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1. Class of influence functions for β

Let ZT
i = (Yi,X

T
i ), i = 1, . . . , n, denote a sample of n independent and

identically distributed (IID) random vectors, where Yi denotes the outcome

of interest associated with the p-dimensional vector of covariates Xi. A

PIM is defined by the constraint

P (Yi 4 Yj | Xi,Xj) = m(Xi,Xj;β0), (1.1)

with P (Yi 4 Yj | Xi,Xj) := P (Yi < Yj | Xi,Xj) + 0.5P (Yi = Yj | Xi,Xj).

The function m(·) is a known function with range [0, 1], smooth in the p-



dimensional parameter vector β and satisfying the antisymmetry condition

m(Xi,Xj;β) = 1 − m(Xj,Xi;β). We let β0 denote the unknown true

value of β that generated the data. Let MPIM denote the semiparametric

model induced by (1.1), i.e., the set of all proper joint density functions

fZ(z;β,η) = fY |X(y | x;β,η1)fX(x;η2) satisfying the key restriction that

∫
{I (y 4 y∗)−m(x,x∗;β)}fY |X(y | x;β,η1)fY |X(y∗ | x∗;β,η1)dydy∗ = 0,

(1.2)

with β the p-dimensional parameter of interest and where η = (ηT1 ,η
T
2 )T

are infinite-dimensional variation independent nuisance parameters. We

denote the truth as f0(z) = fZ(z;β0,η0) = fY |X(y | x;β0,η10)fX(x;η20).

We denote by H the Hilbert space of p-dimensional measurable ran-

dom functions h(Z) of Z satisfying (i) E{h(Z)} = 0 (mean zero) and (ii)

E{hT (Z)h(Z)} <∞ (square integrable) equipped with the covariance inner

product E{hT1 (Z)h2(Z)} for h1(Z),h2(Z) ∈ H. The aim is to find the set

of all influence functions ϕ(Y,X;β0,η0) ∈ H of RAL estimators for the

p-dimensional parameter of interest β under model MPIM. For this, we

need to find the orthogonal complement Λ⊥ of the nuisance tangent space

Λ of model MPIM in H.



Derivation of the model nuisance tangent space: Λ. The semi-

parametric nuisance tangent space Λ is the direct sum of the semipara-

metric nuisance tangent spaces Λ1 and Λ2 corresponding to η1 and η2

respectively: Λ = Λ1

⊕
Λ2. Because the marginal distribution fX(x;η2)

of the covariates X is completely left unspecified, the sole restriction is

that the scores for η2, which is a function of X only, must have mean zero

so that Λ2 = {s2(X) ∈ H | E{s2(X)} = 0}. Because the set Λ1 cor-

responds to all scores of the possible conditional distribution of Y given

X, all s1(Y,X) ∈ Λ1 must satisfy E{s1(Y,X)|X} = 0. The sole other re-

striction is implied by (1.2) following which all s1(Y,X) ∈ Λ1 must also

satisfy E[{s1(Y,X) + s1(Y ∗,X∗)}{I(Y 4 Y ∗) −m(X,X∗;β0)}|X,X∗] = 0

for (Y,XT ) ⊥⊥ (Y ∗,X∗,T ), where ⊥⊥ denotes statistical independence. It

follows that Λ1 = {s1(Y,X) ∈ H|E{s1(Y,X)|X} = 0 and E[{s1(Y,X) +

s1(Y ∗,X∗)}{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗] = 0}. Next, it is easy to see

that Λ1 ⊥ Λ2 because for s1(Y,X) ∈ Λ1 and s2(X) ∈ Λ2, E{sT1 (Y,X)s2(X)} =

E[E{sT1 (Y,X)|X}s2(X)] = 0. Now note that Λ1 = Λ1a ∩ Λ1b with Λ1a =

{s1(Y,X) ∈ H|E{s1(Y,X)|X} = 0} and Λ1b = {s1(Y,X) ∈ H|E[{s1(Y,X)+

s1(Y ∗,X∗)}{I(Y 4 Y ∗) − m(X,X∗;β0)}|X,X∗] = 0}. We find that Λ =

(Λ1a ∩Λ1b)⊕Λ2, i.e., every s(Y,X) ∈ Λ can be written as s1(Y,X) + s2(X)

with s1(Y,X) ∈ Λ1a ∩ Λ1b and s2(X) ∈ Λ2.



Lemma 1. We have the following relations: (i) Λ1a = Λ⊥2 , (ii) Λ2 ⊂ Λ1b

and (iii) Λ = Λ1b.

Proof. (i) Take arbitrary elements s1(Y,X) ∈ Λ1a and s2(X) ∈ Λ2, then

E{sT1 (Y,X)s2(X)} = E[E{sT1 (Y,X)|X}s2(X)] = 0 so that Λ1a ⊂ Λ⊥2 . Now

take an arbitrary h(Y,X) ∈ H. Define s1(Y,X) = h(Y,X)−E{h(Y,X)|X}

and s2(X) = E{h(Y,X)|X}. It follows that h(Y,X) = s1(Y,X) + s2(X)

with s1(Y,X) ∈ Λ1a and s2(X) ∈ Λ2 and we can conclude that Λ1a = Λ⊥2 .

(ii) Take an arbitrary s2(X) ∈ Λ2. We find that E[{s2(X)+ s2(X∗)}{I(Y 4

Y ∗) − m(X,X∗;β0)}|X,X∗] = {s2(X) + s2(X∗)}[E{I(Y 4 Y ∗)|X,X∗} −

m(X,X∗;β0)] = 0 with (Y,XT ) ⊥⊥ (Y ∗,X∗,T ) so that s2(X) ∈ Λ1b. (iii)

We know that Λ = (Λ1a ∩ Λ1b) ⊕ Λ2. Take any s1(Y,X) ∈ Λ1a ∩ Λ1b and

s2(X) ∈ Λ2. By definition, s1(Y,X) ∈ Λ1b and by part (ii) s2(X) ∈ Λ1b

and because Λ1b is a linear subspace of H, s1(Y,X) + s2(X) ∈ Λ1b so that

Λ ⊂ Λ1b. Now consider an arbitrary function s(Y,X) ∈ Λ1b. Because

s(Y,X) ∈ H, 0 = E{s(Y,X)} = E[E{s(Y,X)|X}], E{s(Y,X)|X} ∈ Λ2.

From part (ii), we also know that E{s(Y,X)|X} ∈ Λ1b and because Λ1b is a

linear space, s(Y,X)−E{s(Y,X)|X} ∈ Λ1b. Since s(Y,X)−E{s(Y,X)|X} ⊥

Λ2, s(Y,X) − E{s(Y,X)|X} ∈ Λ1a. It follows that s(Y,X) = [s(Y,X) −

E{s(Y,X)|X}] + E{s(Y,X)|X} with s(Y,X) − E{s(Y,X)|X} ∈ Λ1a ∩ Λ1b

and E{s(Y,X)|X} ∈ Λ2 so that Λ1b ⊂ Λ.



We conclude with the following proposition:

Proposition 1. The semiparametric nuisance tangent space Λ of model

MPIM equals

Λ = {s(Y,X) ∈ H |E[{s(Y,X)+s(Y ∗,X∗)}{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗] = 0},

(1.3)

for (Y,XT ) ⊥⊥ (Y ∗,X∗,T ).



Derivation of the orthogonal complement of the model nuisance

tangent space: Λ⊥. From semiparametric theory, we know that for any

influence function ϕ(Y,X;β0,η0) of a RAL estimator of β, it holds that

ϕ(Y,X;β0,η0) ⊥ Λ. Before deriving Λ⊥, we prove the following lemma.

Throughout, (Y,XT ) ⊥⊥ (Y ∗,X∗,T ).

Lemma 2. Define the sets of p-dimensional functions

A = {a(X,X∗)− a(X∗,X) | a(X,X∗) is square integrable },

B = {b(X,X∗) | b(X,X∗) is square integrable and b(X,X∗) + b(X∗,X) = 0}.

It holds that A = B.

Proof. (i) A ⊂ B. Take b†(X,X∗) := a(X,X∗)− a(X∗,X) ∈ A. It follows

that b†(X,X∗) + b†(X∗,X) = 0 so that b†(X,X∗) ∈ B. (ii) B ⊂ A.

Take b(X,X∗) ∈ B. Define a†(X,X∗) = b(X,X∗)/2. Because b(X,X∗) =

a†(X,X∗)− a†(X∗,X), b(X,X∗) ∈ A.

Proposition 2. The orthogonal complement of the semiparametric nui-

sance tangent space Λ⊥ of model MPIM equals

Λ⊥ = {s⊥(Y,X) ∈ H | s⊥(Y,X) = E[b(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)} | Y,X], (1.4)

b(X,X∗) ∈ B},



for (Y,XT ) ⊥⊥ (Y ∗,X∗,T ).

Proof. From Lemma 2 it is sufficient to show that Λ⊥ consists of all elements

h(Y,X) ∈ H of the form s⊥(Y,X) = E[{a(X,X∗)−a(X∗,X)}{I (Y 4 Y ∗)−

m(X,X∗;β0)} | Y,X]. Take an arbitrary s(Y,X) ∈ Λ. We have that

E{sT (Y,X)s⊥(Y,X)}

=E(sT (Y,X)E[{a(X,X∗)− a(X∗,X)}{I (Y 4 Y ∗)−m(X,X∗;β0)} | Y,X])

=E(sT (Y,X)E[a(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)} | Y,X])

+ E(sT (Y,X)E[a(X∗,X){I (Y ∗ 4 Y )−m(X∗,X;β0)} | Y,X])

=E[sT (Y,X)a(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)}]

+ E[sT (Y ∗,X∗)a(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)}]

=E[{s(Y,X) + s(Y ∗,X∗)}Ta(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)}]

Because s(Y,X) ∈ Λ,

E{sT (Y,X)s⊥(Y,X)}

= E
(
E[{s(Y,X) + s(Y ∗,X∗)}T{I (Y 4 Y ∗)−m(X,X∗;β0)} | X,X∗]aT (X,X∗)

)
= 0,

showing that indeed s⊥(Y,X) ⊥ Λ. To show that the space Λ⊥ indeed

equals the orthogonal complement of Λ, we need to show that any arbitrary

h(Y,X) ∈ H can be written as h(Y,X) = sh(Y,X)+s⊥h (Y,X) for sh(Y,X) ∈

Λ and s⊥h (Y,X) ∈ Λ⊥. This is equivalent to saying that for each h(Y,X) ∈



H, there exists a function bh(X,X∗) satisfying bh(X,X∗) +bh(X∗,X) = 0

such that sh(Y,X) := h(Y,X)−E[bh(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)} |

Y,X] ∈ Λ. For this, we need that E[{sh(Y,X) + sh(Y ∗,X∗)}{I(Y 4 Y ∗)−

m(X,X∗;β0)}|X,X∗] = 0. For this to be fulfilled, we need the function

bh(Y,X) to satisfy the integral equation

E[{h(Y,X) + h(Y ∗,X∗)}{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗]

=E(E[bh(X,X†){I(Y 4 Y †)−m(X,X†;β0)} | Y,X]{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗)

+ E(E[bh(X∗,X†){I(Y ∗ 4 Y †)−m(X∗,X†;β0)} | Y ∗,X∗]{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗)

=E([bh(X,X†){I(Y 4 Y †)−m(X,X†;β0)}+ bh(X∗,X†){I(Y ∗ 4 Y †)−m(X∗,X†;β0)}]

× {I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗)

=E{bh(X,X†)E[{I(Y 4 Y †)−m(X,X†;β0)}{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗,X†]|X,X∗}

+ E{bh(X∗,X†)E[{I(Y ∗ 4 Y †)−m(X∗,X†;β0)}{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗,X†]|X,X∗}

=E{bh(X,X†)V (X,X†,X,X∗;β0) + bh(X∗,X†)V (X∗,X†,X,X∗;β0)|X,X∗},

(1.5)

for IID copies (Y,XT ), (Y ∗,X∗,T ) and (Y †,X†,T ) with V (X,X†,X,X∗;β0)

the covariance of I(Y 4 Y †) and I(Y 4 Y ∗) conditional on the covariates

(and similar for V (X∗,X†,X,X∗;β0)). To show that the latter equation

allows for a solution bh(X,X∗), we use the results of Chamberlain (1987).

For this purpose, suppose that X is discrete, taking values (ψ1, . . . ,ψr) and



has a multinomial distribution, P (X = ψi) = π0i (i = 1, . . . , r). For every

`-th component of bh (` = 1, . . . , p), equation (1.5) then boils down to a

linear system of r2 equations

a
(`)
ij (β0) =

r∑
k=1

{
b

(`)
ik π0kVikij(β0) + b

(`)
jk π0kV

∗
jkij(β0)

}
for any (i, j) with i, j ∈ {1, . . . , r}, where a

(`)
ij (β0) = E[{h(`)(Y,X)+h(`)(Y ∗,X∗)}{I(Y 4

Y ∗) −m(X,X∗;β0)}|X = ψi,X
∗ = ψj] (h(`) is the `-th component of h),

b
(`)
ik = b

(`)
h (X = ψi,X

† = ψk) (b
(`)
h is the `-th component of bh and a similar

definition holds for b
(`)
jk ) and finally, Vikij(β0) = V (X = ψi,X

† = ψk,X =

ψi,X
∗ = ψj;β0) and V ∗jkij(β0) = V (X∗ = ψj,X

† = ψk,X = ψi,X
∗ =

ψj;β0). For discrete X, the result follows from solving this set of r2 lin-

ear equations. The result for arbitrary X then follows from Lemma 3 of

Chamberlain (1987).

Set of all influence function of RAL estimator of β. Any influ-

ence function of a RAL estimator of β must satisfy ϕ(Y,X;β0,η0) ∈ Λ⊥. It

should however also be properly normalized so that E{ϕT (Y,X;β0,η0)sβ(Y,X;β0,η0)} =

Ip with score function for β equal to sβ(Y,X;β0,η0) = ∂ log fZ(z;β,η0)/∂β|β=β0

and Ip a p×p identity matrix. Consequently, any influence functionϕ(Y,X;β0,η0)



of a RAL estimator of β must equal

ϕ(Y,X;β0,η0) = C0E [b(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)} | Y,X] ,

(1.6)

with C0 = E[b(X,X∗){I (Y 4 Y ∗)−m(X,X∗;β0)]sTβ(Y,X;β0,η0)]−1. We

next derive an expression for the normalisation constant C0 that does not

depend on sβ(Y,X;β0,η0).

Lemma 3. The score function for β satisfies E[{sTβ(Y,X;β0,η0)+sTβ(Y ∗,X∗;β0,η0)}{I(Y 4

Y ∗)−m(X,X∗;β0)} | X,X∗] = ∂m(X,X∗;β)/∂βT |β=β0
.

Proof. From (1.2) it follows that

∂

∂βT

[∫
{I(y 4 y∗)−m(x,x∗;β)}fY |X(y|x;β,η10)fY |X(y∗|x∗;β,η10)dydy∗

]∣∣∣∣
β=β0

= 0.

Assuming we can interchange derivation and integration, we find

∂

∂βT
m(x,x∗;β)

∣∣∣∣
β=β0

=

∫
{I(y 4 y∗)−m(x,x∗;β0)}{sTβ(y,x;β0,η0) + sTβ(y∗,x∗;β0,η0)}

× fY |X(y|x;β0,η10)fY |X(y∗|x∗;β0,η10)dydy∗,

proving the lemma.

Lemma 4. For an influence function ϕ(Y,X;β0,η0) given in (1.6), the

normalization constant C0 = −2E(∂[b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β)}]/∂βT |β=β0
)−1.



Proof. We have that E{b(X,X∗)∂m(X,X∗;β)/∂βT |β=β0
} = −E(∂[b(X,X∗){I(Y 4

Y ∗)−m(X,X∗;β)}]/∂βT |β=β0
). Next, we find that

E
(
b(X,X∗)E[{sTβ(Y,X;β0,η0) + sTβ(Y ∗,X∗;β0,η0)}{I(Y 4 Y ∗)−m(X,X∗;β0)} | X,X∗]

)
= E

[
b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β0)}sTβ(Y,X;β0,η0)

]
+ E

[
b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β0)}sTβ(Y ∗,X∗;β0,η0)

]
= E

[
b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β0)}sTβ(Y,X;β0,η0)

]
+ E

[
b(X∗,X){I(Y ∗ 4 Y )−m(X∗,X;β0)}sTβ(Y,X;β0,η0)

]
= E

[
b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β0)}sTβ(Y,X;β0,η0)

]
− E

[
b(X,X∗){1− I(Y 4 Y ∗)− 1 +m(X,X∗;β0)}sTβ(Y,X;β0,η0)

]
= 2E

[
{b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β0)}sTβ(Y,X;β0,η0)

]
,

so that E[{b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β0)}sTβ(Y,X;β0,η0)] = −E(∂[b(X,X∗){I(Y 4

Y ∗)−m(X,X∗;β)}]/∂βT |β=β0
)/2. Hence, we obtain that the normalization

constant is given byC0 = E[{b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β0)}sTβ(Y,X;β0,η0)]−1 =

−2E(∂[b(X,X∗){I(Y 4 Y ∗)−m(X,X∗;β)}]/∂βT |β=β0
)−1.

Conclusion. Any influence function of a RAL estimator of β is of the

form

ϕ(Y,X;β0,η0) = −2E{∂u(Z,Z∗;β)/∂β|β=β0
}−1E{u(Z,Z∗;β0) | Y,X}



with u(Z,Z∗;β0) = b(X,X∗){I(Y 4 Y ∗) − m(X,X∗;β0)} and for any

arbitrary b(X,X∗) ∈ B.



2. Asymptotic distribution of β̂

Consider the estimator β̂ that solves the system of estimating equations∑n
i=1

∑n
j=1 Uij(β̂) = 0 with Uij(β) = Bij(β){Iij −Mij(β)}, with Uij(β)

a shorthand for u(Zi,Zj;β), Bij(β) = b(Xi,Xj;β), Iij = I (Yi 4 Yj) and

Mij(β) = m(Xi,Xj;β) and Bij(β) satisfying the antisymmetry condition

Bij(β)+Bji(β) = 0. Throughout, ZT = (Y,XT ) and Z∗,T = (Y ∗,X∗,T ) de-

note two IID copies. Define the U -statistic (van der Vaart, 1998) Un(β) =∑n
i=1

∑n
j=1 Uij(β)/n2 and with E{Uij(β0)} = 0. Note that Un(β) is per-

mutation symmetric in Xi and Xj since Uij(β) = Uji(β), which follows by

the antisymmetry of Bij(β).

Regularity conditions. To show that β̂ is a consistent estimator of β,

to derive the asymptotic distribution of β̂ and to show consistency of sand-

wich estimator Σ̂(β̂), we assume the following regularity conditions. (R1)

the parameter space Θ ⊂ Rp of β is a compact set; (R2) β0 lies in the

interior of Θ; (R3) E{u(Z,Z∗;β)} 6= 0 if β 6= β0 and E{u(Z,Z∗;β0)} = 0

(that is, E{u(Z,Z∗;β)} has a unique root β0 ∈ Θ); (R4) u(Z,Z∗;β) is

continuous in every β ∈ Θ wp1; (R5) E{supβ∈Θ ‖u(Z,Z∗;β)‖} <∞; (R6)

∂u(Z,Z∗;β)/∂βT is continuous in every β ∈ Θ wp1; (R7) E{supβ∈Θ ‖∂u(Z,Z∗;β)/∂βT‖} <

∞; (R8) J(β0) = E{∂u(Z,Z∗;β)/∂βT |β=β0
} is invertible; (R9) E{supβ∈Θ ‖u(Z,Z∗;β)‖2} <



∞; and (R10) E{supβ∈Θ ‖∂u(Z,Z∗;β)/∂βT‖2} < ∞, with ‖ · ‖ denoting

the Euclidean norm so that ‖a‖ = (
∑p

i=1 a
2
i )

1/2 for a = (a1, . . . , ap)
T ∈ Rp

and ‖A‖ = (
∑p

i=1

∑p
j=1 a

2
ij)

1/2 for A = (aij)i,j=1...p ∈ Rp×p.

Consistency of β̂. To show that β̂
p→ β0, we will apply Theorem 2.1 of

Newey and McFadden (1994). Define the function Un(β) = −[UT
n (β)Un(β)]

so that β̂ = arg maxβ∈Θ{Un(β)} with maximal value 0. Next define the

function u(β) = −[ET{u(Z,Z∗;β)}E{u(Z,Z∗;β)}] where u(β0) = 0. Con-

sistency will follow if the subsequent conditions are satisfied: (C1) u(β)

is uniquely maximized at β0, (C2) Θ is compact, (C3) u(β) is continu-

ous, and (C4) Un(β) converges uniformly in probability to u(β). (C1)

is satisfied by (R2) and (R3). (C2) is satisfied by (R1). To show (C3)

and (C4), we make use of Lemma 8.5 of Newey and McFadden (1994),

which guarantees that E{u(Z,Z∗;β)} is continuous in β ∈ Θ and that

supβ∈Θ ‖Un(β)−E{u(Z,Z∗;β)‖ p→ 0 if (i) u(Z,Z∗;β) is continuous at each

β ∈ Θ wp1, which is satisfied by (R4), and (ii) E{supβ∈Θ ‖u(Z,Z∗;β)‖} <

∞, which is satisfied by (R5). It follows that (C3) is satisfied since u(β) is

a continuous transformation of E{u(Z,Z∗;β)}. For (C4), we need to show

that supβ∈Θ |Un(β)− u(β)| p→ 0. We find that (using the triangle inequal-

ity and the Cauchy-Schwarz inequality) |Un(β)−u(β)| = |[UT
n (β)Un(β)]−



[ET{u(Z,Z∗;β)}E{u(Z,Z∗;β)}]| ≤ |[Un(β) − E{u(Z,Z∗;β)}]T [Un(β) −

E{u(Z,Z∗;β)}]|+2|ET{u(Z,Z∗;β)}[Un(β)−E{u(Z,Z∗;β)}]| ≤ ‖Un(β)−

E{u(Z,Z∗;β)}‖2+2‖E{u(Z,Z∗;β)}‖‖Un(β)−E{u(Z,Z∗;β)}‖, so supβ∈Θ |Un(β)−

u(β)| p→ 0 because supβ∈Θ ‖Un(β)−E{u(Z,Z∗;β)}‖ p→ 0 and supβ∈Θ ‖E{u(Z,Z∗;β)}‖ <

∞ by the continuity of E{u(Z,Z∗;β)} over the compact set Θ. We can con-

clude that β̂
p→ β0.

Asymptotic distribution of β̂. Consider the first-order Taylor expan-

sion 0 =
√
nUn(β̂) =

√
nUn(β0)+∂Un(β)/∂βT |β=β̃

√
n(β̂−β0), with ‖β̃−

β0‖ ≤ ‖β̂ − β0‖. Because β̂
p→ β0, we also have that β̃

p→ β0. From this

first-order Taylor expansion, we find that
√
n(β̂−β0) = −{∂Un(β)/∂βT |β=β̃}−1

√
nUn(β0).

First we show that ∂Un(β)/∂βT |β=β̃

p→ E{∂u(Z,Z∗;β)/∂βT |β=β0
}.

In doing so, we again employ Lemma 8.5 of Newey and McFadden (1994),

which guarantees that E{∂u(Z,Z∗;β)/∂βT} is continuous in β ∈ Θ and

that supβ∈Θ ‖∂Un(β)/∂βT−E{∂u(Z,Z∗;β)/∂βT}‖ p→ 0 if (i) ∂u(Z,Z∗;β)/∂βT

is continuous at each β ∈ Θ wp1, which is satisfied by (R6), and (ii)

E{supβ∈Θ ‖∂u(Z,Z∗;β)/∂βT‖} < ∞, which is satisfied by (R7). Next,

from the triangle inequality, it follows that ‖∂Un(β)/∂βT |β=β̃−E{∂u(Z,Z∗;β)/∂βT |β=β0
}‖ ≤

‖∂Un(β)/∂βT |β=β̃−E{∂u(Z,Z∗;β)/∂βT |β=β̃}‖+‖E{∂u(Z,Z∗;β)/∂βT |β=β̃}−

E{∂u(Z,Z∗;β)/∂βT |β=β0
}‖. The first term of the rhs is bounded by supβ∈Θ ‖∂Un(β)/∂βT−



E{∂u(Z,Z∗;β)/∂βT}‖ p→ 0 and the second term of the rhs is op(1) by the

continuous mapping theorem since E{∂u(Z,Z∗;β)/∂βT} is continuous in

β ∈ Θ and β̃
p→ β0 so that the lhs is op(1). We conclude that the Jacobian

∂Un(β)/∂βT |β=β̃ = E{∂u(Z,Z∗;β)/∂βT |β=β0
}+ op(1) = J(β0) + op(1).

From the uniform convergence of the Jacobian-term, and assuming it

is invertible (R8), we find that
√
n(β̂−β0) = −J(β0)−1

√
nUn(β0) + op(1).

Next, consider the Hájek-projection of Un(β0): Ûn(β0) =
∑n

i=1 E{Un(β0)|Yi,Xi}/n =

2
∑n

i=1 E{Uij(β0)|Yi,Xi}/n. Assuming (R5) and (R9), it follows from The-

orem 12.3 of van der Vaart (1998) that
√
nUn(β0) =

√
nÛn(β0) + op(1), so

that
√
n(β̂ − β0) =

∑n
i=1−2J(β0)−1E{Uij(β0)|Yi,Xi}/

√
n + op(1). This

shows that β̂ is an asymptotically linear estimator of β0 with influence

function ϕ(Yi,Xi;β0,η0) = −2J(β0)−1E{Uij(β0)|Yi,Xi}.

Consistency of Σ̂(β̂). We show that the sandwich estimator Σ̂(β̂) =

4Ĵ(β̂)−1K̂(β̂)Ĵ(β̂)−T
p→ 4J(β0)−1cov[E{Uij(β0) | Yi,Xi}]J(β0)−T = Σ0,

Ĵ(β̂) =
∑n

i=1

∑n
j=1 ∂Uij(β)/∂βT |β=β̂/n

2 and K̂(β̂) =
∑n

i=1

∑n
j=1

∑n
k=1 Uij(β̂)UT

ik(β̂)/n3.

We already know that Ĵ(β̂)
p→ J(β0). From (R10), Lemma 8.7 and Lemma

8.3 of Newey and McFadden (1994), it also follows that K̂(β̂)
p→ cov[E{Uij(β0) |

Yi,Xi}]. The continuous mapping theorem then guarantees that Σ̂(β̂) =

4Ĵ(β̂)−1K̂(β̂)Ĵ(β̂)−T
p→ 4J(β0)−1cov[E{Uij(β0) | Yi,Xi}]J(β0)−T = Σ0.



Regularity conditions, revisited. We try to make (R4)-(R7), (R9)

and (R10) more explicit. We have u(Z,Z∗;β) = b(X,X∗;β){I(Y � Y ∗)−

m(X,X∗;β)} and thus ∂u(Z,Z∗;β)/∂βT = ∂b(X,X∗;β)/∂βT{I(Y � Y ∗)−

m(X,X∗;β)} − b(X,X∗;β)∂m(X,X∗;β)/∂βT . It follows that (R4) and

(R6) will be satisfied if both b(X,X∗;β) and m(X,X∗;β) are sufficiently

smooth, e.g., they are both continuously differentiable wp1 with respect to

β. Next, we find that E{supβ∈Θ ‖u(Z,Z∗;β)‖} = E[supβ∈Θ{‖b(X,X∗;β)‖|I(Y �

Y ∗)−m(X,X∗;β)|}], which is bounded by 2E{supβ∈Θ ‖b(X,X∗;β)‖}. For

the derivative, from the triangle inequality it follows that E{supβ∈Θ ‖∂u(Z,Z∗;β)/∂βT‖}

≤ E[supβ∈Θ{‖∂b(X,X∗;β)/∂βT‖|I(Y � Y ∗)−m(X,X∗;β)|}]

+ E[supβ∈Θ{‖b(X,X∗;β)‖‖∂m(X,X∗;β)/∂βT‖}]. The second term of the

rhs can be bounded by E[{supβ∈Θ ‖b(X,X∗;β)‖ }2]1/2E[{supβ∈Θ ‖∂m(X,X∗;β)/∂βT‖}2]1/2

using the Cauchy-Schwarz inequality. If follows that (R5) and (R7) will be

satisfied if the classes of functions {b(X,X∗;β) : β ∈ Θ}, {∂b(X,X∗;β)/∂βT :

β ∈ Θ} and {∂m(X,X∗;β)/∂βT : β ∈ Θ} (with Θ compact) has square

integrable envelopes (wrt the the true probability measure), which is not

a strong condition since these are standard smoothness and moment con-

ditions. These moment conditions are also standard in order to obtain a

proper influence function with finite variance. A similar reasoning can be

made for (R9)-(R10).



3. Proof of Theorem 2

Because the asymptotic variance of a RAL estimator is dictated by the vari-

ance of its influence function, we want to identify the influence function with

the smallest possible variance under modelMPIM, the semiparametric effi-

ciency bound. This influence function is called the efficient influence func-

tion. From semiparametric theory, we know that the efficient influence func-

tion is given byϕEFF(Y,X;β0,η) = E{sEFF(Y,X;β0,η0)sEFF,T (Y,X;β0,η0)}−1sEFF(Y,X;β0,η0)

with efficient score

sEFF(Y,X;β0,η0) = sβ(Y,X;β0,η0)−Π{sβ(Y,X;β0,η0) | Λ} = Π{sβ(Y,X;β0,η0) | Λ⊥}

and Π(· | ·) the orthogonal projection operator. In order to find the ef-

ficient score, we thus need to find the function bEFF(X,X∗) ∈ B so that

sEFF(Y,X;β0,η0) = E[bEFF(X,X∗){I(Y 4 Y ∗) − m(X,X∗;β0)} | Y,X].

From the proof of Proposition 2, it follows that this boils down to solving

the integral equation

E[{sβ(Y,X;β0,η0) + sβ(Y ∗,X∗;β0,η0)}{I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗]

=E([bEFF(X,X†){I(Y 4 Y †)−m(X,X†;β0)}+ bEFF(X∗,X†){I(Y ∗ 4 Y †)−m(X∗,X†;β0)}]

× {I(Y 4 Y ∗)−m(X,X∗;β0)}|X,X∗).

Define d(X,X∗;β0) = ∂m(X,X∗;β)/∂β|β=β0
and V (X,X∗,X†,X′;β0) =

cov{I(Y 4 Y ∗), I(Y † 4 Y ′) | X,X∗,X†,X′} = E[{I(Y 4 Y ∗)−m(X,X∗;β0)}{I(Y † 4



Y ′) − m(X†,X′;β0)} | X,X∗,X†,X′] for IID copies (Y,XT ), (Y ∗,X∗,T ),

(Y †,X†,T ) and (Y ′,X
′,T ). From Lemma 3, we know that E[{sβ(Y,X;β0,η0)+

sβ(Y ∗,X∗;β0,η0)}{I(Y 4 Y ∗) − m(X,X∗;β0)}|X,X∗] = d(X,X∗;β0).

The function bEFF(X,X∗) is thus the solution to the integral equation

d(X,X∗;β0) (3.1)

= E{bEFF(X,X†;β0)V (X,X∗,X,X†;β0) + bEFF(X∗,X†;β0)V (X,X∗,X∗,X†;β0) | X,X∗}.

This proves Theorem 2.



4. Equivalence equation (8) and (9) from Section 2.2

Using the same notation as before, we show that

Dij(β) =
1

n

n∑
k=1

{
B̂

EFF

ik (β)Vijik(β) + B̂
EFF

jk (β)Vijjk(β)
}
, i, j = 1, . . . , n

(4.1)

can be written as

Dij(β) =
1

n

[
n−1∑
k=1

n∑
`=k+1

{
B̂

EFF

k` (β)Vijk`(β)
}

+ B̂
EFF

ij (β)Vijij(β)

]
, i < j.

(4.2)

In Section 2.2, we already argued that (4.1) reduces to those n(n − 1)/2

equations for which i < j. The two terms of the right hand side of equation

equation (4.1) can be rewritten as

1

n

n∑
k=1

B̂
EFF

ik (β)Vijik(β) =
1

n

i−1∑
k=1

B̂
EFF

ik (β)Vijik(β) +
1

n

n∑
k=i+1

B̂
EFF

ik (β)Vijik(β)

=
1

n

i−1∑
k=1

B̂
EFF

ik (β)Vijik(β) +
1

n

n∑
`=i+1

B̂
EFF

i` (β)Viji`(β)

1

n

n∑
k=1

B̂
EFF

jk (β)Vijjk(β) =
1

n

j−1∑
k=1

B̂
EFF

jk (β)Vijjk(β) +
1

n

n∑
k=j+1

B̂
EFF

jk (β)Vijjk(β)

=
1

n

j−1∑
k=1

B̂
EFF

jk (β)Vijjk(β) +
1

n

n∑
`=j+1

B̂
EFF

j` (β)Vijj`(β).

The terms where k = i and k = j do not contribute to these sums since

B̂
EFF

ii (β) = B̂
EFF

jj (β) = 0. For the sums going from i+ 1 to n and j + 1 to

n, the summation index is changed from k to `. Equation (4.1) can thus be



written as

Dij(β) =
1

n

{
n∑

`=i+1

B̂
EFF

i` (β)Viji`(β) +
n∑

`=j+1

B̂
EFF

j` (β)Vijj`(β)

+
i−1∑
k=1

B̂
EFF

ik (β)Vijik(β) +

j−1∑
k=1

B̂
EFF

jk (β)Vijjk(β)

}

=
1

n

{
n∑

`=i+1

B̂
EFF

i` (β)Viji`(β) +
n∑

`=j+1

B̂
EFF

j` (β)Vijj`(β)

+
i−1∑
k=1

B̂
EFF

ki (β)Vijki(β) +

j−1∑
k=1

B̂
EFF

kj (β)Vijkj(β)

}

since B̂
EFF

ik (β) = −B̂
EFF

ki (β) and Vijik(β) = −Vijki(β). A similar argument

holds for j.

Next we show that

i−1∑
k=1

B̂
EFF

ki (β)Vijki(β) +

j−1∑
k=1

B̂
EFF

kj (β)Vijkj(β)

=
∑
k∈K

n∑
`=k+1

{
B̂

EFF

k` (β)Vijk`(β)
}

+ B̂
EFF

ij (β)Vijij(β)

with K = {1, . . . , n − 1}\{i, j}. Observe that when {i, j} ∩ {k, `} = ∅,

the pseudo-observations Iij and Ik` are uncorrelated so that Vijk`(β) = 0.

Now take k = 1, . . . , i − 1. It follows that Vijk`(β) = 0 for k < ` < i < j,

k < i < ` < j and k < i < j < `. Only when k < i = ` < j and

k < i < j = `, Vijk`(β) 6= 0, so that

B̂
EFF

ki (β)Vijki(β) + B̂
EFF

kj (β)Vijkj(β) =
n∑

`=k+1

B̂
EFF

k` (β)Vijk`(β).



Summing up for k = 1, . . . , i− 1, we find

i−1∑
k=1

{
B̂

EFF

ki (β)Vijki(β) + B̂
EFF

kj (β)Vijkj(β)
}

=
i−1∑
k=1

n∑
`=k+1

B̂
EFF

k` (β)Vijk`(β).

Next take k = i + 1, . . . , j − 1. Now we have that Vijk`(β) = 0 for i < k <

` < j and i < k < j < ` and only when i < k < j = `, Vijk`(β) 6= 0. This

implies that

B̂
EFF

kj (β)Vijkj(β) =
n∑

`=k+1

B̂
EFF

k` (β)Vijk`(β).

Summing up for k = i+ 1, . . . , j − 1, we find

j−1∑
k=i+1

B̂
EFF

kj (β)Vijkj(β) =

j−1∑
k=i+1

n∑
`=k+1

B̂
EFF

k` (β)Vijk`(β).

Finally, for k = j + 1, . . . , n − 1, i < j < k < ` so that Vijk`(β) = 0 and

hence
n−1∑
k=j+1

n∑
`=k+1

B̂
EFF

k` (β)Vijk`(β) = 0.

Putting everything together, we find that

i−1∑
k=1

B̂
EFF

ki (β)Vijki(β) +

j−1∑
k=1

B̂
EFF

kj (β)Vijkj(β)

=
∑
k∈K

n∑
`=k+1

{
B̂

EFF

k` (β)Vijk`(β)
}

+ B̂
EFF

ij (β)Vijij(β)



with K = {1, . . . , n− 1}\{i, j}. Using this, we find that

1

n

{
n∑

`=i+1

B̂
EFF

i` (β)Viji`(β) +
n∑

`=j+1

B̂
EFF

j` (β)Vijj`(β)

+
i−1∑
k=1

B̂
EFF

ki (β)Vijki(β) +

j−1∑
k=1

B̂
EFF

kj (β)Vijkj(β)

}

=
1

n

[
n∑

`=i+1

B̂
EFF

i` (β)Viji`(β) +
n∑

`=j+1

B̂
EFF

j` (β)Vijj`(β)

+
∑
k∈K

n∑
`=k+1

{
B̂

EFF

k` (β)Vijk`(β)
}

+ B̂
EFF

ij (β)Vijij(β)

]

=
1

n

[
n−1∑
k=1

n∑
`=k+1

{
B̂

EFF

k` (β)Vijk`(β)
}

+ B̂
EFF

ij (β)Vijij(β)

]
,

leading to (4.2).



5. Derivation of the second order bias

Let β̂
∗

be the solution for β of U∗(β,β∗) = 0 with β∗ fixed, where

U∗(β,β∗) = DT (β)V−1
eff (β∗){I−M(β)}.

The matrix Veff (β∗) = V (β∗) + Vindep (β∗) is an n(n− 1)/2× n(n− 1)/2

matrix with diagonal elements of the form 2m(X,X∗;β∗){1−m(X,X∗;β∗)}

and off-diagonal elements of the form cov{I(Y 4 Y ∗), I(Y 4 Y †)|X,X∗,X†;β∗}

and cov{I(Y 4 Y ∗), I(Y ∗ 4 Y †) |X,X∗,X†;β∗}, see also Section 2.2 of the

main paper. I and M(β) are n(n − 1)/2-dimensional vectors so that the

[(i− 1)(2n− i)/2 + j− i]-th element is given by Iij and Mij(β) respectively.

The conditional covariance cov{I(Y 4 Y ∗), I(Y 4 Y †) |X,X∗,X†;β∗} can

further be rewritten as

h−1
1 {(X−X∗)Tβ∗, (X−X†)Tβ∗} − F1{(X−X∗)Tβ∗}F1{(X−X†)Tβ∗}

and cov{I(Y 4 Y ∗), I(Y ∗ 4 Y †) |X,X∗,X†;β} as

h−1
2 {(X−X∗)Tβ∗, (X−X†)Tβ∗} − F1{(X−X∗)Tβ∗}F1{(X−X†)Tβ∗}.

Here, F1(u) =
∫
F (w − u)dF (w), F (·) and f(·) are the conditional cu-

mulative distribution function and probability density function of Y given

X, respectively, and the functions h1(·) and h2(·) are given by h−1
1 (u, v) =



∫
{1 − F (w + u)}{1 − F (w + v)}dF (w) and h−1

2 (u, v) =
∫
F (w − u){1 −

F (w + v)}dF (w).

The bias-reduced estimator β̂
BR

(recall that this is the estimator β̂
∗

by

choosing β∗ = 0) is motivated by the results of Paul and Zhang (2014),

who derived bias-corrected estimators in the generalized estimation equa-

tions (GEE) context. As GEE can be regarded as quasi-likelihood score

equations, Paul and Zhang (2014) treat the generalized estimating func-

tions as if they were likelihood functions and apply the bias correction

technique of Cox and Snell (1968) to obtain a closed-form expression for

the second-order bias. Here we follow a similar idea. That is, as in Cox and

Snell (1968), by taking a higher-order expansion of U∗(β,β∗), we can de-

rive a closed-form expression for the second-order bias of β̂
∗
. This second-

order bias will be a function of β∗ and our goal is to find the value of

β∗ that minimizes this second-order bias. To this end, let U∗(β,β∗) =

[U∗1 (β,β∗), . . . , U∗p (β,β∗)]T with p the dimension of β and let κrk(β,β
∗) =

E{∂U∗r (β,β∗)/∂βk|X1, . . . ,Xn}, κrk`(β,β∗) = E{∂2U∗r (β,β∗)/∂βk∂β`|X1, . . . ,Xn}

and κ
(`)
rk (β,β∗) = ∂κrk(β,β

∗)/∂β`, for r, k, ` = 1, . . . , p. We further denote

by K(β,β∗) the Fisher information matrix analogue with −κrk(β,β∗) its

(r, k)-th element and finally, we let κrk(β,β∗) denote the (r, k)-th element

of K(β,β∗)−1, the inverse of the Fisher information matrix analogue. Fol-



lowing Cox and Snell (1968), the second-order bias bs(β,β
∗) (s = 1, . . . , p)

of β̂
∗

can be written as

bs(β,β
∗) =

p∑
r=1

κrs(β,β∗)

p∑
k=1

p∑
`=1

{
κ

(`)
rk (β,β∗)− 1

2
κrk`(β,β

∗)

}
κk`(β,β∗),

(5.1)

for s = 1, . . . , p. Now, since V−1
eff (β∗) does not depend on β, we have that

∂U∗r (β,β∗)/∂βk = {∂DT
r (β)/∂βk}V−1

eff (β∗){I−M(β)}−DT
r (β)V−1

eff (β∗){∂M(β)/∂βk}.

Since we have E{I −M(β) |X1, . . . ,Xn} = 0, we have that κrk(β,β
∗) =

−DT
r (β)V−1

eff (β∗){∂M(β)/∂βk}. Next, κrk`(β,β
∗) = −{∂DT

r (β)/∂βk}V−1
eff (β∗)×

{∂M(β)/∂β`}−{∂DT
r (β)/∂β`}V−1

eff (β∗){∂M(β)/∂βk}−DT
r (β)V−1

eff (β∗){∂2M(β)/∂βkβ`}

and κ
(`)
rk (β,β∗) = −{∂DT

r (β)/∂β`}V−1
eff (β∗){∂M(β)/∂βk}−DT

r (β)V−1
eff (β∗){∂2M(β)/∂βkβ`}.

Note that as V−1
eff (β∗) does not depend on β, it will remain constant while

calculating κrk(β,β
∗), κrkl(β,β

∗) and κ
(`)
rk (β,β∗), for r, k, ` = 1, . . . , p, and

will therefore be present in all of them.

Our goal is to minimize b2
s(β,β

∗) with respect to β∗, for s = 1, . . . , p.

Note, however, that a clear characteristic of κrk(β,β
∗), κrk`(β,β

∗) and

κ
(`)
rk (β,β∗) is that they all depend on β∗ via V−1

eff (β∗) only. For example,

∂κrk(β,β
∗)/∂β∗s = −DT

r (β){∂V−1
eff (β∗)/∂β∗s}{∂M(β)/∂βk}, so if we set

each element of ∂V−1
eff (β∗)/∂β∗s to zero, ∂κrk(β,β

∗)/∂β∗s will also be equal to

zero. The same argument holds for ∂κrk`(β,β
∗)/∂β∗s and ∂κ

(`)
rk (β,β∗)/∂β∗s .

A trivial solution of ∂b2
s(β,β

∗)/∂β∗s = 0 is therefore obtained by setting



the derivative of all elements of V−1
eff (β∗) with respect to β∗s to zero. Our

goal is thus to find the value of β∗ that solves ∂V−1
eff (β∗)/∂β∗s = 0, for s =

1, . . . , p. Finally, as ∂V−1
eff (β∗)/∂β∗s = V−1

eff (β∗){∂Veff(β∗)/∂β∗s}V−1
eff (β∗), it

is enough to set the elements of ∂Veff(β∗)/∂β∗s to zero instead. We first

consider the diagonal elements of Veff(β∗). Equating the partial derivatives

to zero delivers ∂[m (X,X∗;β∗) {1−m (X,X∗;β∗)}]/∂β∗s = 0 which yields

∂ {m (X,X∗;β∗)} /∂β∗s ×{1− 2m (X,X∗;β∗)} = 0, s = 1, . . . , p. Thus, for

a symmetric link function around zero (e.g., probit or logit), this implies

that (X∗ −X)Tβ∗ = 0. Now let Z1 = X−X∗ and Z2 = X−X†. For the

off-diagonal elements, we first take the derivative with respect to β∗ and

then show that at β∗ = 0 they are zero. That is, we want to show that at

β∗s = 0, for s = 1, . . . , p,

∂

∂β∗s
cov
{

I (Y 4 Y ∗) , I
(
Y 4 Y †

)
|X,X∗,X†

}
= 0 (5.2)

and

∂

∂β∗s
cov
{

I (Y 4 Y ∗) , I
(
Y ∗ 4 Y †

)
|X,X∗,X†

}
= 0, (5.3)

which is equivalent to

∂

∂β∗s

[
h−1

1 (ZT
1 β
∗,ZT

2 β
∗)
]

=
∂

∂β∗s

[
F1(ZT

1 β
∗)F1(ZT

2 β
∗)
]

(5.4)

and

∂

∂β∗s

[
h−1

2 (ZT
1 β
∗,ZT

2 β
∗)
]

=
∂

∂β∗s

[
F1(ZT

1 β
∗)F1(ZT

2 β
∗)
]
. (5.5)



First we take the derivative with respect to β∗s (for s = 1, . . . , p):

∂

∂β∗s

[
h−1

1 (ZT
1 β
∗,ZT

2 β
∗)
]

= −Z1,s

∫
f(w + ZT

1 β
∗){1− F (w + ZT

2 β
∗)}dF (w)

−Z2,s

∫
{1− F (w + ZT

1 β
∗)}f(w + ZT

2 β
∗)dF (w);

∂

∂β∗s

[
h−1

2 (ZT
1 β
∗,ZT

2 β
∗)
]

= −Z1,s

∫
f(w − ZT

1 β
∗){1− F (w + ZT

2 β
∗)}dF (w)

−Z2,s

∫
{F (w − ZT

1 β
∗)}f(w + ZT

2 β
∗)dF (w);

∂

∂β∗s

[
F1(ZT

1 β
∗)F1(ZT

2 β
∗)
]

= −Z1,s

∫
f(w − ZT

1 β
∗)dF (w)

∫
F (w − ZT

2 β
∗)dF (w)

−Z2,s

∫
F (w − ZT

1 β
∗)dF (w)

∫
f(w − ZT

2 β
∗)dF (w),

where Zq,s corresponds to the sth component of Zq, for q = 1, 2. Now let

f(·) be an even function. Then,

∫
f(w) {1− F (w)} dF (w) =

∫
f(w)F (−w)dF (w) =

∫
f(w)F (w)dF (w).

Evaluating all previous derivatives at β∗ = 0 and using the equality above

leads to:

∂

∂β∗s

[
h−1

1 (ZT
1 β
∗,ZT

2 β
∗)
] ∣∣∣

β∗=0
= − (Z1,s + Z2,s)

∫
f(w){1− F (w)}dF (w);

∂

∂β∗s

[
h−1

2 (ZT
1 β
∗,ZT

2 β
∗)
] ∣∣∣

β∗=0
= − (Z1,s + Z2,s)

∫
f(w){1− F (w)}dF (w);

∂

∂β∗s

[
F1(ZT

1 β
∗)F1(ZT

2 β
∗)
] ∣∣∣

β∗=0
= − (Z1,s + Z2,s)

∫
f(w)dF (w)

∫
F (w)dF (w)

= −(Z1,s + Z2,s)

2

∫
f(w)dF (w).



Finally, since ∫
f(w)dF (w) = 2

∫
f(w)F (w)dF (w),

we have that

∂

∂β∗s

[
F1(ZT

1 β
∗)F1(ZT

2 β
∗)
] ∣∣∣

β∗=0
= − (Z1,s + Z2,s)

∫
f(w)F (w)dF (w)

and equations (5.4) and (5.5) are satisfied. We therefore conclude that

∂

∂β∗s
Veff(β∗)

∣∣∣
β∗=0

= 0, (s = 1, . . . , p)

and so that β∗ = 0 minimizes the bias (5.1).



6. Computational issues

Table 1 demonstrates the performance (computation time in seconds) of the

three estimators. We fit a probit-PIM with 5 predictors to subsets of sizes

ranging from n = 25 to n = 200 of data of Section 4 of the main paper. All

computations are performed on two devices: a MacBook pro (mid 2014) 2,6

GHz Intel Core i5 with 8 GB 1600 MHz DDR3 RAM and a Dell PowerEdge

R900 2.66GHz Intel Xeon CPU X7460 with 132GB 667MHz DDR2 RAM.

Table 1: Computation time (in seconds) as a function of the sample size n.

n β̂
ST

β̂
BR

β̂
EFF

β̂
ST

β̂
BR

β̂
EFF

8 GB RAM 132 GB RAM

time (seconds)

25 0.005 0.055 1.585 0.011 0.301 8.627

50 0.007 1.800 23.199 0.020 2.787 45.546

75 0.011 12.996 183.303 0.035 13.852 215.664

100 0.017 64.086 821.156 0.096 33.394 379.219

150 0.039 720.514 10 483.180 0.075 124.264 1 780.878

200 0.071 4 353.420 58 751.820 0.119 404.274 4 321.588

Computation of β̂
ST

remains below one second since it only requires



inverting a diagonal matrix. The computation times of β̂
BR

and β̂
EFF

increase dramatically with the sample size. For n ≥ 100, the 132 GB RAM

machine is substantially faster since it does not need to use virtual memory.

It is clear that for sample sizes exceeding 150 β̂
BR

is practically unus-

able, while for β̂
EFF

this is already the case for sample sizes exceeding 100

when there is only 8 GB of memory. With 132 GB of memory and n = 200

β̂
BR

is still feasible, while β̂
EFF

becomes very slow when n ≥ 150.

7. Partition estimator: proof of Theorem 3

Let Si denote the set of indices corresponding to the ith part of the partition

of the full dataset where mi = |Si| and
∑k

i=1 mi = n with mi → ∞ as

n→∞, with k the number of subsets which satisfies k →∞ and k/
√
n→ 0

as n→∞. Under modelMPIM, β̃ is a consistent estimator for β0 since for

every i, β̂i = β0 + op(1) and thus β̃ = n−1
∑k

i=1 miβ̂i = n−1
∑k

i=1mi{β0 +

op(1)} = β0 + op(1) since
∑k

i=1mi = n. It further holds under MPIM that

√
mi(β̂i−β0) =

1
√
mi

∑
j∈Si

ϕ(Yj,Xj;β0,η0)+op(1) =
1
√
mi

∑
j∈Si

ϕ(Yj,Xj;β0,η0)+Op(1/
√
mi).



By the definition of the partition estimator, it now follows that

√
n(β̃ − β0) =

√
n

(
1

n

k∑
i=1

miβ̂i − β0

)

=
1√
n

k∑
i=1

mi

(
β̂i − β0

)
=

1√
n

k∑
i=1

√
mi

(
1
√
mi

∑
j∈Si

ϕ(Yj,Xj;β0,η0) + op(1)

)

=
1√
n

k∑
i=1

√
mi

(
1
√
mi

∑
j∈Si

ϕ(Yj,Xj;β0,η0) +Op(1/
√
mi)

)

=
1√
n

k∑
i=1

(∑
j∈Si

ϕ(Yj,Xj;β0,η0) +
√
miOp(1/

√
mi)

)

=
1√
n

n∑
j=1

ϕ(Yj,Xj;β0,η0) +
k∑
i=1

1√
n
Op(1)

=
1√
n

n∑
j=1

ϕ(Yj,Xj;β0,η0) + op(1)

where the last equality follows since we assume that k/
√
n→ 0 as n→∞,

which is satisfied when k = o(n0.5−δ) with 0 < δ < 0.5. From this derivation

we see that
√
n(β̃ − β0) and

√
n(β̂ − β0), with β̂ the estimator applied to

the entire dataset, have the same asymptotic distribution.



8. Simulation scenarios

The simulation scenarios used in Section 3 of the main paper, more specifi-

cally the values of α and u used to generate data under model (2.11), were

carefully chosen to empirically study settings where efficiency gains, when

the efficient PIM estimator β̂
EFF

is used instead of the simpler estimator

β̂
ST

, can potentially be found. We consider specific choices of α and u

to obtain two scenarios: in the first, α and u are chosen so that β̂
EFF

is

expected to outperform β̂
ST

in terms of mean squared error (MSE), while

in the second scenario α and u are chosen so that both estimators have

a more similar performance. These scenarios are obtained by maximizing

(or minimizing) the difference, with respect to the Frobenius norm, be-

tween the estimating functions (6) B̂
ST,T

(β){I −M(β)} with BST(β) =

DT (β)V−1
indep(β), and the estimating functions B̂

EFF,T
(β){I−M(β)} with

B̂
EFF

(β) = nDT (β){V(β) + Vindep(β)}−1, associated to β̂
ST

and β̂
EFF

,

respectively. As X is fixed by design, depending only on the upper value u,

the difference between these two estimating functions can be calculated at

fixed values of β and u and we expect this difference is related to the per-

formance of the two estimators. That is, we expect that gains in efficiency,

if any, will increase as the difference between the two estimating functions

(and thus between β̂
ST

and β̂
EFF

) increases.



8.1 Normally distributed data

Next we describe the choices of α and u that maximize or minimize

the difference between the two estimating functions, when the error term

follows either a normal or Gumbel distribution. These values were later

used to generate data for the simulation studies described in Section 3 of

the main paper.

8.1 Normally distributed data

8.1.1 Rationale

Recall that for the probit-PIM, BST(β) = (X∗−X)φ{(X∗−X)Tβ}V−1
indep(β)

and BEFF(β) = (X∗ − X)φ{(X∗ − X)Tβ}{V(β) + Vindep(β)}−1. Thus,

the two estimating functions differ by the structure of Veff(β) = V(β) +

Vindep(β): β̂
ST

ignores the correlation between the pseudo-observations

when estimating β while β̂
EFF

accounts for it. Maximizing this differ-

ence is, therefore, equivalent to maximizing the cross-correlation between

the pseudo-observations. That is, we must maximize the off-diagonal ele-

ments of V(β): cov{I(Y 4 Y ∗), I(Y 4 Y †) |X,X∗,X†;β} and cov{I(Y 4

Y ∗), I(Y ∗ 4 Y †) |X,X∗,X†;β}.

This maximization is a by-product of minimizing the second-order bias

of β̂
BR

(see Section 5, equations (5.2) and (5.3)) and is achieved at (X∗ −X)T β =

0. Therefore, when β0 = 0, which is obtained by setting α = 0 in (11), we



8.1 Normally distributed data

expect the largest difference in performance (i.e., in MSEs) between β̂
EFF

and β̂
ST

, while when β0 6= 0 we expect that both estimators have similar

MSEs.

8.1.2 Simulation results

Table 2 shows, based on 1000 Monte Carlo simulation runs, the average of

the estimates, empirical variances, the average of sandwich variance esti-

mates, coverage of 95% CIs and the relative efficiency based on the MSE

(relative to β̂EFF, where RE > 1 indicates that β̂
EFF

has a lower MSE) of

all three estimates, where

MSE(β̂) = {Av(β̂)− β0}2 + Var(β̂), (8.1)

with Av(·) and Var(·) the empirical Monte Carlo mean and variance of the

estimators.

Table 3 shows the results when we consider a binary covariate X =

(X1, X2), with X1 and X2 independent, where X1 takes equidistant values

between 0 and an upper value denoted by u and X2i ∼ U(0.1, 0.8) for

i = 1, . . . , bn/2c and X2i ∼ U(0.2, 1) for i = bn/2c + 1, . . . , n. The minor

differences in MSE between the estimators when a single covariate was

considered, are now practically vanished when the covariate is bivariate.



8.1 Normally distributed data

Table 2: Simulation results based on 1000 Monte Carlo runs, for model

(2.11) with a standard normal error distribution.

Estimators Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff

β0 = 0 β0 =
√

2 = 1.414

n = 25

β̂ST 0.005 0.068 0.057 92.0 1.004 1.497 0.135 0.092 88.2 1.031

β̂BR 0.005 0.067 0.058 91.3 0.994 1.427 0.153 0.132 89.5 1.114

β̂EFF 0.005 0.068 0.057 91.3 1.000 1.489 0.132 0.095 88.5 1.000

n = 50

β̂ST 0.002 0.030 0.029 94.5 1.002 1.449 0.060 0.048 92.6 1.020

β̂BR 0.002 0.029 0.029 94.6 0.998 1.413 0.071 0.063 94.4 1.192

β̂EFF 0.002 0.030 0.029 94.5 1.000 1.444 0.059 0.048 93.9 1.000

n = 100

β̂ST 0.000 0.015 0.014 95.4 1.001 1.443 0.030 0.027 93.8 1.024

β̂BR 0.000 0.015 0.014 95.3 0.995 1.415 0.036 0.030 94.3 1.207

β̂EFF 0.000 0.015 0.015 95.2 1.000 1.430 0.030 0.027 94.4 1.000

Note: Av(β̂): average of the β estimates; Var(β̂): Monte Carlo variance of β̂; Av(Σ̂(β̂)):

average of the sandwich variance estimates; Cov(%): coverage of 95% CIs; REeff: relative

efficiency compared to β̂EFF in terms of MSE.



8.1 Normally distributed data

Table 3: Simulation results based on 1000 Monte Carlo runs, for model

(2.11) with a standard normal error distribution and u = 2.

Estimators Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff

β0 = (0, 0) β0 = (0.707, 0.707)

n = 40

β̂
ST

0.008 0.220 0.178 91.7 1.010 0.739 0.209 0.173 91.0 1.009

0.005 0.307 0.280 93.7 1.017 0.759 0.261 0.261 95.5 1.007

β̂
BR

0.007 0.220 0.181 92.7 1.008 0.734 0.210 0.184 93.5 1.013

0.008 0.301 0.283 94.1 0.999 0.754 0.266 0.270 95.5 1.024

β̂
EFF

0.008 0.218 0.186 92.5 1.000 0.737 0.207 0.173 92.0 1.000

0.007 0.302 0.294 94.2 1.000 0.757 0.259 0.262 94.5 1.000

n = 80

β̂
ST

0.006 0.103 0.089 92.4 0.998 0.728 0.092 0.083 93.9 0.993

0.010 0.156 0.138 93.6 0.992 0.753 0.135 0.128 95.6 1.001

β̂
BR

0.007 0.103 0.089 92.9 1.005 0.730 0.101 0.090 94.4 1.098

0.010 0.158 0.139 93.4 1.006 0.749 0.149 0.136 94.6 1.099

β̂
EFF

0.007 0.103 0.091 92.1 1.000 0.730 0.092 0.084 93.9 1.000

0.010 0.157 0.142 93.4 1.000 0.756 0.136 0.129 94.8 1.000

Note: Av(β̂): average of the β estimates; Var(β̂): Monte Carlo variance of β̂; Av(Σ̂(β̂)):

average of the sandwich variance estimates; Cov(%): coverage of 95% CIs; REeff: relative

efficiency compared to β̂
EFF

in terms of MSE.



8.2 Gumbel distributed data

8.2 Gumbel distributed data

8.2.1 Rationale

Recall that for the logit-PIM, BST(β) = (X∗ −X) and BEFF(β) = (X∗ −

X)expit{(X∗−X)Tβ}[1− expit{(X∗−X)Tβ}]{V(β) + Vindep(β)}−1. The

difference between the two estimating functions depends not only on the

structure of V(β), as in the probit-PIM, but also on expit{(X∗−X)Tβ}. As

this is substantially more complicated than before, the difference between

them was maximized, with respect to β and u, the upper limit of the X-

values, numerically. Figure 1 shows that, for n = 25 and 50, the difference

between the two estimating functions, and therefore between the two esti-

mators β̂
ST

and β̂
EFF

, increases as the product (X∗ −X)Tβ deviates from

zero. That is, we expect that regions away from the origin are more likely

to lead to more efficient estimates when the efficient PIM estimator β̂
EFF

is used instead of β̂
ST

. When α (and thus β0) is zero, gains in efficiency

are expected to be smaller, if any.

8.2.2 Simulation results

Table 4 shows the average of the estimates, empirical variances, the average

of sandwich variance estimates, coverage of 95% CIs and the relative effi-

ciency (relative to β̂
EFF

) for different values of α (where β̂
EFF

is expected to



8.2 Gumbel distributed data
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Figure 1: Contour plots for the Frobenius norm of the difference between

the estimating functions of β̂
ST

and β̂
EFF

, with respect to β and u, the

range of the X-values, for n = 25 (left panel) and n = 50 (right panel) for

the logit-PIM (Gumbel distributed data).



8.2 Gumbel distributed data

perform better than β̂
ST

when α 6= 0) and sample sizes, after 1000 Monte

Carlo runs and with u fixed at 2.

Table 4: Simulation results based on 1000 Monte Carlo runs, for model

(2.11) with a Gumbel distributed error and u set to 2.

Estimators Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff

β0 = 0 β0 = 2

n = 25

β̂ST 0.030 0.180 0.151 93.0 0.996 2.169 0.456 0.304 88.4 1.195

β̂BR 0.030 0.179 0.154 93.0 0.989 2.018 0.397 0.362 89.4 0.981

β̂EFF 0.032 0.181 0.152 92.6 1.000 2.113 0.393 0.309 90.5 1.000

β̂PH −0.021 0.153 0.137 95.5 0.844 2.115 0.340 0.319 95.8 0.872

n = 50

β̂ST 0.000 0.083 0.075 95.0 1.001 2.077 0.192 0.161 91.3 1.207

β̂BR −0.001 0.083 0.075 95.2 1.000 1.995 0.185 0.173 92.5 1.129

β̂EFF 0.000 0.083 0.075 94.8 1.000 2.037 0.163 0.150 92.6 1.000

β̂PH 0.001 0.064 0.062 95.2 0.777 2.046 0.132 0.134 94.9 0.816

n = 100

β̂ST 0.010 0.040 0.037 94.2 0.995 2.016 0.088 0.083 93.4 1.205

β̂BR 0.010 0.041 0.037 93.7 1.005 1.987 0.083 0.087 95.0 1.137

β̂EFF 0.010 0.041 0.037 94.4 1.000 1.985 0.073 0.074 94.1 1.000

β̂PH 0.006 0.031 0.029 94.2 0.765 2.035 0.059 0.062 94.9 0.822

Note: Av(β̂): average of the β estimates; Var(β̂): Monte Carlo variance of β̂; Av(Σ̂(β̂)):

average of the sandwich variance estimates; Cov(%): coverage of 95% CIs; REeff: relative

efficiency compared to β̂EFF in terms of MSE.



8.3 Partition estimator

Results for different values of β for a bivariate covariate are displayed

in Table 5. Similar as for the probit PIMs, the difference between the PIM

estimators practically vanishes when a bivariate covariate is considered.

8.3 Partition estimator

Table 6 shows the results when the data generating model of Section 2.4 is

considered for which k = bn0.25c partitions are used for β̃
ST

. For n ≥ 500

the partition estimator β̃
ST

is almost as efficient as β̂
ST

. The partition

variance estimator exhibits a slight underestimation, but this reduces with

increasing sample size. Overall we can say that the distributions of β̃
ST

and β̂
ST

are approximately equal for n ≥ 500.



8.3 Partition estimator

Table 5: Simulation results based on 1000 Monte Carlo runs, for model

(2.11) with a Gumbel error and u = 1.

Estimators Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff Av(β̂) Var(β̂) Av{Σ̂(β̂)} Cov(%) REeff

β0 = (0, 0) β0 = (1, 1)

n = 40

β̂
ST

−0.012 0.521 0.458 93.5 1.039 1.041 0.572 0.495 94.0 1.044

0.013 0.793 0.717 93.7 1.062 1.048 0.860 0.774 94.1 1.067

β̂
BR

−0.007 0.502 0.456 93.7 1.001 1.029 0.567 0.494 93.3 1.033

0.011 0.746 0.708 93.6 0.999 1.019 0.811 0.764 93.4 1.004

β̂
EFF

−0.008 0.502 0.468 92.6 1.000 1.032 0.549 0.503 93.5 1.000

0.010 0.747 0.727 93.6 1.000 1.024 0.807 0.775 93.9 1.000

β̂
PH

0.013 0.447 0.403 95.1 0.891 1.038 0.460 0.428 95.1 0.840

−0.006 0.660 0.637 95.1 0.883 1.044 0.696 0.666 95.2 0.864

n = 80

β̂
ST

0.022 0.257 0.228 93.6 0.996 1.059 0.283 0.247 93.8 1.004

−0.055 0.359 0.353 94.9 1.027 0.969 0.401 0.380 94.8 1.083

β̂
BR

0.022 0.260 0.228 94.2 1.009 1.065 0.314 0.254 93.2 1.116

−0.055 0.352 0.352 94.6 1.007 0.957 0.387 0.374 94.7 1.047

β̂
EFF

0.022 0.258 0.234 93.8 1.000 1.057 0.282 0.253 93.6 1.000

−0.057 0.350 0.357 94.5 1.000 0.954 0.369 0.360 95.0 1.000

β̂
PH

−0.015 0.203 0.185 94.7 0.787 1.054 0.217 0.197 94.2 0.773

0.044 0.277 0.285 96.1 0.789 0.984 0.305 0.299 95.3 0.822

Note: Av(β̂): average of the β estimates; Var(β̂): Monte Carlo variance of β̂; Av(Σ̂(β̂)):

average of the sandwich variance estimates; Cov(%): coverage of 95% CIs; REeff: relative

efficiency compared to β̂
EFF

in terms of MSE.



8.3 Partition estimator

Table 6: Comparison of β̂ST and β̃ST when β0 = 2 and based on 1000

Monte-Carlo simulations with k = bn0.25c partitions.

n Av(β̂ST) Var(β̂ST) Av{Σ̂(β̂ST)} Cov(%) Av(β̃ST) Var(β̃ST) Av{Σ̂(β̃ST)} Cov(%) REeff

250 2.022 0.0346 0.0343 94.80 2.052 0.0374 0.0335 92.90 1.1447

500 2.005 0.0172 0.0172 94.00 2.025 0.0176 0.0169 94.30 1.0604

1000 1.996 0.0085 0.0086 95.20 2.010 0.0087 0.0085 94.60 1.0321

2000 2.001 0.0044 0.0043 94.90 2.009 0.0044 0.0043 94.10 1.0345

5000 1.999 0.0017 0.0017 95.90 2.004 0.0017 0.0017 95.80 1.0211

Note: Av(β̂): average of the β estimates; Var(β̂): Monte Carlo variance of β̂; Av(Σ̂(β̂)):

average of the sandwich variance estimates; Cov(%): coverage of 95% CIs; REeff: relative

efficiency compared to β̂ST in terms of MSE.



9. Cox partial likelihood estimator

To better understand the restrictions imposed by the probabilistic index

models, we also added β̂
PH

, the Cox partial likelihood estimator, to the

simulation study. As noted in Section 3.2 of the main paper, a semipara-

metric transformation model with Gumbel error (location parameter zero

and scale parameter one),

H(Y ) = XTβ + ε,

is equivalent to the Cox proportional hazard model,

λ(y | X) = λ0(y)× exp(XTβ),

where λ(y | X) is the hazard rate function and λ0(y) is the baseline hazard

rate, in which case β̂
PH

is the efficient estimator under this more restrictive

semiparametric transformation model.

To see that the semiparametric transformation model with Gumbel er-

ror is more restrictive than the logit-PIM logit{P(Y � Y ∗ | X,X∗)} =

(X∗−X)Tβ, we consider the estimating equation of β̂
PH

for the Cox model

(in the absence of censoring), see Tsiatis (2006), p.126:

n∑
i=1

[
Xi −

∑n
j=1 Xj exp(XT

j β)I(Yi < Yj)∑n
j=1 exp(XT

j β)I(Yi < Yj)

]
= 0,



which can be rewritten as

n∑
i=1

∑n
j=1 exp(XT

j β)I(Yi < Yj)(Xi −Xj)∑n
j=1 exp(XT

j β)I(Yi < Yj)
= 0.

This estimating function is unbiased under the Cox proportional hazard

model, but is not guaranteed to be unbiased under the PIM. One can see

this because the above form suggests that evaluation of the mean of the

above estimating function demands knowledge about the joint distribution

of the pseudo-observations I(Yi < Yj). This is information not subsumed

by the PIM, suggesting that β̂
PH

is not contained in the class of RAL

estimators for β under the PIM. It is at least as efficient as β̂
EFF

by relying

on more stringent restrictions on the observed data law.



10. Illustration

Figure 2 shows the residual and normal QQ-plot when analysing the data

according to least squares regression. Since the residual plot shows a non-

constant variance and the QQ-plot indicates a violation of the normality

assumption, a Box–Cox transformation is considered. The upper panel of

Figure 3 displays the Box–Cox transformation. Figure 3 (lower panels)

indicates that the Box–Cox transformation stabilizes the variance and that

the residuals are approximately normally distributed.
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Figure 2: Residual and normal QQ-plot of least-squares regression of the

original outcome.
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Figure 3: Residual and normal QQ-plot of least-squares regression of the

transformed outcome (lower panels) according to a Box–Cox power trans-

formation (upper panel).



11. Working covariance structure versus true covariance struc-

ture of pseudo-observations

In the paper, we showed that β̂
ST

can be obtained from BEFF(β) by setting

V(β) = 0 and BBR(β) is obtained by considering Vijkl(β) with a fixed

β = β∗ chosen to minimize the second-order finite sample bias. In some

of the simulations when β0 6= 0, β̂
BR

is less efficient than β̂
ST

. As the

parameter of interest β0 deviates from zero, the bias-reduced PIM estimator

β̂
BR

behaves worse than β̂
ST

which assumes an independence covariance

structure. This is because as we deviate more from the null (β0 = 0),

the covariance structure used in the construction of β̂
BR

becomes more

misspecified than that used in the construction of β̂
ST

.

More intuition into this behavior can be garnered as follows. We focus

on the following semiparametric transformation model: H(Y ) = αX+ε and

consider the X-values to be fixed and α > 0, delivering the PIM in equation

(12) of the revised manuscript. Recall that the off-diagonal elements of the

covariance matrix V(β) are given by

Vijik(β) = P(Yi < min(Yj, Yk) | Xi, Xj, Xk)−Mij(β)Mik(β),

Vijjk(β) = P(Yi < Yj < Yk | Xi, Xj, Xk)−Mij(β)Mjk(β).

Using the semiparametric transformation model, we obtained model-based



expressions for P(Yi < min(Yj, Yk) | Xi, Xj, Xk) and P(Yi < Yj < Yk |

Xi, Xj, Xk), see equations (13) and (14) of the manuscript. When α (and

thus β) becomes larger and the X-values are fixed, the Y -values also become

more separated and their order becomes completely determined by the order

of the X-values, since the error-term becomes less important for larger α-

values. This implies that for instance P(Yi < min(Yj, Yk) | Xi, Xj, Xk)→ 1

when Xi < min(Xj, Xk) since the distance between the Y -values increases

(since the error-term becomes less important as argued above). Similarly, as

we deviate more from the null, we also have that P(Yi < Yj | Xi, Xj) → 1

for Xi < Xj. We thus find that in this case Vijik(β) → 1 − 1 = 0. If

we are not in this case, then both P(Yi < min(Yj, Yk) | Xi, Xj, Xk) and

P(Yi < Yj | Xi, Xj) go to zero. We thus find that Vijik(β) approaches zero

as we deviate more from the null. A similar reasoning can be made for

Vijjk(β).

In conclusion: the off-diagonal elements of the covariance matrix go to

zero as we deviate more from the null (β0 = 0). This is why β̂ST (assuming

independence covariance structure) turns out to be more efficient than β̂BR

in such cases (indeed, for the bias-reduced PIM estimator, the covariance

matrix is evaluated at β∗ = 0 so that the off-diagonal elements get values

1/12 or −1/12).



We illustrate the above arguments by means of some simulation ex-

periments. We consider a sample size n = 25 and we generate data from

a normal linear model Yi = αXi + εi with εi ∼ N(0, 1) for i = 1, . . . , 25

with Xi (fixed throughout the simulations) taking equally spaced values

between 0 and 1 for varying values of α, and thus for varying values of

β = α/
√

2. Specifically, we calculate the off-diagonal elements Vijik(β) and

Vijjk(β) with i = 1, j = 4 and k = 25. The results of these off-diagonal

elements are shown in Figure 4. The solid line corresponds to the true

covariance structure, in which case β̂EFF is used and this depends on the

true value of β. The dashed line corresponds to β̂BR, in which case Vijjk(β)

(left) and Vijik(β) (right) are constant (1/12 or −1/12) since the covari-

ance does not change here as a function of β. The dotted line corresponds

to β̂ST, in which case Vijjk(β) (left) and Vijik(β) (right) are constant and

both equal to zero. We focus on the left panel of the figure. We observe

that when the true parameter β0 is close to zero (so we are close to the

null), the covariance structure used for β̂BR, is close to the true covariance

structure used for β̂EFF since the covariance structure used by β̂BR then

closely resembles the true covariance structure used by β̂EFF. Next, when

the true β0 deviates from zero, the off-diagonal element of the true covari-

ance structure decreases as β deviates more from zero. In this case, the
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independence covariance structure used by β̂ST now better approximates

the true covariance structure (since the latter approaches the zero line). A

similar reasoning can be made using the right panel.

To get an overall idea of how well the different covariance structures

compare to each other on the whole, in Figure 5, we compare the Frobenius

norm of the inverse of the corresponding covariance structure V(β) as a

function of β for β̂EFF (solid line), β̂BR (dotted line) and β̂ST (dashed line).

When the true parameter β0 is close to zero, we see close correspondence

between the Frobenius norm of the inverse covariance matrix when β̂BR or

β̂EFF is used and where that of β̂ST is deviating. As the true β0 deviates

from zero, the Frobenius norm of the inverse of the covariance matrices

obtained from the β̂ST and β̂EFF become more similar than that obtained

from β̂BR. This suggests that when β̂BR is used, estimation of the covariance

matrix is done poorly when the true β deviates from zero, leading to less

efficient estimates, explaining the behavior seen in the simulations.
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Figure 4: Off-diagonal elements Vijjk(β) (left panel) and Vijik(β) (right

panel), for i = 1, j = 4 and k = 25; computed for several values of β.

The solid line corresponds to the case when the semiparametric efficient

estimator β̂EFF is used, the dashed line corresponds to the case the bias-

reduced estimator β̂BR is used and the dotted line corresponds to the case

where β̂ST is used.
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Figure 5: Frobenius norm for the inverse of the three covariance matrices

used for the different estimators β̂ST (dashed line), β̂BR (dotted line) and

β̂EFF (solid line).
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