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Abstract: In the classical setting of the change-point estimation problem, where there

is no consistent procedure, a lower bound on the limit of the maximum of error prob-

abilities is established. This bound is attained by the maximum likelihood estimator

when the two probability distributions before and after the change-point are known.

The minimaxity of the maximum likelihood procedure in the sense of attaining the

mentioned bound is proved for observations from an exponential family.
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1. Introduction and Summary

In this paper the classical setting of the change-point estimation problem

which has been studied by a number of authors (see Hinkley (1970), Cobb (1978))

is considered. It is well known that in this setting there is no consistent estimator

of the change-point so that to study the asymptotic e�ciency the setting is

usually modi�ed to allow the distributions to depend on the sample size in some

fashion (Carlstein (1988), Ritov (1990)).

In Section 2, we establish a lower bound on the limit of the largest of er-

ror probabilities in estimating the change-point. This bound is attained by the

maximum likelihood estimator when the two probability distributions before and

after the change-point are completely known.

When the observations are from an exponential family it is shown in Sec-

tion 3 that the maximum likelihood procedure is asymptotically minimax in that

it attains the lower bound. The proof of this result reveals that the likelihood

ratio process behave locally like random walks under both conditional and un-

conditional probability laws. (The proof make use of a result from Hu (1991)

concerning conditional random walks). This fact helps to get a better insight

into the performance of likelihood based procedures in the change-point problem

and may be useful in deriving other results for procedures using the likelihood

ratio method.
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Numerical results in the case of normal observations with unknown means

are also reported. These results give evidence of the accuracy of the lower bound

for moderate sample sizes.

2. A Lower Bound for Error Probabilities

Let F and G be two di�erent distribution functions with densities f and g

and assume that the observed data

X = fX1; : : : ;X� ; X�+1; : : : ;Xmg;
consists of two independent parts, fX1; : : : ;X�g being a random sample from

distribution F , and the second random sample fX�+1; : : : ; Xmg coming from

distribution G. In other words � is the change-point, the parameter of interest.

It is known (cf Hinkley (1970)) that there is no consistent estimator of �. In our

approach, asymptotic e�ciency is de�ned by means of the error probabilities,

which do not tend to zero as sample size increases, but which satisfy the inequality

(2.1) in Lemma 1 analogous to the known one in the classical multiple decision

problem (see Kra�t and Puri (1974)).

Let �̂ denote the maximum likelihood estimator, i.e.

�̂ (X) = argmaxf
kX

j=1

log f(Xj) +
mX

j=k+1

log g(Xj)g = argmax

8<
:

kX
j=1

log
f(Xj)

g(Xj)

9=
; :

We accept here the usual convention that when the maximizer in this formula is

not de�ned uniquely, the smallest value is chosen.

Lemma 1. If both m� � !1 and � !1 as m!1, then for any estimator

� = �(X)

lim inf max
�

P
�
�(X) 6= �

�
� limmax

�

P
�
�̂(X) 6= �

�
= 1� expf�d(F;G)g; (2:1)

where

d(F;G) =
1X
k=1

k�1

"
P (

kX
1

Yj � 0) + P (
kX
1

Zj > 0)

#
:

Here Yj = log g(Xj) � log f(Xj) with Xj having the distribution F and Zj =

log f(Xj)� log g(Xj) with Xj having the distribution G.

Proof of Lemma 1. The proof of Inequality (2.1) is based on the following fact.

The maximum likelihood estimator is the Bayes estimator against the uniform

prior for � under the zero-one loss function. Therefore
mX
i=1

P
�
�(X) = i

�
�

mX
i=1

P
�
�̂(X) = i

�
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so that

lim inf
m!1

min
1�i<m

P
�
�(X) = i

�
� lim

m!1

m�1

mX
i=1

P
�
�̂(X) = i

�
:

One has

P
�
�̂(X) = i

�
= P

� kX
1

Yj � 0; k = 1; : : : ; i� 1;
nX
i

Zj < 0; n = i+ 1; : : : ;m
�

= P
� kX

1

Yj � 0; k = 1; : : : ; i� 1
�
P
� kX

1

Zj < 0; k = 1; : : : ;m� i
�
= pi�1qm�i:

According to known results of random walks theory (cf. Siegmund (1985,

Cor: 8.44) or Woodroofe (1982, Cor: 2.4)) as i!1

pi ! p = expf�
1X
k=1

k�1P (
kX
1

Yj � 0)g

and a similar formula holds for qm�i. Inequality (2.1) now follows from the fact

that if the sequences of positive numbers pi and qi converge to limits p and q

respectively then

m�1

mX
i=1

pi�1qm�i ! pq

(cf. Knopp (1956, Sec. 2.4)).

The quantity d(F;G) = d(G;F ) de�ned by (2.1) provides a new \information

-type" divergence between distributions F and G. Indeed, as is easy to see,

d(F; F ) =1; and d(F;G) = 0; if F and G are singular.

If F and G are two normal distributions with the same, say, unit variance

and means �1 and �2, then

d(F;G) = do(�) = 2
1X
k=1

k�1�(��
p
k) (2:2)

with � = 0:5 j �1��2 j and � denoting the standard normal distribution function.

This function plays an important role in sequential analysis and renewal theory

(see Siegmund (1985)). Its values are tabulated in Woodroofe (1982, p: 33). Some

other properties of d(F;G) are given in Rukhin (1994).

Lemma 1 shows that the maximum likelihood estimator is asymptotically

minimax. Now we give an example of an estimator which is not asymptotically

minimax, i.e. for which the inequality in Lemma 1 is strict. Pettitt (1980)
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suggested the following cusum type statistic for the estimation of the change

point in a sequence of Bernoulli distributed observations, namely,

~�(X) = argmin

8<
:

kX
j=1

log
g(Xj)

f(Xj)
� k

m

mX
j=1

log
g(Xj)

f(Xj)

9=
; :

In James, James and Siegmund (1987) this statistic is studied for arbitrary dis-

tributions.

Assume that �=m! � with 0 < � < 1 such that

� = (1� �)EG log
g(X)

f(X)
� �EF log

f(X)

g(X)
:

Then almost surely as m!1

T = Tm =
1

m

mX
j=1

log
g(Xj)

f(Xj)
! �

and in the notation of Lemma 1

P (~�(X) = �)

= P
� kX

1

Yj � kT; k = 1; : : : ; � � 1;
nX
�

Zj < �(n� � + 1)T; n = � + 1; : : : ;m
�

= E
h
P
� kX

1

Yj�kT; k=1; : : : ; � � 1jT
�
P
� kX

1

Zj<�kT; k=1; : : : ;m� �jT
�i
:

As in the proof of Lemma 1 one obtains

P (~�(X) = �)! P
�
k�1

kX
1

Yj � �; k = 1; : : :
�
P
�
k�1

kX
1

Zj < ��; k = 1; : : :
�

= exp

(
�

1X
k=1

k�1[P (
kX
1

Yj � k�) + P (
kX
1

Zj > �k�)]
)
:

The quantity in the right-hand side of the last formula is maximized when � = 0.

Indeed for any k

P (
kX
1

Yj � k�) + P (
kX
1

Zj > �k�) � P (
kX
1

Yj � 0) + P (
kX
1

Zj > 0)

with strict inequality if P (0 <
P

k

1
Yj � kj�j) > 0. This demonstrates the fact

that ~�(X) is not asymptotically minimax.
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For example, when F and G are Bernoulli distributions with probabilities p1
and p2 respectively, one has

� = [(1� �)p2 + �p1] log
p2

p1
+ [(1� �)(1 � p2) + �(1� p1)] log

1� p2

1� p1

and

P (
kX
1

Yj � k�) = P

�
n log

1� p1

1� p2
+ nj�j > Bk log

p2(1� p1)

p1(1� p2)
> n log

1� p1

1� p2

�
;

where Bk is binomial random variable with parameters k and p1. The function

d(F;G) for these distributions is tabulated in Rukhin (1995).

James, James and Siegmund (1987) studied �ve inference procedures for the

change-point. They came to the conclusion that a modi�ed maximum likelihood

procedure and Pettitt's rule ~�(X) were the best with the modi�ed maximum

likelihood procedure being slightly better than ~�(X). Indeed, numerical results

in James, James and Siegmund (1987) indicate that Pettitt's rule does not behave

well when the change-point is close to the boundary. Our conclusion that ~�(X)

is not asymptotically minimax con�rms the �nding of these authors and adds

new dimension to the comparison of these two alternative approaches.

3. Asymptotic Minimaxity of the Maximum Likelihood Estimator in

Exponential Families

In this section we study the change-point estimation problem in an exponen-

tial family. Speci�cally we assume that F and G are members of an exponential

family of the form

dF�(x) = expf�x�  (�)gdF0(x);
relative to some non-degenerate distribution function F0. We shall treat only

real x and �, although the extension to the multivariate case is straightforward.

However, the case of vector �, where only part of the components change at �,

is considerably more di�cult (see James, James and Siegmund (1987)).

It is well-known that �(�) � E�(X) =  0(�) and Var�(X) =  00(�) > 0. Since

�(�) is strictly increasing one can write �(�), that is, � as a function of �. For

�0 6= �1, let fX1; : : : ;X�g and fX�+1; : : : ; Xmg be two random samples from F�0
and F�1 respectively.

Let H(x) = sup
�
f�x�  (�)g, Sn = X1 + � � �+Xn and

�n = nH

�
Sn

n

�
+ (m� n)H

�
Sm � Sn

m� n

�
:

The maximum likelihood estimator �̂ of � can be calculated as follows.
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For �xed � let `n(�) = �Sn�n (�) and `n;m(�) = �(Sm�Sn)�(m�n) (�) be
the log likelihood ratio statistic of fX1; : : : ;Xng and fXn+1; : : : ;Xmg respectively.
Then

max
n

sup
�0;�1

[`n(�0) + `n;m(�1)] = max
n

�n:

Hence

P�;�0;�1f� = �̂g = P�;�0;�1f max
1�n�m

�n = ��g: (3:1)

Let fUkg be a random walk with increments having the same distribution as

`1(�1)� `1(�0) = X(�1 � �0)� [ (�1)�  (�0)] where X has distribution function

F�0 . Hence random walk fUkg has drift E�0
[log

dF�1

dF�0

(X)] < 0. De�ne �+ = inffk :
Uk > 0g.

Similarly let fVkg be a random walk with increments having the same distri-

bution as `1(�0)� `1(�1) = X(�0� �1)� [ (�0)� (�1)] where X has distribution

function F�1 . Clearly random walk Vk also has negative driftE�1
[log

dF�0

dF�1

(X)] < 0.

De�ne � 0
+
= inffk : Vk � 0g.

The next theorem shows that �̂ is asymptotically minimax for estimating

the change point in an exponential family. Indeed according to (3.2) for any

di�erent parametric values �0; �1 its error probability behaves asymptotically as

that of the maximum likelihood estimator (which uses the knowledge of �0 and

�1). In this sense estimator �̂ exhibits adaptive behavior, i.e. if �'s are viewed as

nuisance parameters it is performing in an asymptotically optimal way for any

unknown (but �xed) values of nuisance parameters.

Theorem 3.1. Assume the distributions of maxn�1 Sn=n and minn�1 Sn=n have

no atom at ( (�1)�  (�0))=(�1 � �0) under probability laws P�0 and P�1 . (This

condition is always satis�ed if F�1 and F�0 are atomless.) If � � m� for some

0 < � < 1, then

lim
m!1

P�;�0;�1f� = �̂g = Pf�+ =1gPf� 0
+
=1g

=exp

(
�

1X
k=1

1

k

"
P�0

 
kX
1

log
dF�1
dF�0

(Xj) � 0

!
+ P�1

 
kX
1

log
dF�0
dF�1

(Xj) > 0

!#)

=expf�d(P�0 ; P�1)g: (3:2)

Proof of Theorem 3.1. The starting point is the following lemma whose proof

will be given in the Appendix.

Lemma 2. Let �̂0 = argmax1�n���n, �̂1 = argmax
��n�m

�n. For any a sat-

isfying 1=2 > a > 0, let Bm = f� � ma � �̂0g and B0
m

= f�̂1 � � + mag.
Then

lim
m!1

P�;�0;�1fBmg = 1 = lim
m!1

P�;�0;�1fB0mg: (3:3)
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Lemma 2 states that the maximum of f�n; n = 1; : : : ;mg occurs in a rela-

tively small set f� �ma; � �ma + 1; : : : ; � +ma � 1; � +mag; with probability

close to 1 for any a satisfying 1=2 > a > 0 and m su�ciently large. Thus

lim
m!1

P�;�0;�1f� = �̂g = lim
m!1

P�;�0;�1f max
��ma�n��+ma

�n = ��g

=

Z
P�;�0;�1f max

��ma�n��+ma

�n = �� jS� ; SmgPfdS� ; dSmg: (3:4)

By su�ciency, P�;�0;�1fmax��ma�n��+ma �n = �� jS� ; Smg does not depend on

�0; �1. Furthermore, given (S� ; Sm) random variables f�n; n = 1; 2; : : : ; �g and

f�n; n = �; : : : ;mg are conditionally independent. Hence the left hand side of

(3.4) equalsZ
Pf max

��ma�n��

�n = �� jS� ; SmgPf max
��n��+ma

�n = �� jS� ; SmgP�;�0;�1fdS� ; dSmg:
(3:5)

By the law of large numbers S� � ��0 and Sm � m[��0 + (1 � �)�1] almost

surely. Let ��0 + (1� �)�1 = ��. It su�ces to approximate

Pf max
��ma�n��

�n = �� jS�=� = x; Sm=m = yg; (3:6)

and

Pf max
��n��+ma

�n = �� jS�=� = x; Sm=m = yg (3:7)

for x; y in an arbitrarily small neighborhood around �0 and �� respectively. Since

the expansions and approximations below hold uniformly over an appropriate

neighborhood, for simplicity only the approximation of x = �0; y = �� will be

given.

We consider only the approximation of (3.6). That of (3.7) can be obtained

similarly. For � �ma � n � �, a Taylor's expansion and the fact that H 0(x) =

�(x), xH 0(x)�H(x) =  (x) give

nH
�Sn
n

�
� �H

�S�
�

�

= (n��)H
�S�
�

�
�(n��)S�

�
H 0

�S�
�

�
+(Sn�S�)H 0

�S�
�

�
+
n

2

�Sn
n
�S�
�

�2
H 00(��

n
)

= (Sn � S�)�̂n � (n� �) (�̂n) +R1;n; (3:8)

where �̂n = �(Sn=n) and R1;n = n(Sn=n�S�=�)2H 00(��
n
)=2, with some ��

n
between

Sn=n and S�=�.

Similarly

(m�n)H
�Sm�Sn
m� n

�
�(m��)H

�Sm�S�
m� �

�
=�(Sn�S�)�̂m;n+(n��) (�̂m;n)+R2;n;

(3:9)
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where �̂m;n = �((Sm � Sn)=(m � n)) and R2;n = (m � n)[(Sm � Sn)=(m � n) �
(Sm � S�)=(m � �)]2H 00(��

m;n
)=2 is the remainder in the Taylor's expansion.

From (3.8) and (3.9), it follows that

�n��� = (S� �Sn)(�̂m;n� �̂n)� (� �n)[ (�̂m;n)� (�̂n)] +R1;n+R2;n: (3:10)

By Lemma 4.1 of Hu (1991), the behavior of S� � Sn for n = �; : : : ; � �ma

under Pf�jS�=� = �0g is asymptotically the same as that under P�0 . Thus with

C = fS�=� = �0; Sm=m = ��g one has

lim
m!1

Pf max
��ma�n��

j�̂n � �0j > �jCg = 0; (3:11)

and

lim
m!1

Pf max
��ma�n��

j�̂m;n � �1j > �jCg = 0: (3:12)

Furthermore

Pf max
��ma�n��

n

2
(
Sn

n
� S�

�
)2 > �jCg

= Pf max
��ma�n��

n[
�(Sn � S�) + (� � n)S�

n�
]2 > 2�jCg

� Pf max
��ma�n��

(Sn � S�)
2

n
+
m2aS2

(n�)2
> �jCg: (3:13)

Since m2a=n! 0, for m su�ciently large, (3.13) is dominated by

Pf max
��ma�n��

(Sn � S�)
2

n
� �

3
j Cg � Pf

P
m

2a
+1

i=1
jXij2

n
>
�

3
j Cg � m2aE[X2

i
j C]

n�
:

(3:14)

By Lemma 4.5 of Hu (1991), the last term of (3.14) behaves like m2aE�0
(X2

i
)=n�,

which tends to 0. Hence

Pf max
��ma�n��

jR1;nj > �jCg ! 0: (3:15)

By a similar argument, one can show that

Pf max
��ma�n��

jR2;nj > �jCg ! 0: (3:16)

From (3.10),(3.11), (3.12), (3.15), (3.16), and Lemma 4.1 of Hu (1991), it

follows that

lim
m!1

Pf max
��ma�n��

�n = �� jCg = Pf�+ =1g; (3:17)
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if the distribution of maxn�1 Sn=n (minn�1 Sn=n) for �1 > �0 (�1 < �0) under P�0
has no point mass at [ (�1)�  (�0)]=(�1 � �0).

Similarly

lim
m!1

Pf max
��n��+ma

�n = �� jCg = Pf� 0+ =1g; (3:18)

if the distribution of maxn�1 Sn=n (minn�1 Sn=n) for �1 < �0 (�1 > �0) under P�1
has no point mass at [ (�1)�  (�0)]=(�1 � �0). This completes the proof.

Corollary. Under conditions of Theorem 3:1, for any two real numbers 0 <

�1 < �2 < 1

lim
m!1

max
m�1���m�2

P�;�0;�2(�̂ = �) = exp[�d(F�0 ; F�1)]:

Indeed the convergence in (3.2) is uniform in � such that m�1 � � � m�2
which can be seen from Lemmas 4.1 and 4.5 of Hu (1991) and the fact that

Cherno� type exponential inequality holds uniformly in exponential families.

Some numerical results for normal distributions are reported below. Let �̂ be

the maximum likelihood estimator of change-point � in a sequence of independent

normal observations with the same known variance, say, �2 = 1 and unknown

means �1 and �2. Thus  (�) = �2=2; �(�) = � and H(x) = x2=2. A simple

calculation shows that in this case

�̂ = arg max
1�k<m

[Sk � kSm=m]
2

k(1� k=m)
:

Let �̂ be the maximum likelihood estimator of � when means �1 and �2 are known,

say, �2 > �1. Then

�̂ = arg max
1�k<m

[Sk � k(�1 + �2)=2]

and (2.2) implies that

lim
n!1

P (�̂ = �) = expf�2
1X
k=1

k�1�(��
p
k)g;

where � = 0:5 j �1 � �2 j. According to Theorem 3.1 P (�̂ = �) has the same

limit. Pettitt's estimator ~� discussed in the end of Section 2 in this situation has

the form

~� = arg max
1�k<m

�
Sk � k

m
Sm

�
:

Figure 1 shows the probabilities of the correct decision for �̂, �̂ and ~� when

� = 1 and m = 40 for � = 1; : : : ; 20. Notice that for all considered estimators
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these probabilities are symmetric about � = 0:5m = 20. These results are

based on Monte Carlo simulations with 50,000 replicas of i.i.d. standard normal

variables. This �gure shows that the estimator �̂ is doing just slightly worse than

�̂, which uses the knowledge about the exact values of �1 and �2, for � not to far

from 0:5m. Surprisingly, for extreme values of � the probabilities of the correct

decision for �̂ even exceed this bound which corresponds to expf�dog = 0:641

determined from (2.2) which is depicted in Figure 1 by the solid line. Estimator

~� behaves well only for � very close to 0:5m and rather poorly for other values

of �.

change-point

Figure 1. Probabilities of the correct decision for estimators �̂ (dotted line `� � �'), �̂ (dash-

dotted line `- �') and ~� (dashed line `--') when m = 40 and � = 1 for various values of

� = 1; : : : ; 20.

It is worth noting that the situation with unknown � is much more di�cult.

See James, James and Siegmund (1992) for some results concerning con�dence

\change in the mean estimation" for the multivariate normal distribution with

unknown covariance matrix (which, however, remains the same for observations

before and after change).
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Appendix

We prove here that limm!1 P�;�0;�1fBmg = 1. The other half of (3.3), being

similar, is omitted. For 1 � i � � �ma let j = i + ma. A Taylor's expansion

gives

jH(Sj=j) � iH(Si=i) = (Sj � Si)�̂i � (j � i) (�̂i) +R1; (A:1)

where �̂i = �(Si=i), and R1 = j(Sj=j�Si=i)2H 00(��
i
)=2 with ��

i
between Sj=j and

Si=i.

Similarly

(m�j)H
�
Sm � Sj

m� j

�
�(m�i)H

�
Sm � Si

m� i

�
= �(Sj�Si)�̂m;i+(j�i) (�̂m;i)+R2;

(A:2)

where �̂m;i = �((Sm� Si)=(m� i)) and R2 = (m� j)[(Sm �Sj)=(m� j)� (Sm�
Si)=(m � i)]2H 00(��

m;i
)=2 is the remainder in a Taylor's expansion.

From (A.1) and (A.2) it follows that

�j � �i = (Sj � Si)(�̂i � �̂m;i)� (j � i)[ (�̂i)�  (�̂m;i)] +R1 +R2: (A:3)

In the following, Ki, i = 1; 2; : : : ; 5, and C denote constants. By Cherno�'s

inequality (see e.g. Cherno� (1952)) for i > m2a and any � > 0 we have

lim sup
m!1

1

ma
logPfj�̂i � �0j > �g � �K1(�): (A:4)

For i=m! �, let

�
�(1� �)�1 + (�� �)�0

1� �

�
= ��:

Then

lim sup
m!1

1

ma
logPfj�̂m;i � ��j > �g � �K2(�); (A:5)

lim sup
m!1

1

ma
logPfRi > Cg � �K3(C); i = 1; 2: (A:6)

From (A.3)-(A.6) for i > m2a it follows, except for a set of exponentially

small probability (to be more precise, of order exp(�Kma) for some positive

constant K) that

�j � �i � (Sj � Si)(�0 � ��)� (j � i)[ (�0)�  (��)]: (A:7)

By Cherno�'s ineqality again, the right hand side of (A.7) is greater than

(1� �)maf�0(�0 � ��)� [ (�0)�  (��)]g
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except for a set of exponentially small probability. Observing that �0(�0 � ��)�
[ (�0)�  (��)] > 0, we have

lim sup
m!1

1

ma
logPf�j � �i � 0g � K5:

For 1 � i �m2a by the strong law of large numbers, with probability one

lim
m!1

max
1�i�m2a

�i

m
= H[(1 � �)�1 + ��0] < [(1� �)H(�1) + �H(�0)] = lim

m!1

��

m
:

Thus

lim
m!1

Pf�̂0 � m2ag = 0: (A:8)

Let Ai = f�i > �jg. Clearly,

PfBc

m
g�Pf�̂0 � m2ag+Pfm2a<�̂0�� �mag�Pf�̂0�m2ag+Pf[��m

a

i=m2a+1
Aig:

Now

Pf[��m
a

i=m2a+1
Aig �

��m
aX

i=ma+1

P (Ai) � m exp(�K5m
a)! 0: (A:9)

From (A.8) and (A.9) it follows that P (Bc

m
)! 0 which completes the proof.

Remark. It is not di�cult to see that (3.3) still holds if Bm and B0
m
are replaced

by f� � (logm)� � �̂0g and f�̂1 � � + (logm)�g respectively for any � > 1.
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