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Abstract: Correlation structure contains important information about longitudinal

data. Existing sufficient dimension reduction approaches assuming independence

may lead to substantial loss of efficiency. We apply the quadratic inference function

to incorporate the correlation information and apply the transformation method to

recover the central subspace. The proposed estimators are shown to be consistent

and more efficient than the ones assuming independence. In addition, the esti-

mated central subspace is also efficient when the correlation information is taken

into account. We compare the proposed method with other dimension reduction

approaches through simulation studies, and apply this new approach to longitudinal

data for an environmental health study.
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1. Introduction

Sufficient dimension reduction plays an important role in reducing the di-

mension of predictors and providing better modeling for response variables. The

essential idea is to construct low-dimensional variables which can predict the re-

sponse without loss of information. In contrast to the variable selection strategy,

sufficient dimension reduction does not select or eliminate variables in a certain

way. Instead, it extracts important information through optimally combining all

predictors. Another advantage of sufficient dimension reduction is that it can

be an effective way to visualize data (Li (1991)) through plotting the responses

against the first several optimal combinations of covariates, which is especially

important for handling high-dimensional data. Moreover, sufficient dimension

reduction provides essential tools in analysis and curation for high-dimensional

data, as it is able to reduce the original high-dimension of data to a moderate

size without losing important information.

Existing methods of sufficient dimension reduction include, but are not lim-

ited to, ordinary least square (OLS; Li and Duan (1989)), slice inverse regression

(SIR; Li (1991)), sliced average variance estimation (SAVE; Cook and Weis-

berg (1991)), principal Hessian direction (PHD; Li (1992)), discriminant analysis
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(Cook and Yin (2001); Pardoe, Yin, and Cook (2007)), minimum average vari-

ance estimation (MAVE; Xia et al. (2002)), coutour regression (CR; Li, Zha, and

Chiaromonte (2005)), inverse regression estimation (IRE; Cook and Ni (2005)),

directional regression (DR; Li and Wang (2007)), sliced regression (SR; Wang and

Xia (2008)), contour projection (CP; Luo, Wang, and Tsai (2009)), dimension

reduction for non-elliptically distributed predictors (Li and Dong (2009); Dong

and Li (2010)), and dimension reduction based on canonical correlation (Fung et

al. (2002); Zhou and He (2008); Zhou (2009)). The study of sufficient dimension

reduction for longitudinal data is still quite limited. With the prevalence of lon-

gitudinal study in biomedical, social, political, psychological, and environmental

sciences, and with the increasing demand for handling high-dimensional data, it

is of great importance to address sufficient dimension reduction problems under

the longitudinal data framework.

For the longitudinal data setting, following Li, Cook, and Chiaromonte’s

partial OLS (2003) Li and Yin (2009) propose an analog partial OLS by con-

ducting OLS at each time point and extracting a small subset of eigenvectors

to achieve longitudinal data dimension reduction. However, their method does

not incorporate intracluster correlation structure, and therefore leads to a sig-

nificant loss of correlation information. In addition, their method is not able to

exhaust the central subspace (Cook and Weisberg (1994); Cook (1996, 1998)) if

the cluster size is less than the structural dimension. Pfeiffer, Forzani, and Bura

(2012) propose a longitudinal first-moment-based sufficient dimension reduction

method to solve these problems. They utilize a Kronecker-product space of clus-

ters and predictors, and successfully accommodate the correlation structure of

longitudinal covariates. However, their method is mainly applicable for handling

longitudinal covariates, and not for longitudinal responses.

In this paper, we apply the quadratic inference function (QIF; Qu, Lindsay,

and Li (2000)) to longitudinal data sufficient dimension reduction, which can

accommodate both longitudinal responses and correlation information. The QIF

improves the generalized estimating equation (GEE; Liang and Zeger (1986))

without estimating nuisance parameters, and is shown to be efficient in re-

gression parameter estimation for longitudinal data. In our approach, we first

identify a group of transformation functions for the responses, then minimize

the quadratic inference function which incorporates correlation information for

transformed responses to obtain regression parameter estimators, and then ap-

ply eigen-decomposition to extract information from a set of regression parameter

estimators for the transformed responses.

The proposed method allows one to gain extra efficiency in parameter estima-

tion for both continuous and discrete responses through incorporating correlation

structure, while not requiring that the true correlation structure be known. Most
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importantly, we obtain parameter estimation from the entire cluster instead of

performing regression separately at each time point, as in Li and Yin (2009).

This leads to several advantages, such that the proposed method can still be

efficient even for a small sample size, since we utilize information from repeated

measurements within the same subject, and therefore the sample points used in

our estimation are larger than the ones in Li and Yin (2009). In addition, the

proposed method is computationally more efficient than existing methods, as the

operation cost is lower for the same reason. In our approach the recovery of

the central subspace does not depend on the cluster size, is in contrast to exist-

ing approaches which require the cluster size to be greater than the structural

dimension.

In theory, we show that estimation through minimizing the QIF for the

transformed data is still in the central subspace, and asymptotic efficiency can

be improved by incorporating correlation structures. Another finding is that the

efficiency of parameter estimation leads to the efficiency of the central subspace

estimation. This is confirmed by our simulation studies, which show that the

proposed method can improve accuracy and efficiency for sufficient dimension

reduction in finite samples.

The remainder of the paper is organized as follows. Section 2 provides back-

ground for the quadratic inference function. Section 3 introduces the proposed

method for longitudinal dimension reduction using the QIF, and provides its

theoretical foundation and properties. Section 4 illustrates how to recover the

structural dimension and provides the implementation of the proposed method.

Section 5 compares the proposed approach with existing work through simulation

studies for normal and binary responses. Section 6 applies the proposed method

to a longitudinal asthma study. The last section concludes our findings and

provides a brief discussion. Technical derivations are provided in the Appendix.

2. Quadratic Inference Function

For longitudinal data, suppose yit is the response of subject i at time t,

and xit is a p-dimensional covariate, where i = 1, . . . , n and t = 1, . . . , Ti. To

simplify notation, we set Ti = T for all i; the unbalanced data case will be

discussed in more details in Section 4. Let µ(·) be an inverse link function

satisfying E(yit|xit) = µ(β′xit), where β is a p-dimensional parameter. Define

yi = (yi1, . . . , yiT )
′, xi = (xi1, . . . ,xiT ), and µi = E(yi|xi) for each i. If in-

dependence structure is assumed among subjects, the quasi-likelihood equation

(Wedderburn (1974); McCullagh (1983)) for solving β is

n∑
i=1

µ̇′
iV

−1
i (yi − µi) = 0,
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where µ̇i =
∂µi

∂β
is a T × p matrix, and Vi is the covariance matrix of yi. In

practice Vi is usually unknown. One common approach is to substitute the

empirical estimator V̂i for Vi. However, this involves many nuisance parameter

estimations and thus V̂i can be unstable when T is large. Liang and Zeger

(1986) introduced the working correlation matrix which reduces the number of

correlation parameters significantly. They assume Ṽi = A
1/2
i R(α)A

1/2
i , where

Ai is a diagnal matrix of marginal variance of yi, R(α) is the working correlation

matrix, and α contains a small number of correlation parameters.

The QIF approach (Qu, Lindsay, and Li (2000)) further avoids the estimation

of α by formulating R−1 as a linear combination of M0,M1, . . . ,Mm−1, where

M0 is a T -dimensional identity matrix. For example, if R(α) is exchangeable,

then m = 2 and M1 has 0 on the diagonal and 1 elsewhere. The idea of the QIF

is to ensure the additional moment conditions
∑n

i=1 µ̇
′
iA

−1/2
i MrA

−1/2
i (yi − µi)

are as close to 0 as possible for r = 1, . . . ,m−1. Since the number of equations is

greater than the number of parameters, the QIF utilizes the generalized method

of moments (GMM; Hansen (1982)), where the specified moment conditions of

b ∈ Rp for estimating β are

gi(b) =


(µ̇i)

′
A

− 1
2

i M0A
− 1

2
i (yi − µi)

...

(µ̇i)
′
A

− 1
2

i Mm−1A
− 1

2
i (yi − µi)

 , i = 1 . . . , n. (2.1)

The quadratic inference function is defined as

Q̂(b) = nḡ′(b)Ŵ−1(b)ḡ(b), (2.2)

where ḡ(b) = 1/n
∑n

i=1 gi(b), and Ŵ(b) = 1/n
∑n

i=1 gi(b)g
′
i(b). The corre-

sponding QIF estimator is obtained as b̂ = argminb Q̂(b). Qu, Lindsay, and Li

(2000) showed that b̂ is a
√
n-consistent estimator and is efficient if a linear

combination of basis matrices M0,M1, . . . ,Mm−1 contains the true correlation

structure.

A critical issue regarding the QIF is the selection of the number m of basis

matrices, which has been addressed by model selection for correlation structure

in Zhou and Qu (2012). The basic idea is to approximate the inverse of the

empirical correlation matrix by a group of basis matrices, which contain only 0

and 1 as entries. Then a Euclidean-norm measuring the difference between two

estimating functions, one based on the empirical correlation information and the

other on the model-based approximation, is minimized. Through a groupwise

penalty on the basis matrices, an appropriate number m of basis matrices can

be selected such that sufficient correlation information is captured. In theory,
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the selected correlation structure is consistent if the candidate basis matrices are

from a sufficiently rich class to represent the true structure.

In general, the moment condition gi(b) = g(b′xi,yi) is required to satisfy

E(gi) = 0, i = 1, . . . , n, to identify the true parameter β. The population version

of the QIF is Q(b) = (Eg)′W−1(Eg), where W = Var(g). Therefore, Q(b) ≥ 0,

and the equality holds if and only if b = β.

3. Sufficient Dimension Reduction for Longitudinal Data

In this section, we propose the QIF approach for sufficient dimension reduc-

tion in the longitudinal data setting.

Let X be a p × T -dimensional covariate matrix and Y = (Y1, . . . ,YT )
′ be

a T -dimensional response. Both X and Y can be random. The main purpose

of sufficient dimension reduction (SDR; Li (1991); Cook (1998)) is to seek a

minimal dimension-reduction subspace with a p× d basis matrix B, where B =

(β1, . . . ,βd), d ≤ p, such that Y ⊥⊥ X|B′X. Here ⊥⊥ indicates independence.

Under some regularity conditions (Cook (1998)), the minimal subspace exists

and is unique, that is, the central subspace of the regression of Y on X, denoted

by SY |X. Suppose rank(B)= d, then d = dim(SY |X) is also called the structural

dimension of regression. The central subspace is the smallest subspace of Rp that

captures all of the regression information of Y given X, and therefore reduces

the dimension of the predictors from X to B′X.

We propose to identify the central subspace by recovering its basis through

minimizing the QIF. If the dimension of the central subspace is d = 1, then

the problem of identifying the central subspace is equivalent to a parameter

estimation problem, and thus the QIF estimator alone can capture the central

subspace completely, due to the fact that SY |X = Span(β1). When d ≥ 2,

β1, . . . ,βd may not be identifiable (Li (1991)).

Alternatively, to recover the central subspace, we propose to minimize the

QIF for transformed responses. This approach does not have the identifiability

constraint for β1, . . . ,βd. Suppose we have a group of transformations hj ’s for

responses, hj : R → R, j = 1, . . . , s. Let hj = (hj , . . . , hj)
′ be a T -dimensional

transformation function vector on the response vector Y. Take

Qj(b) =
{
Eg(b′X,hj(Y))

}′
W−1

{
Eg(b′X,hj(Y))

}
, (3.1)

with minimizer γj = argminbQj(b), j = 1, . . . , s. In Section 3.1, we show

that γj is in the central subspace under certain conditions, and Span(γ1, . . . ,γs)

approximates SY |X. Since d is typically unknown, we need a sufficiently large s

to ensure that s ≥ d. The selection of s is discussed in Section 4.2 in detail.

There are several strategies to choose the transformation function hj .

One common practice is to use the power transformation (Cook and Li (2002);
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Yin and Cook (2002); Zhu and Zhu (2009); Yin and Li (2011)), hj(Yt) = Y j
t , j =

1, . . . , s. Other transformation methods include the slice indicator function pro-

posed by Li (1991), which defines hj(Yt) = 1 if Yt is in the jth slice and 0

otherwise, the covariance inverse regression method (Cook and Ni (2006)) defin-

ing hj(Yt) = Yt if Yt is in the jth slice and 0 otherwise, and the normalized

B-spline basis functions for Yt (Fung et al. (2002)). Cook (1998, p.114) shows

that Sh(Y )|X ⊆ SY |X holds for any transformation function h, and Sh(Y )|X = SY |X
holds if h is a one-to-one function.

The purpose of applying the transformation method is that, although mini-

mizing the QIF from the original responses can only recover one basis vector for

the central subspace, the transformation method can provide a group of trans-

formed responses, and therefore recover a group of basis vectors that allow one

to explore the central subspace to its largest extent.

3.1. Theoretical properties

We assume the well-known linearity condition (Li and Duan (1989)) that

states that E(X|B′X) is linear in β′
1X, . . . ,β′

dX. This entails that the distribu-

tion of X be elliptically symmetric. Li and Dong (2009), Dong and Li (2010)

and Ma and Zhu (2012, 2013a,b) provide alternative strategies on how to relax

this condition. On the other hand, the constant conditional variance assumption

(Cook and Weisberg (1991)), where Var(X|B′X) is a constant matrix, is not

required.

Suppose Y ⊥⊥ X|B′X, and let L(b′X,Y) = g′(b′X,Y)W−1g(b′X,Y) be a

loss function. Then the following theorem shows that the QIF minimizer,

γ = argmin
b

Q(b),γ ∈ Rp, (3.2)

is in the central subspace. In addition, the sample estimator

γ̂ = argmin
b

Q̂(b) (3.3)

is a strongly consistent estimator of γ, where Q̂(b) is defined in (2.2).

Theorem 1. Assume L(·, ·) is convex in its first argument, the linearity condition

holds, and Var(X) is positive definite. If γ in (3.2) exists and is unique, then

γ ∈ SY |X, and γ̂ in (3.3) converges to γ almost surely.

The convexity condition of L(·, ·) in its first argument is easily satisfied in our

approach since L̈ = ġ′W−1ġ+op(1) is a non-negative definite matrix, asymptot-

ically. The strict convexity of L is a sufficient condition to ensure the uniqueness

of γ in Theorem 1 (Li and Duan (1989)).
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When d = 1 and gi is defined in equation (2.1), Theorem 1 implies that the

minimizer γ in (3.2) is the true parameter, and the sample minimizer γ̂ in (3.3)

converges to the true parameter γ almost surely.

Theorem 1 does not require g to satisfy E(g) = 0, the strong consistency

property is robust to the misspecification of the link functions. This is even

more desirable when the conditional distribution of Y|X is difficult to find. As

for the efficiency argument in Section 3.2, however, a correctly specified link

function is required to achieve an efficiency gain through incorporating correlation

information.

Theorem 1 lays the foundation for formulating basis vectors for the central

subspace. Suppose Q̂j(b) is the sample version of Qj(b), and γ̂j = argminb Q̂j(b)

is the sample estimator of γj .

Corollary 1. Assume L(·, ·) is convex in its first argument, the linearity con-

dition holds, and Var(X) is positive definite. If γj exists and is unique, then

γj ∈ SY |X, and γ̂j converges to γj almost surely, j = 1, . . . , s.

Corollary 1 implies that each γj is a linear combination of β1, . . . ,βd, and

that Span(γ1, . . . ,γs) ⊆ SY |X. This provides an effective way to build a central

subspace basis. If η̂1, . . . , η̂d are the eigenvectors corresponding to the largest d

eigenvalues of (γ̂1, . . . , γ̂s) (γ̂1, . . . , γ̂s)
′, then the basis for the central subspace

can be taken as B̂ = (η̂1, . . . , η̂d).

Recently, Yin and Li (2011) formulated the conditions to achieve exhaustive-

ness of the central subspace, which can accommodate power transformations as

a special case. In their Theorem 2.1 and Example 2.1, they proved that given a

sufficiently large s, the subspace spanned by SE(Y j |X) (j = 1, . . . , s) approaches

the central subspace under mild conditions, where SE(Y |X) denotes the central

mean subspace of Y on X (Cook and Li (2002)). For each transformation Yj , the

quadratic inference function (QIF) can recover one basis vector from SE(Y j |X).

Therefore, a sufficient condition to achieve exhaustiveness, as mentioned in Yin

and Cook (2002), is to assume that there exists a group of powers k1, . . . , kd,

such that dim(S
E(Y kj |X)

) = 1 for j = 1, . . . , d. Under such an assumption, the

QIF approach with the transformed response Yj , j = 1, 2, . . . , kd, can exhaust

the central subspace. When other types of tranformations are applied, a similar

assumption should be satisfied accordingly. Exhaustiveness can then be achieved

if the new tranformations follow the conditions of Theorem 2.1 in Yin and Li

(2011). Alternatively, Ma and Zhu (2012, 2013c) propose a semiparametric es-

timating equation approach that avoids the aforementioned condition, but still

achieves exhaustiveness by identifying and estimating the central subspace basis

(β1, · · · ,βd) using one estimating equation.
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3.2. Efficiency

As long as the responses from the same subject are not independent, incor-

porating correlation information always leads to efficiency gain. In addition, the

efficiency gain of parameter estimation from the data with each transformation

of the response variable provides an overall efficiency gain of the central subspace

estimation.

For illustration, suppose there are two sets of moment conditions: Gl =∑n
i=1(µ̇i)

′
A

−1/2
i MlA

−1/2
i (yi − µi), l = 1, 2, where M1 and M2 are symmetric

matrices, µ̇i = ∂µi/∂β, and β is the true parameter. Let G = (G′
1,G

′
2)

′,

Ġ = ∂G/∂β, Ġ1 = ∂G1/∂β, C = Var(G), and C11 = Var(G1). The empirical

information matrices corresponding to G and G1 are Ġ′C−1Ġ and Ġ′
1C

−1
11 Ġ1,

respectively. We show that incorporating a correlation structure leads to an

increase of the empirical information matrix in the sense of the Loewner ordering

(Beckenback and Bellman (1965)), which is equivalent to an improvement in

parameter estimation efficiency.

Lemma 1. If R−1 = a1M1+a2M2 is the true correlation matrix and E(G) = 0,

then Ġ′C−1Ġ ≥ Ġ′
1C

−1
11 Ġ1, in terms of the Loewner ordering for matrices.

Equality holds if a2 = 0.

Lemma 1 indicates that we gain efficiency by incorporating additional cor-

relation information; if M1 is an identity matrix, then the proposed dimension

reduction method incorporating correlation structure is more efficient than those

assuming independence. In simulation studies provided in Section 5, we illus-

trate that the performance of sufficient dimension reduction based on the QIF

assuming independence is similar to other approaches such as the OLS or SIR,

while the QIF incorporating correlation information can significantly improve the

efficiency for sufficient dimension reduction.

The condition E(G) = 0 assumes that each moment condition has zero ex-

pectation. That is, use the conditional mean E(hj(Y)|X) as a link function

for the transformed response hj(Y) (Yin and Cook (2002); Ma and Zhu (2012,

2013b)). In practice, however, the conditional mean E(hj(Y)|X) is usually un-

known. As pointed out by Ma and Zhu (2013c), unless one uses a nonparametric

approach, it might be difficult to find the correct link function. For the pro-

posed method, this is even more challenging than in Ma and Zhu’s (2013c) case,

since for each transformation the QIF can only generate one basis vector for the

central subspace. Unless we assume E(hj(Y)|X) is known and β1, . . . ,βd are

identifiable, the link function of the QIF is typically misspecified.

A possible way to have a correctly specified link function might be to apply a

nonparametric procedure, but this could complicate our method significantly. To

avoid this, Ma and Zhu (2013c) also suggested imposing additional assumptions;
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for example, the linearity condition onY, or applying a common link function. In
one simulation study, we apply a common (identity) link function. There are two
practical justifications for this application. First, the response Y is continuous
and could range from negative infinity to infinity. Second, using the identity
link is a linear approximation of the true link function. Thus, even though the
link function may not be exact, it will still achieve good efficiency in practice. In
fact, we find that the proposed method with the identity link function indeed has
an efficiency gain through incorporating correlation information. Other common
link functions can be applied when the response is not continuous. Refer to Ma
and Zhu (2013c,d) for more detail.

The consistency of the estimator for a central subspace vector is guaranteed
by Corollary 1, and the efficiency gained by incorporating correlation information
can be followed by Lemma 1.

Theorem 2. Suppose γ̂j is an efficient estimator of γj corresponding to the j-th
transformation function, where γj ∈ SY |X, j = 1, . . . , s. Then (γ̂1, . . . , γ̂s) is an
efficient estimator of (γ1, . . . ,γs), provided the information matrix corresponding
to the true parameter (β′

1, . . . ,β
′
d)

′ is bounded.

4. Implementation

4.1. Estimation of structural dimension

For selection of structural dimension d, several approaches have been pro-
posed. Li (1991) provided an asymptotic chi-squared test, assuming that the
covariates are normally distributed, and Cook and Yin (2001) built the founda-
tion of the permutation test for the structural dimension. In addition, Li and
Wang (2007) introduced a sequential test, and Ye and Weiss (2003) proposed a
bootstrap procedure. Luo, Wang, and Tsai (2009) further suggested a quick and
effective selection procedure called the maximal eigenvalue ratio criterion, which
chooses

d̂ = argmax
1≤q≤dmax

λ̂q

λ̂q+1

. (4.1)

In practice, dmax = 5 usually suffices. The intuition behind (4.1) can be ex-
plained. Suppose B̂ is a consistent estimator of B, and therefore that each λ̂q

converges to λq consistently. Since dim(B) = d, λq’s are nonzero if q ≤ d. As
limn→∞ λ̂d/λ̂d+1 = +∞, choosing d̂ to satisfy (4.1) is a sensible approach.

4.2. Algorithm

We provide an algorithm for sufficient dimension reduction for longitudinal
data.

(i) Choose a transformation function hj , and transform the response yi into
hj(yi), for j = 1, . . . , s and i = 1, . . . , n.
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(ii) For the transformed responses hj(y1), . . . ,hj(yn), obtain γ̂j by minimizing

Q̂j(b).

(iii)Conduct a spectral decomposition for (γ̂1, . . . , γ̂s)(γ̂1, . . . , γ̂s)
′, and obtain

the structural dimension d based on (4.1).

(iv) Select eigenvectors η̂1, . . . , η̂d corresponding to the first to d-th largest eigen-

values, and formulate the basis of the central subspace SY |X.

That the selection of s in (i) is similar to, but less critical than, the selection

of the number of slices in SIR, is still an open question (Wang and Xia (2008)).

If lims→∞ Span(γ1, . . . , γs) = SY |X , the transformed QIF with a sufficiently large

s could approximate the central subspace (compared to SIR where the number

of slices may be restricted if the support of Y is finite). On the other hand, a

finite and fixed s may not be enough to exhaust the central subspace even if we

are given lims→∞ Span(γ1, . . . , γs) = SY |X (Yin and Li (2011)), as difficult as the

SIR in choosing the total number of slices.

In practice, the selection of s may not be very critical, similar to the selection

of the total number of slices for many inverse regression methods, e.g., SIR, SAVE

and SR. Our numerical studies indicate that the proposed method is rather robust

against s: the simulation results did not change much once s ≥ d. Currently if d

can be detected by other methods, as in our data analysis for the asthma study

in Section 6, then s can be selected accordingly.

4.3. Implementation with unbalanced data

In practice, unbalanced data are quite common. If the measurements from

unbalanced data are regarded as cluster data without considering the order of

lag time, then each µi is a Ti-dimensional vector, and Mr is a Ti × Ti matrix for

i = 1, . . . , n and r = 0, 1, . . . ,m− 1.

If the lag time between measurements is considered important, we can define

T = max(T1, . . . , Tn), and impose a T×Ti dimensional transformation matrix Ui

for the i-th subject. Let y∗
i = Uiyi, µ

∗
i = Uiµi, µ̇

∗
i = Uiµ̇i and A∗

i = UiAiU
′
i.

Thus, we transform the unbalanced data to artificial balanced data where each

component of Ui is an indicator of whether the data is observed or missing. Then

we formulate moment conditions as in (2.1) for the newly created balanced data.

The QIF estimator from minimizing (2.2) still has the right properties if the data

are missing completely at random. See Zhou and Qu (2012) for more details.

5. Simulation

We report on simulation studies to illustrate the performance of the pro-

posed method and existing approaches for longitudinal data sufficient dimension

reduction. They show that incorporating a suitable correlation structure can
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improve the accuracy and efficiency of estimation for both the parameters and

the central subspace.

5.1. Study 1: Binary responses with one set of parameters

We generated the covariate xi as standard normal for subject i = 1, . . . , n.

For each xi, we assumed T repeated measurements xi = (xi1, . . . ,xiT ), and

that each xit is a p-dimensional vector, t = 1, . . . , T . We assumed independence

among different subjects and different covariates, but an exchangeable correlation

structure among T time points for each covariate, with ρx = 0.2 .

In Study 1, we let p = 50, T = 20, with sample size n as 51, 100, or 200. The

true parameter β was a p-dimensional vector with 1 in its first 10 components and

0 otherwise. We generated vi based on the linear model vi = 0.4β′xi+εi and εi
iid∼

N(0,Σε), i = 1, . . . , n, where Σε is a T -dimensional exchangeable correlation

matrix with ρε = 0.2, 0.5, or 0.8. We then generated yi by utilizing an indicator

function yit = 1Ait , where event Ait = {evit/(1 + evit) > 0.5} and vit is the t-th

component of vi, t = 1, . . . , T . Since yi|xi = yi|β′xi, the structural dimension

is d = 1, and the central subspace is SY |X = Span(β). It is straightforward that

E(yit) = 0.5 and E(yit|xit) = 1−Φ(0.4β′xit), where Φ(·) is the standard normal

distribution function. The correlation structure of yi is close to, but not exactly,

that of the exchangeable structure, as the correlation is mainly contributed by

the error term εi.

We measured the distance between central subspace basis matrix B and the

estimated central subspace B̂ by ||B̂(B̂′B̂)−1B̂′ −B(B′B)−1B′||F , where || · ||F
is the Frobenius norm. We compared our method with the partial ordinary

least square (partial OLS) by Li and Yin (2009), where the linear regression is

conducted at each time point to recover parameter vectors for the central sub-

space, and d eigenvectors corresponding to the largest d eigenvalues are extracted

through an eigen decomposition. We also compared with the “partial SIR,” sim-

ilar to Li and Yin’s partial OLS except that at each time point linear regression

is replaced by sliced inverse regression. Our simulation study shows that the

partial SIR provides results similar to those of the partial OLS approach.

We generated simulation samples N =1,000. Table 1 provides the average

distance, and the standard deviation (inside the parenthesis). The proposed

dimension reduction method based on the QIF is significantly better than those

from the partial OLS and partial SIR in the sense of accuracy and efficiency.

For one, when n = 51 and p = 50, the partial OLS and the partial SIR provide

estimators that are nearly orthogonal to the true parameter vector, while the

proposed QIF is still robust, with much smaller distances between the true and

estimated vectors. The linear regression at each time point has a sample size of

51, with a 50-dimensional parameter, so estimation is unstable. The proposed
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Table 1. Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′ −B(B′B)−1B′||F
for longitudinal binary data with p = 50 from 1,000 simulations.

ρε = 0.2 ρε = 0.5 ρε = 0.8
n = 51

partial OLS Independent 1.5507(0.1798) 1.5412(0.1632) 1.5603(0.1775)
partial SIR Independent 1.5235(0.1955) 1.5209(0.1969) 1.5299(0.2007)
QIF Independent 0.4142(0.0422) 0.4627(0.0497) 0.5070(0.0552)

AR-1 0.4092(0.0416) 0.4260(0.0446) 0.4311(0.0436)
Exchangeable 0.3981(0.0406) 0.3950(0.0416) 0.3871(0.0408)

n = 100
partial OLS Independent 0.4208(0.0427) 0.4592(0.0468) 0.4963(0.0522)
partial SIR Independent 0.4138(0.0423) 0.4521(0.0463) 0.4901(0.0517)
QIF Independent 0.3008(0.0313) 0.3440(0.0371) 0.3833(0.0415)

AR-1 0.2929(0.0300) 0.3073(0.0315) 0.3101(0.0305)
Exchangeable 0.2830(0.0289) 0.2821(0.0287) 0.2752(0.0278)

n = 200
partial OLS Independent 0.2427(0.0243) 0.2741(0.0270) 0.3029(0.0294)
partial SIR Independent 0.2416(0.0243) 0.2731(0.0269) 0.3020(0.0292)
QIF Independent 0.2153(0.0220) 0.2490(0.0251) 0.2792(0.0275)

AR-1 0.2086(0.0212) 0.2193(0.0222) 0.2205(0.0216)
Exchangeable 0.2005(0.0204) 0.1993(0.0203) 0.1931(0.0197)

method utilizes data from all time points simultaneously, so the number of sample

points is 51× 20 = 1, 020, and this leads to a more precise estimation.

When the sample size is n = 100 or 200, the QIF assuming exchangeable

correlation is still the best, though all methods converge to the true parame-

ter space as the sample size increases. In an unreported simulation study, we

found that the QIF converges faster than the other methods as the cluster size

increases. The existing methods regress at each time point and have computing

time dependent on the cluster size, while the QIF incorporates data from all time

points simultaneously. As the cluster sizes increase, computational times of the

proposed method and the existing approaches grow further apart.

Information on correlation has a strong influence on the estimations, and

incorporating a correct correlation structure achieves higher accuracy and effi-

ciency. The partial OLS and SIR approaches do not take correlation into account,

and their results are relatively close to, but still worse than those estimated by

the QIF dimension reduction approach assuming independence of data.

5.2. Study 2: Continuous responses with multiple sets of parameters

We investigated the performance of the new method when the dimension

of central subspace d is greater than 1. Here we had two p-dimensional coef-

ficient vectors β1 and β2, such that Y ⊥⊥ X | (β′
1X,β′

2X), so d = 2. We
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Table 2. Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′−B(B′B)−1B′||F for
longitudinal continuous data with d = 2 for model I from 1,000 simulations.

Model I ρx = 0.2 ρx = 0.5 ρx = 0.8
n = 100, 2p = 16

partial OLS Independent 1.1180(0.0730) 0.9337(0.1075) 0.8814(0.2544)
partial SIR Independent 1.0652(0.1216) 1.2080(0.1394) 1.1708(0.1884)
QIF Independent 0.4836(0.0265) 0.9060(0.0184) 1.1154(0.0105)

AR-1 0.8142(0.0439) 0.6762(0.0454) 0.5903(0.0674)
Exchangeable 0.8231(0.0322) 0.6409(0.0309) 0.5501(0.0365)

n = 300, 2p = 30
partial OLS Independent 1.0846(0.0378) 1.0163(0.0405) 1.1000(0.0830)
partial SIR Independent 1.2093(0.0696) 1.2090(0.0996) 1.3272(0.0938)
QIF Independent 0.9548(0.0304) 0.9450(0.0204) 1.0431(0.0133)

AR-1 0.6930(0.0428) 0.7508(0.0447) 0.8741(0.0527)
Exchangeable 0.5825(0.0358) 0.5883(0.0311) 0.6203(0.0368)

set p = 8 or 15. When p = 8, we let β1 = (1, 1, 1, 1, 1, 1, 1, 1)′/
√
8, and

β2 = (1,−1, 1,−1, 1,−1, 1,−1)′/
√
8; when p = 15, we set the rest of the 7

components of β1 and β2 to be 0. The continuous response variable yit was

generated using

Model I: yit = exp(β′
1xit) + 2(1 + β′

2xit)
2 + 0.5(β′

1xit)τit;

Model II: yit =
(0.45β′

1xit)

{0.5 + (1.5 + β′
2xit)2}

+ 0.5εit;

Model III: yit = sin
(β′

1xit

4

)
+ exp

(2β′
2xit

3

)
+ 0.5εit.

In Model I, we took ρx, the correlation of xi, as 0.2, 0.5, or 0.8, and took the error

τ i = (τi1, . . . , τiT )
′ iid∼ N(0, IT ), i = 1, . . . , n. Because of heteroscedasticity, the

responses in Model I are highly correlated, even though τit’s are independent. In

Models II and III, we generated each xi the same way as in Study 1, except that

the correlation parameter was replaced by ρx = 0.5. The error εi was generated

as in Study 1, with exchangeable correlation ρε = 0.2, 0.5, or 0.8.

For the partial OLS and the partial SIR approaches, we applied the same pro-

cedure as in Study 1. For the proposed method, we used a power transformation

to recover basis vectors for the central subspace: let hj(yit) = yjit, j = 1, . . . , s.

Here we set s = 2. In an unreported simulation study, we found that increasing

s does not make much difference for central subspace estimation. Alternative

transformation methods provided in Section 3.1 can also be applied here.

Tables 2, 3, and 4 list the distance under the configurations (n, p) = (100, 8)

and (n, p) = (300, 15) for Models I, II, and III. Evidently, the proposed QIF

methods are better than the partial OLS and the partial SIR, and the QIF as-

suming exchangeable correlation is the best. When the correlation of responses
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Table 3. Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′−B(B′B)−1B′||F for
longitudinal continuous data with d = 2 for model II from 1,000 simulations.

Model II ρε = 0.2 ρε = 0.5 ρε = 0.8
n = 100, 2p = 16

partial OLS Independent 1.3222(0.1456) 1.3406(0.1400) 1.3517(0.1393)
partial SIR Independent 1.2555(0.2078) 1.2829(0.2045) 1.3060(0.1949)
QIF Independent 0.8430(0.1255) 0.8975(0.1477) 0.9602(0.1687)

AR-1 0.8015(0.1548) 0.7789(0.1600) 0.7233(0.1602)
Exchangeable 0.7917(0.1555) 0.7787(0.1649) 0.7367(0.1665)

n = 300, 2p = 30
partial OLS Independent 1.3657(0.0906) 1.3772(0.0907) 1.3874(0.0926)
partial SIR Independent 1.1809(0.2060) 1.1967(0.2022) 1.2212(0.1990)
QIF Independent 0.5789(0.0720) 0.6430(0.0815) 0.7152(0.0919)

AR-1 0.5757(0.0832) 0.5706(0.0830) 0.5357(0.0778)
Exchangeable 0.5446(0.0755) 0.5414(0.0750) 0.5096(0.0716)

Table 4. Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′−B(B′B)−1B′||F for
longitudinal continuous data with d = 2 for model III from 1,000 simulations.

Model III ρε = 0.2 ρε = 0.5 ρε = 0.8
n = 100, 2p = 16

partial OLS Independent 1.1462(0.2257) 1.1358(0.2271) 1.1130(0.2359)
partial SIR Independent 1.2368(0.1883) 1.2293(0.1921) 1.2363(0.1911)
QIF Independent 0.9571(0.0821) 0.9638(0.0959) 0.9713(0.1089)

AR-1 0.8141(0.1584) 0.8038(0.1503) 0.7941(0.1385)
Exchangeable 0.7713(0.1303) 0.7735(0.1247) 0.7755(0.1167)

n = 300, 2p = 30
partial OLS Independent 1.3290(0.0929) 1.3258(0.0947) 1.3205(0.0994)
partial SIR Independent 1.3363(0.0922) 1.3307(0.0972) 1.3319(0.0978)
QIF Independent 0.8916(0.0750) 0.9093(0.0893) 0.9272(0.0998)

AR-1 0.9644(0.1244) 0.9466(0.1222) 0.9269(0.1162)
Exchangeable 0.6716(0.1004) 0.6592(0.0918) 0.6437(0.0837)

increases, either through the correlations of covariate xi in Model I or through the

error εi in Models II and III, the proposed method with exchangeable correlation

structure is most accurate, while methods assuming independence structure per-

form poorly. Meanwhile, the QIF assuming AR-1 structure provides very similar

estimation as the one assuming exchangeable correlation, because, although we

generate both xi and εi using the exchangeable correlation structure the com-

bined correlation structure of yi is neither exchangeable nor AR-1, due to the

nonlinear relationship of the response and covariates.

In general, the proposed QIF dimension reduction method is still applicable

if T < d, but the partial OLS is not feasible.
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Figure 1. Scree plot of eigenvalues from the partial OLS method for the
asthma data by Li and Yin (2009).

6. Asthma Data

We applied the proposed method to an asthma study conducted in Wind-

sor, Ontario, Canada in 1992. This study intends to measure the impact of air

pollution on asthmatic patients. The data were originally provided by Professor

Paul Corey of the University of Toronto and the Ontario Ministry of Health, and

were investigated for model selection in the GEE (Fu (2003)) and partial OLS

dimension reduction by Li and Yin (2009). This data set consists of 39 asthmatic

patients who were observed on 21 consecutive days. Patients’ asthmatic status on

difficulty of breathing is recorded as 1 (presence) or 0 (absence) daily, where diffi-

culty of breathing is determined by patients’ daily forced expiratory volume. The

predictors are daily mean humidity (HUMD), daily mean temperature (TEMP),

and seven air pollutants: nitrogen oxide (NO), nitrogen dioxide (NO2), mixture

of NO and NO2 (NOX), carbon monoxide (CO), ozone level (OZ), total reduced

sulphur (TRS) and coefficient of haze (COH). The data thus contains n = 39

patients with cluster size T = 21, and dimension of covariates p = 9.

We applied the partial OLS by Li and Yin (2009). The scree plot of the eigen-

values of (η1, . . . ,ηT )(η1, . . . ,ηT )
′ is shown in Figure 1, where each ηt is the OLS

estimator at each time point t = 1, . . . , 21. To select the structural dimension d,

we applied the maximal eigenvalue ratio criterion (Luo, Wang, and Tsai (2009))

discussed in Section 4.1, and d̂ = 1 was selected. The choice of d can also be ob-

served directly by examing the scree plot in Figure 1, where a sharp drop occurs

right after the largest eigenvalue. The corresponding eigenvector associated with

the maximum eigenvalue is β̂OLS = (−0.0012, 0.4303,−0.8608, 0.2503,−0.0596,
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Table 5. Logistic regression slope estimates, standard errors and p-values
for each β̂ for the asthma data.

partial OLS QIF independent QIF AR-1 QIF exchangeable
Estimate -1.6884 0.6879 -0.2307 0.6111
Std. Error 0.9654 0.2002 0.6774 0.1991
p-value 0.0839 0.0006 0.7330 0.0021

−0.0015,−0.0804, 0.0264,−0.0220)′, and therefore Span(β̂OLS) is an estimated

central subspace. We also observe that the mean sample correlation of the intra-

cluster correlation matrix for the responses is 0.6992, and pair correlations among

the 21 measurements are quite similar, suggesting a non-negligible exchangeable

correlation structure.

For the proposed method, we took β̂OLS as an initial value and d̂ = 1, then

calculated the basis for the central subspace using the proposed QIF dimension

reduction approach. We employed the QIF assuming the exchangeable, AR-1,

and independence correlation structures. The estimated results were:

β̂Indep = (−0.0665,−0.0058,−0.0046,−0.0331,−0.0254,−0.0243, 0.0725,

−0.0071, 0.0513)′;

β̂Ar1 = (0.0247,−0.0020,−0.0478,−0.0160, 0.0187,−0.0149, 0.0552,

−0.0635, 0.0019)′;

β̂Exch = (−0.0954,−0.0047, 0.0341,−0.0199,−0.0111, 0.0031, 0.0765,

−0.0041,−0.0273)′.

These differ from the partial OLS estimate. For instance, the angle between β̂OLS

and β̂Exch is 71.82◦, indicating a weak correlation between these two estimators.

We conducted logistic regressions of yit given β̂
′
xit to investigate which

method provides the best prediction, where β̂ is the estimator based on the

partial OLS, or the QIF assuming exchangeable, AR-1, or independent correla-

tion, respectively. Table 5 provides the estimators, standard errors, and p-values

for the slope of each regression. The QIF dimension reduction with indepen-

dent and exchangeable correlation structures fits the data better than the other

approaches.

The QIF assuming the exchangeable structure is the most accurate, with the

smallest MSE compared to other three methods. At each level of the continuous

explanatory variable xit, there is only one observation of the response, so the

log-odds of receiving yit = 1 at each level of xit is usually infinity or negative

infinity. To pool information of adjacent β̂
′
xit, we divided the range of β̂

′
xit

into K intervals of equal length based on the distribution of β̂
′
xit, where K =

25, 26, 30, or 25 was applied to each method, respectively. We then calculated



SUFFICIENT DIMENSION REDUCTION FOR LONGITUDINAL DATA 803

Table 6. MSEs and correlations of four models between the log-odds and
the predicted log-odds for the asthma data.

partial OLS QIF independent QIF AR-1 QIF exchangeable
absolute value of

0.4474 0.3051 0.1039 0.5918
correlation

MSE 0.2013 0.5603 0.2361 0.2105

Figure 2. Scatterplots and regression lines after grouping, given by four
different methods for the asthma data.

β̂
′
x̄k, the average of β̂

′
xit for the k-th interval, and logit(ȳk), the log-odds of

ȳk, where ȳk is the average of yit corresponding to β̂
′
xit in the k-th interval,

k = 1, . . . ,K. Table 6 lists the correlation between (logit(ȳ1), . . . , logit(ȳK))

and (β̂
′
x̄1, . . . , β̂

′
x̄K) and the MSE of (α0 + α1β̂

′
x̄1, . . . , α0 + α1β̂

′
x̄K), where

α0 and α1 are the logistic regression coefficients. The QIF method assuming

exchangeable correlation structure achieves the highest magnitude of regression

correlation with a smaller MSE, compared with the QIF assuming independence

structure.

Scatterplots of (logit(ȳ1), . . . , logit(ȳK)) against (β̂
′
x̄1, . . . , β̂

′
x̄K) for each
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method are provided in Figure 2. The slope of the partial OLS method (upper-

left panel) are very sensitive to the two influential points on the top left, leading

to a potentially unstable estimator; while the QIF assuming the exchangeable

correlation structure provides a better fitted regression line overall.

7. Discussion

We have addressed the sufficient dimension reduction problem for longitu-

dinal data, with the goal of showing that incorporating intracluster correlation

information can achieve more efficiency than assuming independence in both

parameter and central subspace estimations. We used the quadratic inference

function to incorporate correlation structures and a transformation method to

formulate basis vectors for the central subspace. These basis vectors were shown

to be consistent and more efficient than estimators assuming independence. The

proposed method achieves an overall efficiency for central subspace estimation

through combining each efficient estimator of an individual basis vector. Our sim-

ulation studies show that the proposed method is quite effective for both binary

and continuous data for small and large sample sizes, compared with existing

approaches that do not take intracluster correlation into consideration.

Simulation show that even if the correlation structure is misspecified, the

efficiency of the proposed estimator is higher than the one assuming indepen-

dence; our method is quite robust under a small sample size, due to utilizing the

entire cluster information for dimension reduction. The proposed method is able

to recover the central subspace even when the cluster size is small, it can handle

unbalanced data, and is computationally efficient when the cluster size is large.

Further investigation is needed regarding a tuning procedure to select the

number of transformations s by minimizing the distance between γs and Span(γ1,

. . . , γs−1), along with a penalty function. Another possible research direction is

sufficient dimension reduction for binary data (or data with finite support) when

the structural dimension is greater than 1. Binary sufficient dimension reduction

is quite challenging, since the binary response is invariant for most types of

transformation methods. Pooling similar covariate information together so that

the log-odds of Y = 1 have sufficient variability for estimation is a possible

approach.

Supplementary Materials

The proofs of the theorems and the lemma in this paper are given in the

online supplemental material available at http://www3.stat.sinica.edu.tw/

statistica/.

http://www3.stat.sinica.edu.tw/statistica/
http://www3.stat.sinica.edu.tw/statistica/
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