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Abstract: Categorical responses arise naturally within various scientific disciplines.
In many circumstances, there is no predetermined order for the response categories,
and the response has to be modeled as nominal. In this study, we regard the
order of response categories as part of the statistical model, and show that the
true order, when it exists, can be selected using likelihood-based model selection
criteria. For predictive purposes, a statistical model with a chosen order may
outperform models based on nominal responses, even if a true order does not
exist. For multinomial logistic models, widely used for categorical responses, we
show the existence of theoretically equivalent orders that cannot be differentiated
based on likelihood criteria, and determine the connections between their maximum
likelihood estimators. We use simulation studies and a real-data analysis to
confirm the need and benefits of choosing the most appropriate order for categorical
responses.

Key words and phrases: AIC, BIC, categorical data analysis, model selection,
multinomial logistic model.

1. Introduction

Categorical responses, in which the measurement scale consists of a set
of categories, arise naturally in many scientific disciplines. Examples include
the social sciences for measuring attitudes and opinions, health sciences for
measuring responses to a medical treatment, behavioral sciences for diagnosing
mental illness, ecology for determining primary land use in satellite images, edu-
cation for measuring student responses, and marketing for determining consumer
preferences, among many others (Agresti, 2018). When the response is binary,
generalized linear models are widely used (McCullagh and Nelder, |1989; Dobson
and Barnett], 2018). When responses have three or more categories, multinomial
logistic models are popular (Glonek and McCullaghl [1995; |Zocchi and Atkinson,
1999; Bu, Majumdar and Yang, 2020), and include four kinds of logit models:
baseline-category, cumulative, adjacent-categories, and continuation-ratio logit
models.

Following the notation of Bu, Majumdar and Yang (2020), we consider
summarized data in the form of {(x;,Y;),i = 1,...,m} from an experiment
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or observational study with d > 1 covariates and J > 3 response categories,
where x; = (z;1,...,7q)", for i = 1,...,m, are distinct level combinations
of the d covariates, and Y; = (Yy,... YT, with Y;; indicating the number
of original observations associated with the covariates x; and the jth response

category, for j = 1,...,J. A multinomial logistic model assumes Y,; ~
Multinomial(n;; 71, . . ., m;7) independently, with n; = Zj:l Y;; > 0 and positive
categorical probabilities 7;; associated with x;, for i =1,...,m.

For nominal responses, that is, the response categories do not have a natural
ordering (Agresti, 2013)), baseline-category logit models, also known as multiclass
logistic regression models, are commonly used. Following Bu, Majumdar and
Yang (2020), the baseline-category logit model with partial proportional odds
(ppo) can be described in general as

T4
tog (7 ) =, = hT(x)8, + hT(x)C (1)
where hT(:) = (hj1(-),...,hjp,(-)) and hI'(-) = (hi(),..., hy(-)) are known
predictor functions, and 8; = (B;1, .., Bjp,)" and ¢ = ({1, -, ¢p,.)" are unknown
regression parameters, for ¢ = 1,...,m, 7 = 1,...,J — 1. As special cases,

h7(x;) = 1 leads to a proportional odds (po) model that assumes the same
parameters for all categories, except the intercepts, and h?(x;) = 0 leads to a
nonproportional odds (npo) model that allows all parameters to change across
categories. For additional explanations and examples about ppo, po, and npo
models, see Bu, Majumdar and Yang] (2020).

In model , the Jth category is treated as the baseline category. It
is well known that the choice of baseline category does not matter, because the
resulting models are equivalent (Hastie, Tibshirani and Friedman, 2009, Sec. 4.4).
However, the equivalence of choices of baseline categories is true only for npo
models. As we show in Section 4.4, for po or general ppo models, those with
different baseline categories are not equivalent, and thus the baseline category
should be chosen carefully.

The other three logit models assume that the response categories have
a natural ordering or a hierarchical structure, and are known as ordinal or
hierarchical models, respectively. Following Bu, Majumdar and Yang| (2020)),
these three logit models with ppo can be written as follows:

T+ -+ Ty .
lo ) =n,; =h?(x,)8; + hT(x;)¢, cumulative; 1.2
() < = W8, + B ()G (12)
log ( Tij ) =n; =h (x;)3; +h! (x;)¢, adjacent categories; (1.3)
T j+1
-
lo Y ) =n;; = hT(x;)8; + hT(x;)¢, continuation ratio. (1.4
f () BB + B (14)
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These are special cases of the multivariate generalized linear models (McCullagh,
1980) or multivariate logistic models (Glonek and McCullagh, |1995)).

Note that cumulative logit models have been extended to cumulative link
models and ordinal regression models (McCullagh, |1980; |Agresti, 2013; Yang,
Tong and Mandal, 2017)). A baseline-category logit model can be modified with a
probit link, and is known as a multinomial probit model (Aitchison and Bennett,
19705 |Agresti, [2013; |Greene, 2018). Furthermore, the continuation-ratio logit
model can be changed with a complementary log-log link (O’Connell, [2006)) for
data analysis. We focus on multinomial logistic models, because the logit link is
the most commonly used.

For some applications, the ordering of the response categories is clear. For
example, trauma data (Chuang-Stein and Agresti, (1997; Agresti, 2010; Bu,
Majumdar and Yang, 2020) includes J = 5 ordinal response categories, namely,
death, vegetative state, major disability, minor disability, and good
recovery, known as the Glasgow Outcome Scale (Jennett and Bond, 1975)). A
cumulative logit model with npo has been recommended for modeling such data
(Bu, Majumdar and Yang, |2020)).

For some other applications, the ordering is either unknown or difficult to
determine. As a motivating example, the police data described in Section 5
contain covariates about individuals killed by the police in the United States for
the period 2000 to 2016. The responses have four categories, namely, shot,
tasered, shot and tasered, and other. To model the responses that are
relevant to the police’s actions on various covariates of the suspects, one strategy
is to treat the response as nominal and use the baseline-category logit model .
Another strategy is to determine an appropriate order for the categories, and then
to use one of the other three logit models , , and . Our analysis in
Section 5 shows that a continuation-ratio npo model with a chosen order performs
best, and that the second strategy is significantly better.

A critical question that needs answering is whether we can identify the true
order of the response categories, when it exists. Our answer is summarized as
follows. First, we will show in Section 3 that if there is a true order with a
true model, it will attain the maximum likelihood asymptotically, so that it
can be identified using a likelihood-based model selection technique, such as
the AIC or BIC. Second, depending on the type of logit model, some orders are
indistinguishable or equivalent, because they attain the same maximum likelihood
(see Thl. 1 for a summary of the equivalence among the orders identified in Sec. 2).
Third, depending on the range of covariates or predictors, some order that is not
equivalent to the true one may approximate the maximum likelihood so well that
it is not numerically distinguishable from the true order (see Sec. 4.3).

In practice, nevertheless, even there is no true order among the response
categories, we can still use likelihood-based model selection techniques to choose
a working order supported by the data. As such, an ordinal model based on the
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Table 1. Equivalence Among Orders of Response Categories.

Logit model ppo or po npo
Baseline-category ~ Same if the baseline is unchanged All orders are the same
(Theorem 2) (Theorem 5)
Cumulative Same as its reversed order Same as its reversed order
(Theorem 3) (Theorem 3)
Adjacent-categories Same as its reversed order All orders are the same
(Theorem 4) (Theorem 6)
Continuation-ratio All orders are distinguishable Same if switching last two
(Section 4.1) (Theorem 7)

working order will outperform nominal models in terms of prediction accuracy
(Sec. 4.4 and 4.5). We provide a real-data example in Section 5 that shows how to
reduce the prediction errors significantly based on the working order. Overall, we
suggest that practitioners view identifying the most appropriate order of response
categories as part of the model selection procedure.

2. Equivalence Among Orders of Response Categories

In this section, before investigating which order of the response categories
is best, we first answer a more fundamental question that occurs when two
different orders lead to the same maximum likelihood. In this case, if one uses
the AIC or BIC to select the best model (see Hastie, Tibshirani and Friedman,
2009 for a good review), these two orders are indistinguishable, or equivalent.
Such a phenomenon has been observed for some baseline-category models (Hastie,
Tibshirani and Friedman) 2009), and here we show that it exists fairly generally
in other multinomial logistic models as well (see Thl. 1 for a summary).

Given the original data {(x;,Y;),i=1,...,m}, Y; = (Yi1,...,Y;s)" consists
of the counts of observations falling into the response categories in the original
order or labels {1,..., J}. If we consider a regression model with a different order
{o(1),...,0(J)} of the response categories, where o : {1,...,J} = {1,...,J} is
a permutation, this is equivalent to fitting the model using the permuted data
{(x:,Y?),i =1,...,m}, where Y7 = (Yip1),---, Yio(s))'. We denote P as the
collection of all permutations on {1,...,J}. Then, each permutation o € P
represents an order of the response categories, also denoted by o.

Now, we consider two orders or permutations oy,0o, € P. For i = 1,2,
we denote [;(6) as the likelihood function with order o; or {o;(1),...,0:(J)}.
We say that o, and o, are equivalent, denoted as o, ~ 09, if maxgece 1(0) =
maxgee l2(0), where © is the parameter space, that is, the set of all feasible 6.
It is straightforward that “~” is an equivalence relation among the permutations
in P. That is, 0 ~ o for all o; o, ~ 0, if and only if 05 ~ 01; and o, ~ 05 and
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o9 ~ o3 imply o1 ~ o3 (Wallace, 1998, Sec. 1.4).

2.1. Partial proportional odds (ppo) models

According to Bu, Majumdar and Yang (2020) (see also |Glonek and McCul-
laghl (1995 and Zocchi and Atkinson|, [1999), all four logit models (1.1]) to (1.4])
with ppo (that is, the most general case) can be rewritten in a unified form

Cllog(Lm;)) =n,=X,0, i=1,....,m, (2.1)

where C is a J x (2J — 1) constant matrix, L is a (2J — 1) x J constant
matrix, depending on the type of logit model, m; = (m;,...,ms)T are category
probabilities at x; satisfying ijl i =1, i = My omig)”
predictors, X; is the model matrix consisting of h;(x;) and h.(x;), and 8 =
(BT, ...,B8%_,,¢")" consists of p = p; + -+ 4+ ps_1 + p. regression parameters.
See Bu, Majumdar and Yang (2020) for more details and examples.

According to Theorem 5.1 in |Bu, Majumdar and Yang| (2020), for cu-
mulative logit models, the parameter space ® = {6 € R’ | h](x;)B8; <
hT, (x;)Bj41, forj = 1,...,J — 2,4 = 1,...,m} depends on the range of

are the linear

covariates. For the other three logit models, © is typically R? itself. Apparently,
neither the parameter space ® nor the model is affected by a permutation
of the data Y.

By reorganizing the formulae in Section S.11 of the Supplementary Material
of Bu, Majumdar and Yang| (2020)), we write the category probabilities 7;; as
explicit functions of n;; (and thus of €) in Lemma 1. To simplify the notation,
we denote p;; = logit " (n;;) = € /(1 4 "), and thus p;; /(1 — pi;) = €%, for
j=1,....,J—1,and p;o =0, fori=1,...,m.

Lemma 1. For the four logit models (1.1)) to (1.4)),

pij/ (1 = pij)
14+ 575 pa/(1 = par)

, baseline category

Pij — Pij—1 , cumulative
mij = [T pa/ (1= pu) | | (2.2)
g p— , adjacent categories
T+ 3 o L= pa/ (1 = pa)
j—1
[T = pa) - pij , continuation ratio,
=0

fori=1,...,mandj=1,...,J —1. In addition,
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B -1
{1 + Z } , baseline category
= 1 — Pil
1—pigaa , cumulative
Tig = —1J=1 py -1 (2.3)
{1 + Z H } , adjacent categories
i s=1 l=s le
(1= pa) , continuation ratio,
=1
fori=1,....m

Because 7;; = h] (x;)3;+h/ (x;)¢, Lemma 1 indicates that ;; are functions of
x; and 6, and do not depend on Y; or Y7, which is true for general multinomial
logit models (2.1)). The following theorem provides a sufficient condition for
g1~ 03.

Theorem 1. Consider the multinomial logit model (2.1)) with independent obser-
vations and two permutations, 1,09 € P. Suppose for any 6, € O, there exists
a 0y € O, and vice versa, such that,

7rw;1(j)(01) = ”ia;l(j)(%)a (2.4)

foralli=1,....mand j=1,...,J. Then, o1 ~ go. Furthermore, ooy ~ 00,
for any o € P.

Here, oo, in Theorem 1 represents the composition of ¢ and ;. That is,
o01(j) = o(o1(j)), for all j. Using this notation, (o)™t = o7 o™t

The proof of Theorem 1 is relegated to the Supplementary Material.

Theorem 2. Consider the baseline-category logit model (|L.1|) with ppo. Suppose
h)(x;) = -+ = h;_(x;), for all i = 1,...,m. Then, all orders of response
categories that keep J invariant are equivalent.

Theorem 2 includes baseline-category logit models with po, because h;(x;) =
1 for po models. It actually includes many npo or ppo models used in practice,
where hy = -+ = h;_;. For example, main-effects models that assume h,(x;) =
-=hy 1(x;) = (1,x] )" are widely used.
Theorem 2 also implies that if o(J) # J, then ¢ may not be equivalent to
the original order id, or the identity permutation. We provide such a numerical
example in Section 4.4.

Theorem 3. Consider the cumulative logit model (1.2) with ppo. Suppose
h;(x;) = h;_;(x;), foralli=1,...,m and j = 1,...,J — 1. Then, any order
o1 s equivalent to its reverse order o9, which satisfies 03(j) = o1(J +1—j), for
j=1,...,J.

Theorem 3 includes cumulative logit models with po, because h;(x;) = 1. It
also includes many npo or ppo models used in practice that satisfy h; = .- =
hJ,l .
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Theorem 4. Consider the adjacent-categories logit model (1.3) with ppo. Sup-
pose hy(x;) = -+ = h;_((x;), for all i = 1,...,m. Then, any order o, is
equivalent to its reverse order oo , which satisfies o4(j) = o1(J + 1 — j), for all
j=1,....J.

2.2. Nonproportional odds (npo) models

By removing the item h’ (x;)¢ from (L)) to (1.4]), we obtain explicit forms
of the four logit models with npo. For npo models, 8 = (38],..., 87 )T, p =
pr+ - +p;o1, and n; = hl(x,)B;, for i = 1,...;mand j = 1,...,J — 1.
Compared with po models, npo models involve more regression parameters, and
thus are more flexible. For more details about multinomial logistic models with
npo, please see, for example, Section S.8 in the Supplementary Material of Bu,
Majumdar and Yang (2020)).

Theorem 5. Consider the baseline-category logit model with npo. Suppose
h)(x;) = -+ = h;_1(x;), for all i = 1,...,m. Then, all orders of response
categories are equivalent.

Theorem 5 confirms that the choice of baseline category does not matter
for multiclass logistic regression models (Hastie, Tibshirani and Friedman, 2009).
What is new here is the explicit correspondence between 6; and 8, provided in
the proof of Theorem 5. Based on the correspondence, if we obtain the maximum
likelihood estimate (MLE) for 8, we can easily derive the MLE for 6, explicitly,
without running another optimization.

Theorem 6. Consider the adjacent-categories logit model with npo. Suppose
hy(x;) = -+ = hy_1(x;), for all i = 1,...,m. Then, all orders of response
categories are equivalent.

The result of Theorem 6 is truly surprising. The order of the response
categories in an ordinal model does not matter! The transformation (S.1) and its
inverse (S.3) in the proof of Theorem 6 in the Supplementary Material are not
trivial either.

Theorem 7. For the continuation-ratio logit model with npo, o, ~ o9 if o9 =
o1(J —1,J), where (J —1,J) is a transposition that switches J —1 and J.

3. Asymptotic Optimality of True Order

In this section, we discuss the optimality of the true order of the response cat-
egories, when it exists. In short, the model with the true order is asymptotically
optimal in terms of an AIC or BIC likelihood-based model selection criterion.

Suppose an experiment is performed under the multinomial logit model ,
with predetermined design points xq,...,X,,, the true parameter values 6, €
® C RP, and the true order oy € P of the response categories. Recall that the



418 WANG AND YANG

original experiment assigns n; subjects to x;, with the total number of subjects
n =Y., n; To avoid trivial cases, we assume n; > 0 for each i (otherwise, we
may delete any x; with n; = 0).

In order to consider the asymptotic properties of the parameter and
order estimators, we consider independent and identically distributed (i.i.d.)
observations (X;,Y;), for [ = 1,..., N, generated as follows: (i) Xi,..., Xy
are ii.d. from a discrete dlstrlbution taking values in {xi,...,x,} with
probabilities n;/n,...,n,/n, respectively; (ii) given X; = x;, Y; follows
Multinomial(1; 7,11y (60), - - ., T;p=1(5)(60)), that is, ¥; takes values in {1, ...,
J} with probabilities m;,-11)(60), ..., T;,=15)(60), respectively. The summarized
data can still be denoted as {(x;,Y;),i =1,...,m}, where

Yi = (}/ilv . 7}/2‘J)T ~ Multinomial (N“ Triagl(l) (00), .. ’Wiagl(J) (90)) s

and N; = ijl Y;; is the total number of subjects assigned to x;.

Given the count data Y;;, the log-likelihood function under the multinomial
logit model with parameters 6 and a permutation o € P applied to Y;; to
determine the true order is

m J m J
16,0 :ZZ io () log m;; (0 —I—Zlog (N, ZZ]

=1 j=1 = =1 j=1
m J m m J

= Z ZYU log ip-1¢;)(0) + Zlog(Ni!) - ZZlog(Y !
i=1 j=1 i=1 i=1 j=1

I
.ME
M- T

©
Il
=

Y;;log mis-1(;)(0) + constant,

Il
-

J

Then, the MLE (8, 6) that maximizes (0, o) maximizes

=Y Yilogmis1(;)(6)

i=1 j=1
as well.

Lemma 2. If0 € © and 6 € P satisfy miz-1¢;)(0 ) Yi;/N; for alli and j, then
(8,6) must be an MLE.

To explore the asymptotic properties of log-likelihood and MLESs, we denote
0= >y ijl n;mi;(0o)log m;;(6y)/n € (—00,0), which is a finite constant.
We further denote ng = min{n,...,n,} > 1 and mo = min{m;,-1(;(6o),i =
1,....,m;j=1,...,J} € (0,1).

Lemma 3. As N — oo, N 'x(6y,00) — lo < 0 almost surely.



IDENTIFYING THE MOST APPROPRIATE ORDER 419

Let (éN, o) denote an MLE that maximizes [ (6, o) or, equivalently, 1(0, o).
The following theorem indicates that the true values (6y,0() asymptotically
maximize [y(0,0) as well. That is, the true parameter values 6, and the true
order o are asymptotically optimal in terms of the likelihood principle.

Theorem 8. As N — oo, N'Ix(0x,6x) — In(680,00)| — O almost surely.
Furthermore, N~ x(0n,6n) — lo and Ix(6,00)/In(On,0N5) — 1 almost surely
as well.

Following |Burnham and Anderson| (2004), we define

AIC(0,0) = —2((0,0) + 2p,
BIC(0,0) = —21(0,0) + (log N )p.

Then, the usual AIC = AIC(Qy,6y) < AIC(8y,00), and the usual BIC =
BIC(Oy,6n) < BIC(6y,00). As a direct conclusion of Theorem 8, we have the
following corollary.

Corollary 1. N!|AIC — AIC(60,,00)| = N~*BIC — BIC(0y, 00)| — 0 almost
surely, as N — oo.

Theorem 8 and Corollary 1 confirm that the true parameter and order (6y, o)
are among the best options asymptotically under likelihood-based model selection
criteria. Nevertheless, note that there are two cases where one may not be able
to identify the true order oy easily.

Case one: If there exists another order o ~ oy, as discussed in Section 2, then
there exists another @ such that 7i,-1(;)(0) = m;,-1(;)(6o), for all i and
j. In this case, 1(0,0) = [(8y,00), and the true order o, with 6y is not
distinguishable from the order ¢ with 6.

Case two: In practice, given the set of experimental settings {x1,...,x,,}, it is
not unlikely, especially when the range of experimental settings is narrow,
that there exists a (6,0) such that m,-1(;)(0) ~ m;,-1(;)(6o), for all i and j.
Then, the order o with 8 achieves roughly the same likelihood. In this case,
the difference between oy and o could be insignificant, and may not improve
unless one increases the sample size N and the range of {xi,...,%x,,} (e.g.,
see Sec. 4.1 and 4.3). Compared with po models, npo models have more
parameters and are more flexible. As a result, Case two may occur more
often for npo models.

In both Case one and Case two, the true order oy is not significantly better
than all other orders, even with an increased sample size N. Nevertheless, the
results of our simulation studies (Sec. 4) show that there are two situations in
which the true order oy can be identified easily. One is with larger absolute
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Table 2. Trauma Simulation Study with N = 802.

True Order Best Order
Model AICy Rank AIC, AICy—AIC,
Baseline-category po 96.77 73 96.40 0.37
Cumulative po 94.54 7 93.84 0.70
Cumulative npo 102.15 51  101.70 0.45
Adjacent-categories po 92.66 3 92.08 0.58
Continuation-ratio po 96.25 20 94.38 1.87
Continuation-ratio npo  102.43 21 102.03 0.40

values of the regression coefficients (Sec. 4.2). The other is with a larger range
of experimental settings (Sec. 4.3). Both situations reduce the possibility of
Case two, but neither can fix Case one.

4. Simulation Studies
4.1. Simulation study based on trauma data

In the example mentioned in Section 1, the trauma data (Chuang-Stein and
Agresti, 1997, Tbl. 1; Agresti, 2010, Tbl. 7.6) are the responses of N = 802
trauma patients from four treatment groups under different dose levels. The
response categories (GOS) have a clear order, namely: (1) death, (2) vegetative
state, (3) major disability, (4) minor disability, and (5) good recovery.
That is, the original order oy = id is the true order. In this case, J = 5. For
illustration purposes, the only predictor x is chosen as the dose level, taking
values in {1,2,3,4}.

In this section, we present simulation studies to explore whether we can
identify the true order of the response categories under different multinomial logit
models. For each model, for example, the baseline-category logit model with po
(see baseline-category po in Tbl. 2), (i) we fit the model using the original data
(Y;;)i; against the dose level x; = i to obtain estimated parameter values éo;
(ii) we simulate a new data set (Y;});; with total sample size N using the model
with regression coefficients éo; that is, for the simulated data, we have a true
order o, = id and true parameter values 6y = 6,; (iii) for each possible order
o € P, we fit the model using permuted simulated data (Yi;(j)
the corresponding AIC value; and (iv) we check the difference between the AIC
at oo (denoted as AIC;) and the AIC at 6 (denoted as AIC,) that minimizes
the AIC value, as well as the rank of AIC, among all orders. Ideally, we have
AIC,—AIC, = 0 with rank 1 out of 5! = 120; that is, the original order achieves
the smallest AIC value. Nevertheless, in practice, the result depends on the

)i; and calculate

sample size N and the set of experimental settings.
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Table 3. Trauma Simulation Study with N = 8020.

True Order Best Order
Model AICy Rank AIC, AICy—AIC,
Baseline-category po 133.19 1 133.19 0
Cumulative po 130.52 1 130.52 0
Cumulative npo 135.55 1 135.55 0
Adjacent-categories po  130.31 1 130.31 0
Continuation-ratio po 130.54 1 130.54 0
Continuation-ratio npo  141.51 21 139.96 1.55

In Table 2, we list the simulation results with N = 802, the original sample
size. According to Theorems 5 and 6, all orders under a baseline-category npo
model or an adjacent-categories npo model are indistinguishable in terms of the
AIC. Thus, we omit these two models, and list the other six commonly used
multinomial logit models. In Table 2, the true order is not evident under any of
the multinomial logit models; that is, the rank is not one, or the AIC value is not
the smallest. To check whether the true order can be regarded approximately as
the best one, or whether the difference between the true order and the best order
is significant, we denote A = AIC, — AIC,, the difference in terms of their AIC
values. According to Burnham and Anderson| (2004), A < 2 suggests that the
true order is considered substantially the best; 4 < A < 7 indicates that the true
order is considerably less than optimal; and A > 10 suggests the true order is
essentially worse than the best one. Because no AIC difference in the last column
of Table 2 is greater than two, we conclude that the AIC differences between the
true order and the best order are not significant. Note that because the number
of parameters does not change across orders, using the BIC is equivalent to using
the AIC here.

The simulation results (not listed in Thl. 2) also show that all 120 orders
under the continuation-ratio po model lead to distinct AIC values. That is,
all orders are distinguishable, or no two orders are equivalent, supporting the
corresponding statement in Table 1.

In Table 3, we increase the sample size N to 8020, 10 times as large as the
original one, to numerically check the asymptotic optimality of the true order.
That is, the new data (Y},,...,Y/,) ~ Multinomial(10n;;7;1(8,), . .., m(0,)),
where 0, is fitted from the original data (Y;;);; and n; = Z'j]:lYij . Clearly,
all models except the continuation-ratio npo model perform best in terms of the
true order of the response categories. This confirms our conclusion in Section 3
that the true order is asymptotically optimal. In this case, the continuation-ratio
npo model behaves differently. With 10 times the original sample size, the true
order still ranks 21st, with an even bigger AIC difference 1.55 (not statistically
significant either). If we further increase the sample size to N = 40 x 802, the true
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Table 4. Best Order and Treatment Effects

Treatment effect ¢ AIC (true) Rank AIC (best) AIC (3rd best when true=best)
—0.1755 94.54 7 93.84 -
—0.3510 98.93 3 98.23 -
0.3510 90.84 1 90.84 91.61
—0.7020 85.17 1 85.17 86.58

order ranks third with an AIC difference 0.05. Actually, even for a very large IV,
there are still six orders among the top tier, the true order, transpositions (3,4)
and (3,5), and their equivalent orders (Thm. 7). This simulation study provides
a numerical example for Case two described in Section 3.

4.2. True order and treatment effects

In Section 3, we noted that larger absolute values of the regression coefficients
may make the true order easier to identify. In this section, we illustrate such a
scenario using a cumulative po model, which has fewer coefficients and is easier
to modify.

The cumulative po model for the trauma data consists of p = 5 parameters
0 = (B4, B2, B3, B4, )T, where  represents the treatment effect of the dose level z.
By fitting the model using the original data, we obtain the estimated parameters
6 = (—0.7192, —0.3186,0.6916, 2.057, —0.1755)7.  Similarly to Section 4.1, we
treat oo = id and 6y = 6 as the true values, and simulate a new data set (Y)is
with the original sample size N = 802. We then check for each possible order o
using the simulated data set. In contrast to Section 4.1, we run four simulation
studies, with ( = —0.1755, —0.3510, 0.3510, —0.7020, respectively, to observe how
the magnitude of the treatment effects affects the differences between the orders.

From Table 4, the true order tends to be the best order as |(| increases. For
¢ =0.3510 and —0.7020, the true order attains the best or minimum AIC value.
According to Theorem 3 and its proof, the reversed order with parameters 68, =
(—B4, —B3, — B2, —B1,—C)T achieves the same AIC value, which can be viewed
as the second best result. From ¢ = 0.3510 to { = —0.7020, the AIC difference
between the true order and the third best order increases from 91.61—90.84 = 0.77
to 86.58 — 85.17 = 1.41, indicating that a larger treatment effect might make the
true order easier to identify.

4.3. True order and experimental settings

In this section, we discuss how the experimental setting x; affects the
identification of the true order. We use the trauma data under the continuation-
ratio npo model as an example, because this is a difficult case in which to identify
the true order, according to the results shown in Table 3.
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Table 5. Data from Baseline-category po Model with Baseline Category J = 4.

;=1 Y Yo Y3 Yy o n
1 22 33 10 35 100
2 31 40 14 15 100
3 23 43 22 12 100
4 27 49 18 6 100

We explore two ways of changing the set {z;,i = 1,...,m} = {1,2,3,4} in
the trauma data. In the first, we increase the range to X4 = {1,2,...,16}. In
the second, we make finer changes to the experiment settings and obtain Xp =
{1,1.25,1.50, ..., 3.75,4}, the range of which is still [1,4]. In both methods, the
number m of experimental settings increases significantly.

Similarly to Section 4.1, we treat oo = id and 6, = 6, estimated for the
continuation-ratio npo model from the original data, as the true values. In this

section, we simulate 100 new data sets (Yig-b))ij independently, with N = 100 x

210m and b =1, ...,100, using the continuation-ratio npo model with oy and 6.
For each b =1,...,100 and each o € P, we fit the continuation-ratio npo model
using the permuted data (KS’()]))U against the dose level z;. The corresponding

AIC values are denoted as AIC) for b = 1,...,100. To compare the true order o
with each o of the other 119 orders, we run a one-sided paired ¢-test on (AICffO))b
and (AIC"),. A significant p-value indicates that the AIC value associated with
09 is significantly smaller than the AIC value of o.

Under the first scenario X 4, 118 out of 119 p-values are statistically signifi-
cant, indicating that the true order is significantly better than all other orders,
except the equivalent one listed by Theorem 7. That is, an increased range may
make the true order easier to identify.

Under the second scenario Xp, there are still three p-values greater than
0.05. Further tests indicate that these four orders, including the true order, are
indistinguishable. That is, increasing m while maintaining the range of x; may
not be an efficient way to improve the identifiability of the true order.

4.4. Choice of baseline category

In this section, we use cross-validation to show that the choice of baseline
category makes a difference for baseline-category po models.

Table 5 provides simulated data from a baseline-category po model, with the
fourth category as the true baseline category. The parameters used for simulating
the data are @ = (B4, B2, 33, ()T = (—0.8,-0.3,—1.0,0.5)”. There are n = 400
observations in total. We randomly split the observations into two parts, 267 as
training data and 133 as testing data. We repeat the random partition 100 times.
For each random partition and each order o € P, (1) we use the training data
to fit the baseline-category po model with order o (similarly to Sec. 4.1), and
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denote the fitted model as Model o; (2) we predict the labels of the responses of
the testing data using Model o, and use the cross-entropy loss (Hastie, Tibshirani
and Friedman, [2009) to measure the prediction errors. In this way, we have 100
prediction errors (cross-entropy loss) for each o. For any two orders, we can
run a one-sided paired t-test to check whether one order’s prediction error is
significantly lower than that of the other (similarly to Sec. 4.3).

We conclude the following from this cross-validation study: (i) all orders that
share the same baseline category have the same cross-entropy loss, indicating that
they are indistinguishable in terms of their prediction errors, and supporting the
results of Theorem 2; (ii) supported by the pairwise t-tests, the orders with the
true baseline (J = 4) have significantly smaller cross-entropy losses than the other
orders, with p-values 5.69 x 107%2,9.54 x 10747, and 8.99 x 107>, respectively,
showing that the correct choice of baseline category matters in practice.

4.5. When true order does not exist

In this section, we investigate an order misspecification issue when the true
order does not exist. More specifically, for a baseline-category npo model, all
orders are equivalent, according to Theorem 5. In other words, there is no true
order. Nevertheless, given such a data set, we can still find the best model with
the best order, called the working order. The simulation study below shows
that when the true order does not exist, we have the following results: (1) with
moderate sample sizes, a working order with a different model can be selected,
but may not be significantly better than the true model in terms of the AIC;
and (2) asymptotically, the true model without a true order may be significantly
better than any other model with any working order.

In this simulation study, we use the baseline-category npo model fitted
from the original trauma data as the true model, and simulate a data set with
the set of covariate levels X, = {1,2,...,16}, which is a more informative
experimental setting (Sec. 4.3). For each level z; € X4, we simulate ny = 200
observations, with the total sample size N = 16n4 = 3200. For the simulated
data with N = 3200, the best model according to the AIC is a continuation-
ratio npo model, with AIC = 321.31, at its best (working) order {death, major
disability, vegetative state, minor disability, good recovery}, whereas
the AIC value of the true model is 322.48. In other words, the best model
with the working order is not significantly better than the true model. If we
increase the sample size N to 3,200 x 100, the continuation-ratio npo model is
still the best model, with AIC = 604.93 at the best order {vegetative state,
death, minor disability, major disability, good recovery}, which again is
not significantly better than the true model, with AIC = 606.75. If we further
increase N to 3,200 x 10,000, the true model becomes the best model, with AIC
= 914.80, and is significantly better than the continuation-ratio npo model, with
AIC = 944.92 at its best order.
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Table 6. Frequencies of AIC;,e — AlCqther Categories out of 100 Simulated Trauma
Data from Baseline-category npo Model.

N <0 [0,2) [24) [47) [7,10) >10

1x3200 0 57 27 11 2 3
10x3200 13 55 25 7 0 0
100 x 3,200 36 44 16 3 0 1
10,000 x 3,200 100 0 0 0 0 0

We repeat the procedure 100 times with various N. For each simulated
trauma data set from the baseline-catetory npo model, we calculate the difference
between AICi,,. (the AIC value with the true model) and AIC., (the smallest
AIC value among all other models and all orders). In Table 6, we list the
frequencies of the AIC differences falling into different ranges. For example, the
first column “< 0” provides the numbers of simulations out of 100 with AIC;, .
— AIC iher < 0. As N increases from 1 x 3,200 to 10,000 x 3,200, the number of
cases increases from 0 to 100, showing that the true model is increasingly likely
to outperform other models with any order in terms of AIC values. The other
columns in Table 6 show similar patterns, confirming the conclusions described
at the beginning of this section.

5. Real-Data Analysis

The US Police Involved Fatalities Data (hereafter, Police data) were down-
loaded from data.world (https://data.world/awram/us-police-involved-
fatalities, version June 21, 2020), which was collected by Chris Awarm from
three data resources, namely, https://fatalencounters.org/, https://www.
gunviolencearchive.org/, and Fatal Police Shootings, from data.world.
The original data lists individuals killed by the police in the United States from
2000 to 2016, including information on 12,483 suspects’ age, race, mental health
status, weapons they were armed with, and whether or not they were fleeing. By
way of example, we focus on whether the police’s action can be predicted by the
aforementioned information related to a suspect.

As summarized in Table 7, there are four categories of (police) responses,
namely, other, shot, shot and tasered, and tasered. In our notation, J = 4.
In the original data, there are 60 different types of armed status. Here, we simplify
these into three categories: gun, if the original input is “gun;” unarmed, if the
original input is “unarmed” or missing; and other, if otherwise. As such, we
have 24 possible level combinations of armed status (z;; = 1 (gun), 2 (other),
or 3 (unarmed)), gender (z;; = 0 (female) or 1 (male)), flee (z;3 = 0 (false)
or 1 (true)), mental illness (x;4 = O (false) or 1 (true)). Because there is no
observation associated with x; = (21, T4, Ti3, i4)” = (3,0,1,1)7, m = 23 in this
case (Thl. 7).


https://data.world/awram/us-police-involved-fatalities
https://data.world/awram/us-police-involved-fatalities
https://fatalencounters.org/
https://www.gunviolencearchive.org/
https://www.gunviolencearchive.org/
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Table 7. US Police Involved Fatalities Data (2000 to 2016).

Armed Gender Flee Mental Illness Other Shot Shot and Tasered Tasered Total
Gun Female False False 0 134 0 1 135
Gun Female False True 0 57 0 1 58
Gun Female True False 0 8 0 0 8
Gun Female True True 0 4 0 0 4
Gun Male False False 2 3,314 6 35 3,357
Gun Male False True 0 810 4 15 829
Gun Male  True False 0 27 5 0 276
Gun Male  True True 0 33 1 0 36

Other  Female False False 0 53 1 0 54
Other  Female False True 1 42 1 0 44
Other  Female True False 0 4 1 0 5
Other  Female True True 0 2 0 0 2
Other Male False False 1 910 38 10 959
Other Male False True 2 478 21 5 506
Other Male  True False 0 114 10 0 124
Other Male True True 0 14 2 0 16
Unarmed Female False False 1 231 0 3 235
Unarmed Female False True 0 61 0 5 66
Unarmed Female True False 0 2 0 0 2
Unarmed Male False False 10 4,338 16 253 4,617
Unarmed Male False True 12 832 5 214 1,063
Unarmed Male True False 0 75 8 0 83
Unarmed Male True True 0 5 1 0 6

Note: The group (Unarmed, Female, Fleed, Has Mental Illness) contains no observation and is omitted.

As an example, we consider the main-effects baseline-category, cumulative,
adjacent-categories, and continuation-ratio logit models with po or npo. In our
notation, hy(x;) = -+ = hy_1(x;) = (1, 1z, =2}, Lz, =3}, Tiz, Tiz, )" for all
eight models under consideration. For each model, we choose the best order out
of 4! = 24 of the four response categories, based on the AIC. Of the eight logit
models, each with 24 orders, the continuation-ratio npo model with the chosen
order (t, s, o, st) or (t, s, st, o) (Tbl. 8) performs best, and can be written as

log <7ri,j+1 _:-?J. . ﬂ_u) = Bj1+ B2z =2 + B3 2, =3} + BjaTio+ BjsTis+ Bj6Tia
where j = 1,2,3 and ¢ = 1,...,23. The corresponding BIC values, not shown
here, provide a consistent selection result. According to the AIC values, if
we choose the continuation-ratio npo model with the best order {tasered,
shot, other, shot and tasered} against the baseline-category models (po or
npo), which are commonly used for categorical responses without an order, the
improvement in the prediction accuracy is significant (AIC differences > 5). Note
that in this case, it is not trivial to determine the baseline category for po models,
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Table 8. Model and Order Selection for Police Data.

Model AIC with Best Order Best Order
Baseline-category po 401.33 t is the baseline
Baseline-category npo 197.81 All are the same

Cumulative po 318.14 (st, s, 0, t) or (t, o, s, st)
Cumulative npo 194.48 (o, st, s, t) or (t, s, st, o)
Adjacent-categories po 290.17 (st, s, 0, t) or (t, o, s, st)
Adjacent-categories npo 197.81 All are the same
Continuation-ratio po 320.22 (t, o, s, st)
Continuation-ratio npo 192.01 (t, s, o, st) or (t, s, st, o)

Note: s = shot, t = tasered, o = other, st = shot and tasered.

owing to the existence of the category other.

Table 8 also shows large gaps of AIC values between the npo models and
the corresponding po models, indicating that npo models are significantly better
than the corresponding po models in this case. The differences within the AIC
values of the npo models are also much smaller than those within the po models.
This provides strong evidence that for the Police data, the parameters for the
categories are very different, and thus the proportional odds (po) assumptions
are not appropriate (see the Introduction).

To validate the selected model, we conduct five-fold cross-validation for the
data, with cross-entropy loss as the criterion (Hastie, Tibshirani and Friedman,
2009). We compare our selected continuation-ratio npo model with the baseline-
category npo model, which is commonly used for nominal responses. In terms of
cross-entropy loss, the continuation-ratio npo model achieves 550.50, which is less
than the value of 555.91 for the baseline-category npo model. This is consistent
with our conclusion based on AIC values.

The estimated parameters for the chosen continuation-ratio npo model are
provided in Table 9, which can be used to interpret the roles and effects of different
factors. For example, Blg = 2.03 indicates that the estimated odds ratio of
tasered and “unarmed” is €*% = 7.61, which implies that “unarmed” leads to a
much smaller chance of being shot. In contrast, ,5’15 = —18.02, with an estimated
odds ratio e 1892 = 1.49 x 1078, implies that suspects who flee have a much
greater chance of being shot. Because shot is usually regarded as more severe
than tasered, the estimated parameters imply that if suspects show a greater
threat such as being armed (gun or other), or try to flee, the police tend to take
more extreme actions, such as shooting a gun.

To investigate whether the best order is chosen because of randomness,
we conduct a simulation study similar to that in Section 4.5. We regenerate
the Police data simulated from the baseline-category npo model fitted from the
original data (see Thl. 10 for the parameter values). For the simulated Police data,
the best model is the cumulative npo model with the order {shot and tasered,
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Table 9. Estimated Parameters for Police Data under Continuation-ratio npo Model.

j Intercept Armed Status  Armed Status Gender Flee Mental Illness

Bjt  Bjs (Other) Bjs (Unarmed) Bia B Bio
1 -6.00 -0.44 2.03 1.17  -18.02 1.34
2 6.47 -2.43 -1.09 -0.58  -1.55 -0.59
3 0.26 -1.49 1.69 -2.29 -28.35 1.02

Note: 7 =1,2,3 correspond to tasered, shot, and other, respectively.

Table 10. Estimated Parameters for Police Data under Baseline-category npo Model.

j Intercept Armed Status  Armed Status Gender Flee Mental Illness

le ﬂjg (Other) 6j3 (Unarmed) ﬁj4 ﬂjS ﬂjg
1 -2.07 -1.34 6.00 -1.18  -0.82 -0.31
2 0.24 -8.83 -2.04 11.09 -1.39 12.74
3 1.89 0.19 0.40 -1.35 2.93 -1.02

Note: j = 1,2,3 correspond to other, shot, shot and tasered, respectively.

shot, other, tasered} with AIC 149.77, which is not significantly better than the
true model (baseline-category npo), with AIC 151.04. If we increase the sample
size by a factor of 10, the true model with AIC 271.90 becomes better than the
cumulative npo model, with AIC 274.53. If we further increase it by a factor of
100, the true model with AIC 401.92 is significantly better than the cumulative
npo model, with AIC 440.45. In other words, with the original sample size of
the Police data, if there is no true order, then the selected model with a working
order may not be significantly better than the true model. As the amount of data
increases, the true model becomes significantly better than the other models with
any working order, supporting the simulation results in Section 4.5.

6. Discussion

In our analysis of real data, we consider both the type of model and the
order of the categories as parts of the model selection procedure. Our examples
show that the improvement by choosing a more appropriate order can be highly
significant. For example, if we focus on adjacent-categories po models for the
Police data, the smallest AIC value from the best order is 290.17, whereas the
largest one from the worst order is 674.44, implying a significant difference in
terms of prediction accuracy.

For the Police data, there is no natural order, owing to the existence of the
category other. According to the AIC values, the continuation-ratio npo model
with the working order (t, s, o, st), or equivalently (t, s, st, o), is significantly
better than the baseline-category npo models (Tbl. 8). On the one hand, if there
is a true order, it will appear among the best orders consistently (Sec. 3). On
the other hand, if there is no true order for the Police data, then there is no
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ordinal model with a working order that is significantly better than the baseline-
category npo model, with the current or a larger sample size (see the simulation
study at the end of Sec. 5). In other words, we can report the working order with
confidence if it is significantly better than other orders.

Finally, in the proofs of Theorems 2 to 7, we provide explicit transformation
formulae from 6, with o, to @y with gy when o, ~ ;. This significantly reduces
the computational cost of finding MLEs with different orders.

Supplementary Material

The online Supplementary Material contains proofs of Theorems 1 to 8,
Lemmas 2 and 3, and Corollary 1.
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