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Abstract: Categorical responses arise naturally within various scientific disciplines.

In many circumstances, there is no predetermined order for the response categories,

and the response has to be modeled as nominal. In this study, we regard the

order of response categories as part of the statistical model, and show that the

true order, when it exists, can be selected using likelihood-based model selection

criteria. For predictive purposes, a statistical model with a chosen order may

outperform models based on nominal responses, even if a true order does not

exist. For multinomial logistic models, widely used for categorical responses, we

show the existence of theoretically equivalent orders that cannot be differentiated

based on likelihood criteria, and determine the connections between their maximum

likelihood estimators. We use simulation studies and a real-data analysis to

confirm the need and benefits of choosing the most appropriate order for categorical

responses.

Key words and phrases: AIC, BIC, categorical data analysis, model selection,

multinomial logistic model.

1. Introduction

Categorical responses, in which the measurement scale consists of a set

of categories, arise naturally in many scientific disciplines. Examples include

the social sciences for measuring attitudes and opinions, health sciences for

measuring responses to a medical treatment, behavioral sciences for diagnosing

mental illness, ecology for determining primary land use in satellite images, edu-

cation for measuring student responses, and marketing for determining consumer

preferences, among many others (Agresti, 2018). When the response is binary,

generalized linear models are widely used (McCullagh and Nelder, 1989; Dobson

and Barnett, 2018). When responses have three or more categories, multinomial

logistic models are popular (Glonek and McCullagh, 1995; Zocchi and Atkinson,

1999; Bu, Majumdar and Yang, 2020), and include four kinds of logit models:

baseline-category, cumulative, adjacent-categories, and continuation-ratio logit

models.

Following the notation of Bu, Majumdar and Yang (2020), we consider

summarized data in the form of {(xi,Yi), i = 1, . . . ,m} from an experiment
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or observational study with d ≥ 1 covariates and J ≥ 3 response categories,

where xi = (xi1, . . . , xid)
T , for i = 1, . . . ,m, are distinct level combinations

of the d covariates, and Yi = (Yi1, . . . , YiJ)
T , with Yij indicating the number

of original observations associated with the covariates xi and the jth response

category, for j = 1, . . . , J . A multinomial logistic model assumes Yi ∼
Multinomial(ni;πi1, . . . , πiJ) independently, with ni =

∑J
j=1 Yij > 0 and positive

categorical probabilities πij associated with xi, for i = 1, . . . ,m.

For nominal responses, that is, the response categories do not have a natural

ordering (Agresti, 2013), baseline-category logit models, also known as multiclass

logistic regression models, are commonly used. Following Bu, Majumdar and

Yang (2020), the baseline-category logit model with partial proportional odds

(ppo) can be described in general as

log

(
πij

πiJ

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ , (1.1)

where hT
j (·) = (hj1(·), . . . , hjpj

(·)) and hT
c (·) = (h1(·), . . . , hpc

(·)) are known

predictor functions, and βj = (βj1, . . . , βjpj
)T and ζ = (ζ1, . . . , ζpc

)T are unknown

regression parameters, for i = 1, . . . ,m, j = 1, . . . , J − 1. As special cases,

hT
j (xi) ≡ 1 leads to a proportional odds (po) model that assumes the same

parameters for all categories, except the intercepts, and hT
c (xi) ≡ 0 leads to a

nonproportional odds (npo) model that allows all parameters to change across

categories. For additional explanations and examples about ppo, po, and npo

models, see Bu, Majumdar and Yang (2020).

In model (1.1), the Jth category is treated as the baseline category. It

is well known that the choice of baseline category does not matter, because the

resulting models are equivalent (Hastie, Tibshirani and Friedman, 2009, Sec. 4.4).

However, the equivalence of choices of baseline categories is true only for npo

models. As we show in Section 4.4, for po or general ppo models, those with

different baseline categories are not equivalent, and thus the baseline category

should be chosen carefully.

The other three logit models assume that the response categories have

a natural ordering or a hierarchical structure, and are known as ordinal or

hierarchical models, respectively. Following Bu, Majumdar and Yang (2020),

these three logit models with ppo can be written as follows:

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ, cumulative; (1.2)

log

(
πij

πi,j+1

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ, adjacent categories; (1.3)

log

(
πij

πi,j+1 + · · ·+ πiJ

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ, continuation ratio. (1.4)
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These are special cases of the multivariate generalized linear models (McCullagh,

1980) or multivariate logistic models (Glonek and McCullagh, 1995).

Note that cumulative logit models have been extended to cumulative link

models and ordinal regression models (McCullagh, 1980; Agresti, 2013; Yang,

Tong and Mandal, 2017). A baseline-category logit model can be modified with a

probit link, and is known as a multinomial probit model (Aitchison and Bennett,

1970; Agresti, 2013; Greene, 2018). Furthermore, the continuation-ratio logit

model can be changed with a complementary log-log link (O’Connell, 2006) for

data analysis. We focus on multinomial logistic models, because the logit link is

the most commonly used.

For some applications, the ordering of the response categories is clear. For

example, trauma data (Chuang-Stein and Agresti, 1997; Agresti, 2010; Bu,

Majumdar and Yang, 2020) includes J = 5 ordinal response categories, namely,

death, vegetative state, major disability, minor disability, and good

recovery, known as the Glasgow Outcome Scale (Jennett and Bond, 1975). A

cumulative logit model with npo has been recommended for modeling such data

(Bu, Majumdar and Yang, 2020).

For some other applications, the ordering is either unknown or difficult to

determine. As a motivating example, the police data described in Section 5

contain covariates about individuals killed by the police in the United States for

the period 2000 to 2016. The responses have four categories, namely, shot,

tasered, shot and tasered, and other. To model the responses that are

relevant to the police’s actions on various covariates of the suspects, one strategy

is to treat the response as nominal and use the baseline-category logit model (1.1).

Another strategy is to determine an appropriate order for the categories, and then

to use one of the other three logit models (1.2), (1.3), and (1.4). Our analysis in

Section 5 shows that a continuation-ratio npo model with a chosen order performs

best, and that the second strategy is significantly better.

A critical question that needs answering is whether we can identify the true

order of the response categories, when it exists. Our answer is summarized as

follows. First, we will show in Section 3 that if there is a true order with a

true model, it will attain the maximum likelihood asymptotically, so that it

can be identified using a likelihood-based model selection technique, such as

the AIC or BIC. Second, depending on the type of logit model, some orders are

indistinguishable or equivalent, because they attain the same maximum likelihood

(see Tbl. 1 for a summary of the equivalence among the orders identified in Sec. 2).

Third, depending on the range of covariates or predictors, some order that is not

equivalent to the true one may approximate the maximum likelihood so well that

it is not numerically distinguishable from the true order (see Sec. 4.3).

In practice, nevertheless, even there is no true order among the response

categories, we can still use likelihood-based model selection techniques to choose

a working order supported by the data. As such, an ordinal model based on the
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Table 1. Equivalence Among Orders of Response Categories.

Logit model ppo or po npo

Baseline-category Same if the baseline is unchanged All orders are the same

(Theorem 2) (Theorem 5)

Cumulative Same as its reversed order Same as its reversed order

(Theorem 3) (Theorem 3)

Adjacent-categories Same as its reversed order All orders are the same

(Theorem 4) (Theorem 6)

Continuation-ratio All orders are distinguishable Same if switching last two

(Section 4.1) (Theorem 7)

working order will outperform nominal models in terms of prediction accuracy

(Sec. 4.4 and 4.5). We provide a real-data example in Section 5 that shows how to

reduce the prediction errors significantly based on the working order. Overall, we

suggest that practitioners view identifying the most appropriate order of response

categories as part of the model selection procedure.

2. Equivalence Among Orders of Response Categories

In this section, before investigating which order of the response categories

is best, we first answer a more fundamental question that occurs when two

different orders lead to the same maximum likelihood. In this case, if one uses

the AIC or BIC to select the best model (see Hastie, Tibshirani and Friedman,

2009 for a good review), these two orders are indistinguishable, or equivalent.

Such a phenomenon has been observed for some baseline-category models (Hastie,

Tibshirani and Friedman, 2009), and here we show that it exists fairly generally

in other multinomial logistic models as well (see Tbl. 1 for a summary).

Given the original data {(xi,Yi), i = 1, . . . ,m}, Yi = (Yi1, . . . , YiJ)
T consists

of the counts of observations falling into the response categories in the original

order or labels {1, . . . , J}. If we consider a regression model with a different order

{σ(1), . . . , σ(J)} of the response categories, where σ : {1, . . . , J} → {1, . . . , J} is

a permutation, this is equivalent to fitting the model using the permuted data

{(xi,Y
σ
i ), i = 1, . . . ,m}, where Yσ

i = (Yiσ(1), . . . , Yiσ(J))
T . We denote P as the

collection of all permutations on {1, . . . , J}. Then, each permutation σ ∈ P
represents an order of the response categories, also denoted by σ.

Now, we consider two orders or permutations σ1, σ2 ∈ P. For i = 1, 2,

we denote li(θ) as the likelihood function with order σi or {σi(1), . . . , σi(J)}.
We say that σ1 and σ2 are equivalent, denoted as σ1 ∼ σ2, if maxθ∈Θ l1(θ) =

maxθ∈Θ l2(θ), where Θ is the parameter space, that is, the set of all feasible θ.

It is straightforward that “∼” is an equivalence relation among the permutations

in P. That is, σ ∼ σ for all σ; σ1 ∼ σ2 if and only if σ2 ∼ σ1; and σ1 ∼ σ2 and
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σ2 ∼ σ3 imply σ1 ∼ σ3 (Wallace, 1998, Sec. 1.4).

2.1. Partial proportional odds (ppo) models

According to Bu, Majumdar and Yang (2020) (see also Glonek and McCul-

lagh, 1995 and Zocchi and Atkinson, 1999), all four logit models (1.1) to (1.4)

with ppo (that is, the most general case) can be rewritten in a unified form

CT log(Lπi) = ηi = Xiθ, i = 1, . . . ,m, (2.1)

where C is a J × (2J − 1) constant matrix, L is a (2J − 1) × J constant

matrix, depending on the type of logit model, πi = (πi1, . . . , πiJ)
T are category

probabilities at xi satisfying
∑J

j=1 πij = 1, ηi = (ηi1, . . . , ηiJ)
T are the linear

predictors, Xi is the model matrix consisting of hj(xi) and hc(xi), and θ =

(βT
1 , . . . ,β

T
J−1, ζ

T )T consists of p = p1 + · · · + pJ−1 + pc regression parameters.

See Bu, Majumdar and Yang (2020) for more details and examples.

According to Theorem 5.1 in Bu, Majumdar and Yang (2020), for cu-

mulative logit models, the parameter space Θ = {θ ∈ Rp | hT
j (xi)βj <

hT
j+1(xi)βj+1, for j = 1, . . . , J − 2, i = 1, . . . ,m} depends on the range of

covariates. For the other three logit models, Θ is typically Rp itself. Apparently,

neither the parameter space Θ nor the model (2.1) is affected by a permutation

of the data Yi.

By reorganizing the formulae in Section S.11 of the Supplementary Material

of Bu, Majumdar and Yang (2020), we write the category probabilities πij as

explicit functions of ηij (and thus of θ) in Lemma 1. To simplify the notation,

we denote ρij = logit−1(ηij) = eηij/(1 + eηij ), and thus ρij/(1 − ρij) = eηij , for

j = 1, . . . , J − 1, and ρi0 ≡ 0, for i = 1, . . . ,m.

Lemma 1. For the four logit models (1.1) to (1.4),

πij =



ρij/(1− ρij)

1 +
∑J−1

l=1 ρil/(1− ρil)
, baseline category

ρij − ρi,j−1 , cumulative∏J−1
l=j ρil/(1− ρil)

1 +
∑J−1

s=1

∏J−1
l=s ρil/(1− ρil)

, adjacent categories

j−1∏
l=0

(1− ρil) · ρij , continuation ratio,

(2.2)

for i = 1, . . . ,m and j = 1, . . . , J − 1. In addition,
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πiJ =



{
1 +

J−1∑
l=1

ρil
1− ρil

}−1

, baseline category

1− ρi,J−1 , cumulative{
1 +

J−1∑
s=1

J−1∏
l=s

ρil
1− ρil

}−1

, adjacent categories

J−1∏
l=1

(1− ρil) , continuation ratio,

(2.3)

for i = 1, . . . ,m.

Because ηij = hT
j (xi)βj+hT

c (xi)ζ, Lemma 1 indicates that πij are functions of

xi and θ, and do not depend on Yi or Y
σ
i , which is true for general multinomial

logit models (2.1). The following theorem provides a sufficient condition for

σ1 ∼ σ2.

Theorem 1. Consider the multinomial logit model (2.1) with independent obser-

vations and two permutations, σ1, σ2 ∈ P. Suppose for any θ1 ∈ Θ, there exists

a θ2 ∈ Θ, and vice versa, such that,

πiσ−1
1 (j)(θ1) = πiσ−1

2 (j)(θ2), (2.4)

for all i = 1, . . . ,m and j = 1, . . . , J . Then, σ1 ∼ σ2. Furthermore, σσ1 ∼ σσ2,

for any σ ∈ P.

Here, σσ1 in Theorem 1 represents the composition of σ and σ1. That is,

σσ1(j) = σ(σ1(j)), for all j. Using this notation, (σσ1)
−1 = σ−1

1 σ−1.

The proof of Theorem 1 is relegated to the Supplementary Material.

Theorem 2. Consider the baseline-category logit model (1.1) with ppo. Suppose

h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, all orders of response

categories that keep J invariant are equivalent.

Theorem 2 includes baseline-category logit models with po, because hj(xi) ≡
1 for po models. It actually includes many npo or ppo models used in practice,

where h1 = · · · = hJ−1. For example, main-effects models that assume h1(xi) =

· · · = hJ−1(xi) = (1,xT
i )

T are widely used.

Theorem 2 also implies that if σ(J) ̸= J , then σ may not be equivalent to

the original order id, or the identity permutation. We provide such a numerical

example in Section 4.4.

Theorem 3. Consider the cumulative logit model (1.2) with ppo. Suppose

hj(xi) = hJ−j(xi), for all i = 1, . . . ,m and j = 1, . . . , J − 1. Then, any order

σ1 is equivalent to its reverse order σ2, which satisfies σ2(j) = σ1(J + 1− j), for

j = 1, . . . , J .

Theorem 3 includes cumulative logit models with po, because hj(xi) ≡ 1. It

also includes many npo or ppo models used in practice that satisfy h1 = · · · =
hJ−1.
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Theorem 4. Consider the adjacent-categories logit model (1.3) with ppo. Sup-

pose h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, any order σ1 is

equivalent to its reverse order σ2 , which satisfies σ2(j) = σ1(J + 1 − j), for all

j = 1, . . . , J .

2.2. Nonproportional odds (npo) models

By removing the item hT
c (xi)ζ from (1.1) to (1.4), we obtain explicit forms

of the four logit models with npo. For npo models, θ = (βT
1 , . . . , β

T
J−1)

T , p =

p1 + · · · + pJ−1 , and ηij = hT
j (xi)βj, for i = 1, . . . ,m and j = 1, . . . , J − 1.

Compared with po models, npo models involve more regression parameters, and

thus are more flexible. For more details about multinomial logistic models with

npo, please see, for example, Section S.8 in the Supplementary Material of Bu,

Majumdar and Yang (2020).

Theorem 5. Consider the baseline-category logit model with npo. Suppose

h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, all orders of response

categories are equivalent.

Theorem 5 confirms that the choice of baseline category does not matter

for multiclass logistic regression models (Hastie, Tibshirani and Friedman, 2009).

What is new here is the explicit correspondence between θ1 and θ2 provided in

the proof of Theorem 5. Based on the correspondence, if we obtain the maximum

likelihood estimate (MLE) for θ1, we can easily derive the MLE for θ2 explicitly,

without running another optimization.

Theorem 6. Consider the adjacent-categories logit model with npo. Suppose

h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, all orders of response

categories are equivalent.

The result of Theorem 6 is truly surprising. The order of the response

categories in an ordinal model does not matter! The transformation (S.1) and its

inverse (S.3) in the proof of Theorem 6 in the Supplementary Material are not

trivial either.

Theorem 7. For the continuation-ratio logit model with npo, σ1 ∼ σ2 if σ2 =

σ1(J − 1, J), where (J − 1, J) is a transposition that switches J − 1 and J .

3. Asymptotic Optimality of True Order

In this section, we discuss the optimality of the true order of the response cat-

egories, when it exists. In short, the model with the true order is asymptotically

optimal in terms of an AIC or BIC likelihood-based model selection criterion.

Suppose an experiment is performed under the multinomial logit model (2.1),

with predetermined design points x1, . . . ,xm, the true parameter values θ0 ∈
Θ ⊆ Rp, and the true order σ0 ∈ P of the response categories. Recall that the
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original experiment assigns ni subjects to xi, with the total number of subjects

n =
∑m

i=1 ni. To avoid trivial cases, we assume ni > 0 for each i (otherwise, we

may delete any xi with ni = 0).

In order to consider the asymptotic properties of the parameter and

order estimators, we consider independent and identically distributed (i.i.d.)

observations (Xl, Yl), for l = 1, . . . , N , generated as follows: (i) X1, . . . , XN

are i.i.d. from a discrete distribution taking values in {x1, . . . ,xm} with

probabilities n1/n, . . . , nm/n, respectively; (ii) given Xl = xi, Yl follows

Multinomial(1;πiσ−1
0 (1)(θ0), . . . , πiσ−1

0 (J)(θ0)), that is, Yl takes values in {1, . . . ,
J} with probabilities πiσ−1

0 (1)(θ0), . . . , πiσ−1
0 (J)(θ0), respectively. The summarized

data can still be denoted as {(xi,Yi), i = 1, . . . ,m}, where

Yi = (Yi1, . . . , YiJ)
T ∼ Multinomial

(
Ni;πiσ−1

0 (1)(θ0), . . . , πiσ−1
0 (J)(θ0)

)
,

and Ni =
∑J

j=1 Yij is the total number of subjects assigned to xi.

Given the count data Yij, the log-likelihood function under the multinomial

logit model (2.1) with parameters θ and a permutation σ ∈ P applied to Yij to

determine the true order is

l(θ, σ) =
m∑
i=1

J∑
j=1

Yiσ(j) log πij(θ) +
m∑
i=1

log(Ni!)−
m∑
i=1

J∑
j=1

log(Yiσ(j)!)

=
m∑
i=1

J∑
j=1

Yij log πiσ−1(j)(θ) +
m∑
i=1

log(Ni!)−
m∑
i=1

J∑
j=1

log(Yij!)

=
m∑
i=1

J∑
j=1

Yij log πiσ−1(j)(θ) + constant,

Then, the MLE (θ̂, σ̂) that maximizes l(θ, σ) maximizes

lN(θ, σ) =
m∑
i=1

J∑
j=1

Yij log πiσ−1(j)(θ)

as well.

Lemma 2. If θ̂ ∈ Θ and σ̂ ∈ P satisfy πiσ̂−1(j)(θ̂) = Yij/Ni for all i and j, then

(θ̂, σ̂) must be an MLE.

To explore the asymptotic properties of log-likelihood and MLEs, we denote

l0 =
∑m

i=1

∑J
j=1 niπij(θ0) log πij(θ0)/n ∈ (−∞, 0), which is a finite constant.

We further denote n0 = min{n1, . . . , nm} ≥ 1 and π0 = min{πiσ−1
0 (j)(θ0), i =

1, . . . ,m; j = 1, . . . , J} ∈ (0, 1).

Lemma 3. As N → ∞, N−1lN(θ0, σ0) → l0 < 0 almost surely.
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Let (θ̂N , σ̂N) denote an MLE that maximizes lN(θ, σ) or, equivalently, l(θ, σ).

The following theorem indicates that the true values (θ0, σ0) asymptotically

maximize lN(θ, σ) as well. That is, the true parameter values θ0 and the true

order σ0 are asymptotically optimal in terms of the likelihood principle.

Theorem 8. As N → ∞, N−1|lN(θ̂N , σ̂N) − lN(θ0, σ0)| → 0 almost surely.

Furthermore, N−1lN(θ̂N , σ̂N) → l0 and lN(θ0, σ0)/lN(θ̂N , σ̂N) → 1 almost surely

as well.

Following Burnham and Anderson (2004), we define

AIC(θ, σ) = −2l(θ, σ) + 2p,

BIC(θ, σ) = −2l(θ, σ) + (logN)p.

Then, the usual AIC = AIC(θ̂N , σ̂N) ≤ AIC(θ0, σ0), and the usual BIC =

BIC(θ̂N , σ̂N) ≤ BIC(θ0, σ0). As a direct conclusion of Theorem 8, we have the

following corollary.

Corollary 1. N−1|AIC − AIC(θ0, σ0)| = N−1|BIC − BIC(θ0, σ0)| → 0 almost

surely, as N → ∞.

Theorem 8 and Corollary 1 confirm that the true parameter and order (θ0, σ0)

are among the best options asymptotically under likelihood-based model selection

criteria. Nevertheless, note that there are two cases where one may not be able

to identify the true order σ0 easily.

Case one: If there exists another order σ ∼ σ0, as discussed in Section 2, then

there exists another θ such that πiσ−1(j)(θ) = πiσ−1
0 (j)(θ0), for all i and

j. In this case, l(θ, σ) = l(θ0, σ0), and the true order σ0 with θ0 is not

distinguishable from the order σ with θ.

Case two: In practice, given the set of experimental settings {x1, . . . ,xm}, it is
not unlikely, especially when the range of experimental settings is narrow,

that there exists a (θ, σ) such that πiσ−1(j)(θ) ≈ πiσ−1
0 (j)(θ0), for all i and j.

Then, the order σ with θ achieves roughly the same likelihood. In this case,

the difference between σ0 and σ could be insignificant, and may not improve

unless one increases the sample size N and the range of {x1, . . . ,xm} (e.g.,

see Sec. 4.1 and 4.3). Compared with po models, npo models have more

parameters and are more flexible. As a result, Case two may occur more

often for npo models.

In both Case one and Case two, the true order σ0 is not significantly better

than all other orders, even with an increased sample size N . Nevertheless, the

results of our simulation studies (Sec. 4) show that there are two situations in

which the true order σ0 can be identified easily. One is with larger absolute



420 WANG AND YANG

Table 2. Trauma Simulation Study with N = 802.

True Order Best Order

Model AIC0 Rank AIC∗ AIC0−AIC∗

Baseline-category po 96.77 73 96.40 0.37

Cumulative po 94.54 7 93.84 0.70

Cumulative npo 102.15 51 101.70 0.45

Adjacent-categories po 92.66 3 92.08 0.58

Continuation-ratio po 96.25 20 94.38 1.87

Continuation-ratio npo 102.43 21 102.03 0.40

values of the regression coefficients (Sec. 4.2). The other is with a larger range

of experimental settings (Sec. 4.3). Both situations reduce the possibility of

Case two, but neither can fix Case one.

4. Simulation Studies

4.1. Simulation study based on trauma data

In the example mentioned in Section 1, the trauma data (Chuang-Stein and

Agresti, 1997, Tbl. 1; Agresti, 2010, Tbl. 7.6) are the responses of N = 802

trauma patients from four treatment groups under different dose levels. The

response categories (GOS) have a clear order, namely: (1) death, (2) vegetative

state, (3) major disability, (4) minor disability, and (5) good recovery.

That is, the original order σ0 = id is the true order. In this case, J = 5. For

illustration purposes, the only predictor x is chosen as the dose level, taking

values in {1, 2, 3, 4}.
In this section, we present simulation studies to explore whether we can

identify the true order of the response categories under different multinomial logit

models. For each model, for example, the baseline-category logit model with po

(see baseline-category po in Tbl. 2), (i) we fit the model using the original data

(Yij)ij against the dose level xi = i to obtain estimated parameter values θ̂o;

(ii) we simulate a new data set (Y ′
ij)ij with total sample size N using the model

with regression coefficients θ̂o; that is, for the simulated data, we have a true

order σ0 = id and true parameter values θ0 = θ̂o; (iii) for each possible order

σ ∈ P, we fit the model using permuted simulated data (Y ′
iσ(j))ij and calculate

the corresponding AIC value; and (iv) we check the difference between the AIC

at σ0 (denoted as AIC0) and the AIC at σ̂ (denoted as AIC∗) that minimizes

the AIC value, as well as the rank of AIC0 among all orders. Ideally, we have

AIC0−AIC∗ = 0 with rank 1 out of 5! = 120; that is, the original order achieves

the smallest AIC value. Nevertheless, in practice, the result depends on the

sample size N and the set of experimental settings.
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Table 3. Trauma Simulation Study with N = 8020.

True Order Best Order

Model AIC0 Rank AIC∗ AIC0−AIC∗

Baseline-category po 133.19 1 133.19 0

Cumulative po 130.52 1 130.52 0

Cumulative npo 135.55 1 135.55 0

Adjacent-categories po 130.31 1 130.31 0

Continuation-ratio po 130.54 1 130.54 0

Continuation-ratio npo 141.51 21 139.96 1.55

In Table 2, we list the simulation results with N = 802, the original sample

size. According to Theorems 5 and 6, all orders under a baseline-category npo

model or an adjacent-categories npo model are indistinguishable in terms of the

AIC. Thus, we omit these two models, and list the other six commonly used

multinomial logit models. In Table 2, the true order is not evident under any of

the multinomial logit models; that is, the rank is not one, or the AIC value is not

the smallest. To check whether the true order can be regarded approximately as

the best one, or whether the difference between the true order and the best order

is significant, we denote ∆ = AIC0 − AIC∗, the difference in terms of their AIC

values. According to Burnham and Anderson (2004), ∆ ≤ 2 suggests that the

true order is considered substantially the best; 4 ≤ ∆ ≤ 7 indicates that the true

order is considerably less than optimal; and ∆ > 10 suggests the true order is

essentially worse than the best one. Because no AIC difference in the last column

of Table 2 is greater than two, we conclude that the AIC differences between the

true order and the best order are not significant. Note that because the number

of parameters does not change across orders, using the BIC is equivalent to using

the AIC here.

The simulation results (not listed in Tbl. 2) also show that all 120 orders

under the continuation-ratio po model lead to distinct AIC values. That is,

all orders are distinguishable, or no two orders are equivalent, supporting the

corresponding statement in Table 1.

In Table 3, we increase the sample size N to 8020, 10 times as large as the

original one, to numerically check the asymptotic optimality of the true order.

That is, the new data (Y ′
i1, . . . , Y

′
iJ) ∼ Multinomial(10ni;πi1(θ̂o), . . . , πiJ(θ̂o)),

where θ̂o is fitted from the original data (Yij)ij and ni =
∑J

j=1 Yij . Clearly,

all models except the continuation-ratio npo model perform best in terms of the

true order of the response categories. This confirms our conclusion in Section 3

that the true order is asymptotically optimal. In this case, the continuation-ratio

npo model behaves differently. With 10 times the original sample size, the true

order still ranks 21st, with an even bigger AIC difference 1.55 (not statistically

significant either). If we further increase the sample size to N = 40×802, the true
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Table 4. Best Order and Treatment Effects

Treatment effect ζ AIC (true) Rank AIC (best) AIC (3rd best when true=best)

−0.1755 94.54 7 93.84 -

−0.3510 98.93 3 98.23 -

0.3510 90.84 1 90.84 91.61

−0.7020 85.17 1 85.17 86.58

order ranks third with an AIC difference 0.05. Actually, even for a very large N ,

there are still six orders among the top tier, the true order, transpositions (3, 4)

and (3, 5), and their equivalent orders (Thm. 7). This simulation study provides

a numerical example for Case two described in Section 3.

4.2. True order and treatment effects

In Section 3, we noted that larger absolute values of the regression coefficients

may make the true order easier to identify. In this section, we illustrate such a

scenario using a cumulative po model, which has fewer coefficients and is easier

to modify.

The cumulative po model for the trauma data consists of p = 5 parameters

θ = (β1, β2, β3, β4, ζ)
T , where ζ represents the treatment effect of the dose level x.

By fitting the model using the original data, we obtain the estimated parameters

θ̂ = (−0.7192,−0.3186, 0.6916, 2.057,−0.1755)T . Similarly to Section 4.1, we

treat σ0 = id and θ0 = θ̂ as the true values, and simulate a new data set (Y ′
ij)ij

with the original sample size N = 802. We then check for each possible order σ

using the simulated data set. In contrast to Section 4.1, we run four simulation

studies, with ζ = −0.1755,−0.3510, 0.3510,−0.7020, respectively, to observe how

the magnitude of the treatment effects affects the differences between the orders.

From Table 4, the true order tends to be the best order as |ζ| increases. For
ζ = 0.3510 and −0.7020, the true order attains the best or minimum AIC value.

According to Theorem 3 and its proof, the reversed order with parameters θ2 =

(−β4,−β3,−β2,−β1,−ζ)T achieves the same AIC value, which can be viewed

as the second best result. From ζ = 0.3510 to ζ = −0.7020, the AIC difference

between the true order and the third best order increases from 91.61−90.84 = 0.77

to 86.58− 85.17 = 1.41, indicating that a larger treatment effect might make the

true order easier to identify.

4.3. True order and experimental settings

In this section, we discuss how the experimental setting xi affects the

identification of the true order. We use the trauma data under the continuation-

ratio npo model as an example, because this is a difficult case in which to identify

the true order, according to the results shown in Table 3.
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Table 5. Data from Baseline-category po Model with Baseline Category J = 4.

xi = i Yi1 Yi2 Yi3 Yi4 ni

1 22 33 10 35 100

2 31 40 14 15 100

3 23 43 22 12 100

4 27 49 18 6 100

We explore two ways of changing the set {xi, i = 1, . . . ,m} = {1, 2, 3, 4} in

the trauma data. In the first, we increase the range to XA = {1, 2, . . . , 16}. In

the second, we make finer changes to the experiment settings and obtain XB =

{1, 1.25, 1.50, . . . , 3.75, 4}, the range of which is still [1, 4]. In both methods, the

number m of experimental settings increases significantly.

Similarly to Section 4.1, we treat σ0 = id and θ0 = θ̂, estimated for the

continuation-ratio npo model from the original data, as the true values. In this

section, we simulate 100 new data sets (Y
(b)
ij )ij independently, with N = 100 ×

210m and b = 1, . . . , 100, using the continuation-ratio npo model with σ0 and θ0.

For each b = 1, . . . , 100 and each σ ∈ P, we fit the continuation-ratio npo model

using the permuted data (Y
(b)
iσ(j))ij against the dose level xi. The corresponding

AIC values are denoted as AIC(b)
σ , for b = 1, . . . , 100. To compare the true order σ0

with each σ of the other 119 orders, we run a one-sided paired t-test on (AIC(b)
σ0
)b

and (AIC(b)
σ )b. A significant p-value indicates that the AIC value associated with

σ0 is significantly smaller than the AIC value of σ.

Under the first scenario XA, 118 out of 119 p-values are statistically signifi-

cant, indicating that the true order is significantly better than all other orders,

except the equivalent one listed by Theorem 7. That is, an increased range may

make the true order easier to identify.

Under the second scenario XB, there are still three p-values greater than

0.05. Further tests indicate that these four orders, including the true order, are

indistinguishable. That is, increasing m while maintaining the range of xi may

not be an efficient way to improve the identifiability of the true order.

4.4. Choice of baseline category

In this section, we use cross-validation to show that the choice of baseline

category makes a difference for baseline-category po models.

Table 5 provides simulated data from a baseline-category po model, with the

fourth category as the true baseline category. The parameters used for simulating

the data are θ = (β1, β2, β3, ζ)
T = (−0.8,−0.3,−1.0, 0.5)T . There are n = 400

observations in total. We randomly split the observations into two parts, 267 as

training data and 133 as testing data. We repeat the random partition 100 times.

For each random partition and each order σ ∈ P, (1) we use the training data

to fit the baseline-category po model with order σ (similarly to Sec. 4.1), and
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denote the fitted model as Model σ; (2) we predict the labels of the responses of

the testing data using Model σ, and use the cross-entropy loss (Hastie, Tibshirani

and Friedman, 2009) to measure the prediction errors. In this way, we have 100

prediction errors (cross-entropy loss) for each σ. For any two orders, we can

run a one-sided paired t-test to check whether one order’s prediction error is

significantly lower than that of the other (similarly to Sec. 4.3).

We conclude the following from this cross-validation study: (i) all orders that

share the same baseline category have the same cross-entropy loss, indicating that

they are indistinguishable in terms of their prediction errors, and supporting the

results of Theorem 2; (ii) supported by the pairwise t-tests, the orders with the

true baseline (J = 4) have significantly smaller cross-entropy losses than the other

orders, with p-values 5.69 × 10−42, 9.54 × 10−47, and 8.99 × 10−51, respectively,

showing that the correct choice of baseline category matters in practice.

4.5. When true order does not exist

In this section, we investigate an order misspecification issue when the true

order does not exist. More specifically, for a baseline-category npo model, all

orders are equivalent, according to Theorem 5. In other words, there is no true

order. Nevertheless, given such a data set, we can still find the best model with

the best order, called the working order. The simulation study below shows

that when the true order does not exist, we have the following results: (1) with

moderate sample sizes, a working order with a different model can be selected,

but may not be significantly better than the true model in terms of the AIC;

and (2) asymptotically, the true model without a true order may be significantly

better than any other model with any working order.

In this simulation study, we use the baseline-category npo model fitted

from the original trauma data as the true model, and simulate a data set with

the set of covariate levels XA = {1, 2, . . . , 16}, which is a more informative

experimental setting (Sec. 4.3). For each level xi ∈ XA, we simulate nA = 200

observations, with the total sample size N = 16nA = 3200. For the simulated

data with N = 3200, the best model according to the AIC is a continuation-

ratio npo model, with AIC = 321.31, at its best (working) order {death, major
disability, vegetative state, minor disability, good recovery}, whereas
the AIC value of the true model is 322.48. In other words, the best model

with the working order is not significantly better than the true model. If we

increase the sample size N to 3,200 × 100, the continuation-ratio npo model is

still the best model, with AIC = 604.93 at the best order {vegetative state,

death, minor disability, major disability, good recovery}, which again is

not significantly better than the true model, with AIC = 606.75. If we further

increase N to 3,200× 10,000, the true model becomes the best model, with AIC

= 914.80, and is significantly better than the continuation-ratio npo model, with

AIC = 944.92 at its best order.
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Table 6. Frequencies of AICtrue − AICother Categories out of 100 Simulated Trauma
Data from Baseline-category npo Model.

N < 0 [0, 2) [2, 4) [4, 7) [7, 10) ≥ 10

1× 3,200 0 57 27 11 2 3

10× 3,200 13 55 25 7 0 0

100× 3,200 36 44 16 3 0 1

10,000× 3,200 100 0 0 0 0 0

We repeat the procedure 100 times with various N . For each simulated

trauma data set from the baseline-catetory npo model, we calculate the difference

between AICtrue (the AIC value with the true model) and AICother (the smallest

AIC value among all other models and all orders). In Table 6, we list the

frequencies of the AIC differences falling into different ranges. For example, the

first column “< 0” provides the numbers of simulations out of 100 with AICtrue

− AICother < 0. As N increases from 1× 3,200 to 10,000× 3,200, the number of

cases increases from 0 to 100, showing that the true model is increasingly likely

to outperform other models with any order in terms of AIC values. The other

columns in Table 6 show similar patterns, confirming the conclusions described

at the beginning of this section.

5. Real-Data Analysis

The US Police Involved Fatalities Data (hereafter, Police data) were down-

loaded from data.world (https://data.world/awram/us-police-involved-

fatalities, version June 21, 2020), which was collected by Chris Awarm from

three data resources, namely, https://fatalencounters.org/, https://www.

gunviolencearchive.org/, and Fatal Police Shootings, from data.world.

The original data lists individuals killed by the police in the United States from

2000 to 2016, including information on 12,483 suspects’ age, race, mental health

status, weapons they were armed with, and whether or not they were fleeing. By

way of example, we focus on whether the police’s action can be predicted by the

aforementioned information related to a suspect.

As summarized in Table 7, there are four categories of (police) responses,

namely, other, shot, shot and tasered, and tasered. In our notation, J = 4.

In the original data, there are 60 different types of armed status. Here, we simplify

these into three categories: gun, if the original input is “gun;” unarmed, if the

original input is “unarmed” or missing; and other, if otherwise. As such, we

have 24 possible level combinations of armed status (xi1 = 1 (gun), 2 (other),

or 3 (unarmed)), gender (xi2 = 0 (female) or 1 (male)), flee (xi3 = 0 (false)

or 1 (true)), mental illness (xi4 = 0 (false) or 1 (true)). Because there is no

observation associated with xi = (xi1, xi2, xi3, xi4)
T = (3, 0, 1, 1)T , m = 23 in this

case (Tbl. 7).

https://data.world/awram/us-police-involved-fatalities
https://data.world/awram/us-police-involved-fatalities
https://fatalencounters.org/
https://www.gunviolencearchive.org/
https://www.gunviolencearchive.org/
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Table 7. US Police Involved Fatalities Data (2000 to 2016).

Armed Gender Flee Mental Illness Other Shot Shot and Tasered Tasered Total

Gun Female False False 0 134 0 1 135

Gun Female False True 0 57 0 1 58

Gun Female True False 0 8 0 0 8

Gun Female True True 0 4 0 0 4

Gun Male False False 2 3,314 6 35 3,357

Gun Male False True 0 810 4 15 829

Gun Male True False 0 271 5 0 276

Gun Male True True 0 33 1 0 36

Other Female False False 0 53 1 0 54

Other Female False True 1 42 1 0 44

Other Female True False 0 4 1 0 5

Other Female True True 0 2 0 0 2

Other Male False False 1 910 38 10 959

Other Male False True 2 478 21 5 506

Other Male True False 0 114 10 0 124

Other Male True True 0 14 2 0 16

Unarmed Female False False 1 231 0 3 235

Unarmed Female False True 0 61 0 5 66

Unarmed Female True False 0 2 0 0 2

Unarmed Male False False 10 4,338 16 253 4,617

Unarmed Male False True 12 832 5 214 1,063

Unarmed Male True False 0 75 8 0 83

Unarmed Male True True 0 5 1 0 6

Note: The group (Unarmed, Female, Fleed, Has Mental Illness) contains no observation and is omitted.

As an example, we consider the main-effects baseline-category, cumulative,

adjacent-categories, and continuation-ratio logit models with po or npo. In our

notation, h1(xi) = · · · = hJ−1(xi) = (1,1{xi1=2},1{xi1=3}, xi2, xi3, xi4)
T for all

eight models under consideration. For each model, we choose the best order out

of 4! = 24 of the four response categories, based on the AIC. Of the eight logit

models, each with 24 orders, the continuation-ratio npo model with the chosen

order (t, s, o, st) or (t, s, st, o) (Tbl. 8) performs best, and can be written as

log

(
πij

πi,j+1 + · · ·+ πiJ

)
= βj1+βj21{xi1=2}+βj31{xi1=3}+βj4xi2+βj5xi3+βj6xi4 ,

where j = 1, 2, 3 and i = 1, . . . , 23. The corresponding BIC values, not shown

here, provide a consistent selection result. According to the AIC values, if

we choose the continuation-ratio npo model with the best order {tasered,
shot, other, shot and tasered} against the baseline-category models (po or

npo), which are commonly used for categorical responses without an order, the

improvement in the prediction accuracy is significant (AIC differences > 5). Note

that in this case, it is not trivial to determine the baseline category for po models,
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Table 8. Model and Order Selection for Police Data.

Model AIC with Best Order Best Order

Baseline-category po 401.33 t is the baseline

Baseline-category npo 197.81 All are the same

Cumulative po 318.14 (st, s, o, t) or (t, o, s, st)

Cumulative npo 194.48 (o, st, s, t) or (t, s, st, o)

Adjacent-categories po 290.17 (st, s, o, t) or (t, o, s, st)

Adjacent-categories npo 197.81 All are the same

Continuation-ratio po 320.22 (t, o, s, st)

Continuation-ratio npo 192.01 (t, s, o, st) or (t, s, st, o)

Note: s = shot, t = tasered, o = other, st = shot and tasered.

owing to the existence of the category other.

Table 8 also shows large gaps of AIC values between the npo models and

the corresponding po models, indicating that npo models are significantly better

than the corresponding po models in this case. The differences within the AIC

values of the npo models are also much smaller than those within the po models.

This provides strong evidence that for the Police data, the parameters for the

categories are very different, and thus the proportional odds (po) assumptions

are not appropriate (see the Introduction).

To validate the selected model, we conduct five-fold cross-validation for the

data, with cross-entropy loss as the criterion (Hastie, Tibshirani and Friedman,

2009). We compare our selected continuation-ratio npo model with the baseline-

category npo model, which is commonly used for nominal responses. In terms of

cross-entropy loss, the continuation-ratio npo model achieves 550.50, which is less

than the value of 555.91 for the baseline-category npo model. This is consistent

with our conclusion based on AIC values.

The estimated parameters for the chosen continuation-ratio npo model are

provided in Table 9, which can be used to interpret the roles and effects of different

factors. For example, β̂13 = 2.03 indicates that the estimated odds ratio of

tasered and “unarmed” is e2.03 = 7.61, which implies that “unarmed” leads to a

much smaller chance of being shot. In contrast, β̂15 = −18.02, with an estimated

odds ratio e−18.02 = 1.49 × 10−8, implies that suspects who flee have a much

greater chance of being shot. Because shot is usually regarded as more severe

than tasered, the estimated parameters imply that if suspects show a greater

threat such as being armed (gun or other), or try to flee, the police tend to take

more extreme actions, such as shooting a gun.

To investigate whether the best order is chosen because of randomness,

we conduct a simulation study similar to that in Section 4.5. We regenerate

the Police data simulated from the baseline-category npo model fitted from the

original data (see Tbl. 10 for the parameter values). For the simulated Police data,

the best model is the cumulative npo model with the order {shot and tasered,
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Table 9. Estimated Parameters for Police Data under Continuation-ratio npo Model.

j Intercept Armed Status Armed Status Gender Flee Mental Illness

β̂j1 β̂j2 (Other) β̂j3 (Unarmed) β̂j4 β̂j5 β̂j6

1 -6.00 -0.44 2.03 1.17 -18.02 1.34

2 6.47 -2.43 -1.09 -0.58 -1.55 -0.59

3 0.26 -1.49 1.69 -2.29 -28.35 1.02

Note: j = 1, 2, 3 correspond to tasered, shot, and other, respectively.

Table 10. Estimated Parameters for Police Data under Baseline-category npo Model.

j Intercept Armed Status Armed Status Gender Flee Mental Illness

β̂j1 β̂j2 (Other) β̂j3 (Unarmed) β̂j4 β̂j5 β̂j6

1 -2.07 -1.34 6.00 -1.18 -0.82 -0.31
2 0.24 -8.83 -2.04 11.09 -1.39 12.74
3 1.89 0.19 0.40 -1.35 2.93 -1.02
Note: j = 1, 2, 3 correspond to other, shot, shot and tasered, respectively.

shot, other, tasered} with AIC 149.77, which is not significantly better than the

true model (baseline-category npo), with AIC 151.04. If we increase the sample

size by a factor of 10, the true model with AIC 271.90 becomes better than the

cumulative npo model, with AIC 274.53. If we further increase it by a factor of

100, the true model with AIC 401.92 is significantly better than the cumulative

npo model, with AIC 440.45. In other words, with the original sample size of

the Police data, if there is no true order, then the selected model with a working

order may not be significantly better than the true model. As the amount of data

increases, the true model becomes significantly better than the other models with

any working order, supporting the simulation results in Section 4.5.

6. Discussion

In our analysis of real data, we consider both the type of model and the

order of the categories as parts of the model selection procedure. Our examples

show that the improvement by choosing a more appropriate order can be highly

significant. For example, if we focus on adjacent-categories po models for the

Police data, the smallest AIC value from the best order is 290.17, whereas the

largest one from the worst order is 674.44, implying a significant difference in

terms of prediction accuracy.

For the Police data, there is no natural order, owing to the existence of the

category other. According to the AIC values, the continuation-ratio npo model

with the working order (t, s, o, st), or equivalently (t, s, st, o), is significantly

better than the baseline-category npo models (Tbl. 8). On the one hand, if there

is a true order, it will appear among the best orders consistently (Sec. 3). On

the other hand, if there is no true order for the Police data, then there is no
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ordinal model with a working order that is significantly better than the baseline-

category npo model, with the current or a larger sample size (see the simulation

study at the end of Sec. 5). In other words, we can report the working order with

confidence if it is significantly better than other orders.

Finally, in the proofs of Theorems 2 to 7, we provide explicit transformation

formulae from θ1 with σ1 to θ2 with σ2 when σ2 ∼ σ1. This significantly reduces

the computational cost of finding MLEs with different orders.

Supplementary Material

The online Supplementary Material contains proofs of Theorems 1 to 8,

Lemmas 2 and 3, and Corollary 1.
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