of the automobile data

Table 12. Description of the variables in the automobile dataset.

Variable Description Range
nloss Normalized loss 65256
wheelb Wheel base of the car 86.6-120.9
length Length of the car 141.1-208.1
width Width of the car 60.3-72.3
height Height of the car 47.8-59.8

cwei Curb weight in thousands 1.488-4.066

engi Engine size in hundreds 0.61-3.26

bore Bore quantity 2.54-3.94
stroke Stroke of the car 2.07-4.17
compr Compression ratio 7-23
hpower Horsepower of the car 48-288
peak Peak revolutions per minute in hundreds  41.50-66.00
cmpg City miles per gallon 13-49
hmpg Highway miles per gallon 16-54
price Price of the car in thousands 5.118-45.400
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