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Abstract: One of the main goals of recommendation systems is to predict unobserved

ratings. The majority of existing methods implicitly assume that all entries are

missing at random and homogeneous, that is, the ratings are revealed with the

same probability. However, studies have shown that this assumption is often too

strong in real-data applications. We propose a zero-imputation method for solving

prediction problems under heterogeneous missing situations. Our algorithm has a

closed-form solution, is scalable to large data sets, and can be extended to include

the cold-start prediction problems, where one needs a prediction for a new user

or item with no prior ratings. We provide theoretical guarantees for the proposed

method and demonstrate its good performance in a data analysis and in simulations.
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1. Introduction

A recommendation system is often represented by a rating matrix S ∈ Rn×m,

where rows index users and columns index items, and the entries of the matrix

correspond to the users’ ratings for the items. One of the main goals of a

recommendation system is to predict unobserved missing ratings in this matrix.

Two approaches to such predictions exist in the literature, namely, content-

based filtering and collaborative filtering. Content-based filtering recommends

items by comparing “key” features of the items with the users’ profiles (Lops,

De Gemmis and Semeraro (2011)), which often requires domain knowledge.

Collaborative filtering uses observed “collaborative” interaction data to make

predictions; see Feuerverger, He and Khatri (2012) for a review of some popular

approaches. The majority of existing methods and theory in the collaborative

filtering approach assume or implicitly use the setting that missing is at random

and homogeneous, that is, entries are revealed with the same probability.

Therefore, the main part of the loss function is the average loss over the observed

entries (Webb (2006); Paterek (2007); Koren, Bell and Volinsky (2009)). Other

methods try to recover missing ratings by assuming a uniform missing probability,

in an exact sense, meaning that they treat the observed entries as fixed and
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without measurement errors (Candès and Recht (2009); Keshavan, Montanari

and Oh (2010, 2009); Recht (2011); Mazumder, Hastie and Tibshirani (2010)).

However, the probability of missing values in recommendation systems is often

heterogeneous. For example, entries with higher underlying ratings may be more

likely to be observed (Harper and Konstan (2015); Marlin and Zemel (2009)).

With heterogeneous missing data, averaging over observed ratings only may lead

to bias when approximating the loss function for the complete data set (Ma and

Chen (2019); Dai et al. (2019); Schnabel et al. (2016); Wang et al. (2018, 2019);

Mao, Wong and Chen (2021)).

Let R denote the missing matrix, where Ri,j = 1 if element Si,j is

observed, and zero otherwise, and let Ω be the set of entries that are observed.

Homogeneous missing data means that Ri,j follows a Bernoulli distribution

with a constant observation rate. Here, we assume that Ri,j ∼ Ber(Oi,j)

and is independent of others, given Oi,j. The complete loss function for a

recommendation system takes the form of
∑n

i=1

∑m
j=1 L(Si,j, Ŝi,j). In practice,

researchers may apply regularization methods and modeling assumptions to

modify the observed loss function
∑

(i,j)∈Ω L(Si,j, Ŝi,j) to be close to the full loss

function, even in the case of heterogeneous missing data. For example, Bi et al.

(2017) cluster items and users into sub-groups based on their missing patterns and

covariate patterns. Two existing approaches directly target the full loss function.

The first is the inverse propensity scoring (IPS) approach (Schnabel et al. (2016);

Wang et al. (2019); Imbens and Rubin (2015)), which has a IPS loss function

of the form
∑

(i,j)∈Ω(1/Oi,j)L(Si,j, Ŝi,j), and has been proved to be an unbiased

estimate of the full loss function, assuming Oi,j are known. A disadvantage of the

IPS approach is that it is not stable when small observation probabilities occur

(Rubin (2001); Schafer and Kang (2008)). As a result, parametric models, low-

rank models, and other regularization methods have been used to estimate the

weighting matrix (Negahban and Wainwright (2012); Klopp (2014); Cai, Cai and

Zhang (2016); Ma and Chen (2019); Mao, Wong and Chen (2021)). The second

approach is the error-imputation-based (EIB) method, where one estimates the

loss L(Si,j, Ŝi,j) for unobserved entries (i, j) (Steck (2010); Wang et al. (2019);

Dai et al. (2019)). For example, Dai et al. (2019) propose leveraging information

from observed neighbors to impute the missing entries, where neighborhoods are

constructed using user and item networks, as well as relevant covariates. These

methods all first construct a loss function, and then iteratively solve optimization

problems using this function.

In this paper, we propose a different approach, which we call zero-imputation.

For illustration, let us assume that S is a binary matrix, with one representing

“like,” and zero representing “dislike.” We assume that E(Si,j) = Pi,j, and that

the entries are formed independently, given Pi,j. The goal is to estimate Pi,j,

and use it as a prediction for the non-observed entries. Given Oi,j, we estimate

Pi,j as E(Si,jRi,j)/[E(Si,jRi,j) + E{(1− Si,j)Ri,j}]. Although the matrix S is not
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entirely observable (i.e., it contains many “NA” values), the matrix S ◦R can be

obtained by imputing missing values with zero, and the matrix (1 − S) ◦ R can

be obtained by first flipping the binary values, and then imputing the missing

values with zero. Here, “◦” denotes the matrix element-wise product (Hadamard

product). We then use a soft-thresholding singular value decomposition (SVD)

to recover the mean matrix from the binary outcome matrices S ◦ R and (1 −
S) ◦R. Predicting ordered scale ratings can be decomposed into several parallel

tasks using this binary model. The proposed approach has three advantages

over existing approaches. First, it uses the “flip” relation of the paired S ◦R and

(1−S)◦R, and estimates the inverse weighting matrix as E(S◦R)+E{(1−S)◦R}.
This provides self-stabilization and guarantees that the resulting estimate of the

probability is between zero and one. Second, most IPS methods apply the inverse

weighting to the loss function and need an iterative optimization approach. In

contrast, we impute missingness with zero, and directly estimate the mean of two

fully observed binary matrices. This can be achieved using a soft-thresholding

SVD approach with simple tuning, and results in a closed-form solution. Using

minimal assumptions, we can obtain its rate of convergence for heterogeneous

missing cases. Third, the simple form of the zero-imputation approach extends

naturally to cold-start problems, where we need a prediction for a new user or

item with no prior ratings. Details can be found in Section 3.

In Section 4 and 5, we demonstrate the proposed approach by predicting

heterogeneous unobserved values and new users’ ratings using the Movie-lens

and simulated data sets, respectively. All theoretical proofs can be found in the

online Supplementary Material.

2. Zero-Imputation Approach for Predicting Order-Scaled Ratings

Let S ∈ Rn×m be a score rating matrix, where n represents the total number

of people, and m is the total number of items. We assume that each entry takes

an order-scaled rating in {1, 2, . . . ,K}. The data contain an incomplete matrix

S with a large proportion of missing values. Let R denote the data recording

matrix, where Ri,j = 1 if element (i, j) is observed, and zero otherwise. We

assume that Ri,j ∼ Ber(Oi,j) and is independent of others, given Oi,j.

For each 2 ≤ k ≤ K, we construct two binary matrices, A(k) and A(k), where

the upper matrix A
(k)
i,j = 1 if and only if Si,j is observed and Si,j ≥ k, and the

lower matrix A(k);i,j = 1 if and only if Si,j is observed and Si,j < k. By definition,

A
(k)
i,j +A(k);i,j = Ri,j, and in both matrices, the missing values are always imputed

with zero. The two matrices have a “flip” relation on observed ratings, such that

if one matrix is dichotomized as zero and one, then the other is dichotomized as

one and zero. Given the missing parameters Oi,j, for 2 ≤ k ≤ K,
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P (Si,j ≥ k) =
P (A

(k)
i,j = 1)

Oi,j
=

E(A
(k)
i,j )

E(Ri,j)
=

E(A
(k)
i,j )

E(A
(k)
i,j ) + E(A(k);i,j)

. (2.1)

Then, we predict the rating using E(Si,j) = 1 +
∑K

k=2 P (Si,j ≥ k). We call the

estimation approach based on (2.1) the zero-imputation method. Note that the

sum of E(A
(k)
i,j ) and E(A(k);i,j) is equal to Oi,j. We use (2.1), because it provides

self-stabilization and guarantees that the resulting estimate of the probability is

between zero and one.

Discussion of the missing heterogeneous assumption. (2.1) holds under

the assumption that given Oi,j, {Ri,j} is independent of {Si,j}. This is satisfied

because Ri,j is generated independently from Ber(Oi,j). Although we require

that Ri,j is independent of the ratings Si,j given Oi,j, we allow the underlying

missing probability Oi,j to freely change over different entries, and may change

with E(Si,j) or other parameters. This is much more flexible than the conventional

missing completely at random (MCAR) notion. The conventional missing termi-

nologies are mainly developed for parametric settings that have independent and

identically distributed (i.i.d.) samples and a set of low-dimensional parameters.

MCAR then corresponds to the homogeneous missing case in which all data

are revealed with the same probability. Here, we have relational data with

n × m entries, and allow each entry to have its own missing parameter Oi,j.

This kind of completely heterogeneous missingness is impossible to estimate in

conventional nonrelational data. In the traditional framework of missing data,

the missing at random (MAR) setting is used to relax the MCAR assumption, so

that the missing probability can vary. In recommendation systems, researchers

have found that entries with higher underlying ratings may be more likely to be

observed. Marlin and Zemel (2009); Chi and Li (2019) use MAR to model this

phenomenon, where the missing probability is allowed to vary among entries, but

only through a function of the observed ratings. Heterogeneous missingness is

more flexible in terms of accommodating these features in data sets. For example,

in our simulations, the missing probability Oi,j is a decreasing function of the

expectation of the observed or unobserved ratings.

Now, we need only to estimate the mean of a fully observed binary matrix,

that is, E(A(k)) or E(A(k)). There are numerous methods for this task that enjoy

computational advantages with a theoretical guarantee. We choose to apply the

soft singular value thresholding approach (Cai, Candès and Shen (2010); Xu

(2018)). The estimation is a modification of a matrix SVD, where we replace the

original singular values with the soft-thresholded values. Let {·}+ = max{0, ·}
be the positive part function. Let A(k) =

∑
1≤i≤(m∧n) σ̂

k
i Û

k
i (V̂ k

i )T be the SVD

of the matrix A(k), where σ̂ki is the ith singular value, Ûk
i is the corresponding

left-singular vector, and V̂ k
i is the right-singular vector. Similarly, let A(k) =∑

1≤i≤(m∧n) σ̂k,iÛk,iV̂
T
k,i be the SVD of matrix A(k). We summarize our zero-
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imputation method in Algorithm 1.

Algorithm 1 Zero-imputation method for predicting unobserved ratings.

Input: Observed S; a dimension p; minimum observation probability εn,m.

Output: Complete rating matrix Ŝ.
1: Parallel for k in 2,. . . , K do
2: Obtain A(k), A(k) by using truncation and the zero-imputation approach.

3: A(k) =
∑

1≤i≤(m∧n) σ̂
k
i Û

k
i (V̂ ki )T . . SVD of upper-truncation matrix

4: Â(k) =
∑

1≤i≤(m∧n)(σ̂
k
i − λk)+Û

k
i (V̂ ki )T . . Soft-thresholding using λk = σ̂kp+1

5: A(k) =
∑

1≤i≤(m∧n) σ̂k,iÛk,iV̂
T
k,i. . SVD of lower-truncation matrix

6: Â(k) =
∑

1≤i≤(m∧n)(σ̂k,i − λk)+Ûk,iV̂
T
k,i. . Soft-thresholding using λk = σ̂k,p+1

7: end Parallel
8: Ŝk = Â(k)/max(Â(k) + Â(k), εn,m). . Scale back

9: Ŝ = 1 +
∑K
k=2 Ŝ

k. . Prediction

Remark 1. Instead of soft-thresholding, we may use a hard-thresholding

method, where we cut off singular values directly at λ, and do not take the

differences. Our theoretical results remain valid in this case.

Remark 2. As specified in Theorem 1, to be able to consistently estimate S, we

require that the minimum of the observation probability Oi,j be lower bounded

away from zero. In the algorithm, one can specify a very small number as the

minimum observation probability to stabilize the results in step 8. In addition,

each element in Â(k) and Â(k) should be nonnegative, because it is an estimation

of a probability. In our numerical results, we use εn,m = 10−4. A sensitivity

analysis showed that the results are almost identical for ε = 10−4, 10−5, and

10−6. The data are allowed to be more sparse (i.e., have a higher missing rate) as

n and m grow, and accordingly, the choice of εn,m should match the approximate

sparsity level of the data.

In the asymptotic theory, one can apply the universal threshold value λ =

C0

√
δn,mm ∨ n, where C0 is some positive constant greater than two, often chosen

as 2.01 (Chatterjee and others (2015)), and δn,m is the sparsity parameter. In

our algorithms, we first use five-fold cross-validation to choose a thresholding

dimension p, and then set the soft-thresholding values to λk = σ̂kp+1 and λk =

σ̂k,p+1, where σ̂kp+1 and σ̂k,p+1 are the (p + 1)th singular values of A(k) and A(k),

respectively. Note too that the problem is not assumed to be low rank; therefore,

the selected thresholding dimension p can be large. For example, the average

value of p is 60 in our simulations with (n,m) = (3000, 1500).

The proposed zero-imputation algorithm can be decomposed into 2×(K−1)

parallel tasks, because of the independence of each parallel procedure. A sparsity

matrix appears for each individual task, because we impute all missing values with

zero. For large sparse matrices, we can use existing tools to efficiently solve the

truncated SVD procedure (e.g., the “svds” function in the R package RSpectra).
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Optional one-step update. We can further improve the zero-imputation

estimator by using refinement methods developed for matrix completion. In

recommendation systems, common methods such as regularized SVD (Webb

(2006); Paterek (2007)) usually incorporate an ANOVA-type mean correction.

Therefore we recommend considering a one-step debiased approach, following

the strategy proposed in Chen et al. (2019). Specifically, let Ŝ be the original

zero-imputation estimation. We may apply the soft singular value thresholding

again on the matrix Ŝ − 1/R̂ ◦PΩ(Ŝ −S), where R̂ is the estimate of the missing

matrix, and PΩ(Bi,j) = Bi,j if (i, j) is observed, and zero otherwise. The resulting

matrix is Ŝupdate.

Zero-imputation for continuous ratings. One may apply the zero-

imputation approach directly to S ∈ [a, b]. First, scale it to S
′ ∈ [0, 1] by

subtracting a and then dividing by b− a. Then, (2.1) is modified as

E(S
′

i,j) =
E(AUi,j)

E(AUi,j) + E(AL;i,j)
,

where AUi,j = S
′

i,j if observed, and zero otherwise, and AL;i,j = 1−S′

i,j if observed,

and zero otherwise. The prediction for unobserved values is Ŝ = Ê(S′)×(b−a)+a.

We focus on working with the binary indicator of Si,j ≥ k, for two main reasons.

First, Bernoulli random variables are fully characterized by their expectations.

Therefore, we can discuss the bipartite graph root distribution (BGRD) for the

cold-start problem with minimal assumptions. Second, the classification of Si,j
at a cut-off value k is often of interest. Our numerical experiments show that

targeting P (Si,j ≥ k) directly delivers better classification results.

In the following, we derive the theoretical properties of the zero-imputation

estimator. In recommendation systems, the observation probabilities Oi,j can be

very small, resulting in a sparse bipartite graph. Therefore, it is of interest to

set up asymptotic theorems that that allow the sparsity of a graph to increase

with the sample size. To this end, we add a “sparsity parameter” δn,m
to the sampling scheme, such that Oi,j = δn,mÕi,j, E(A(k)) = δn,mP̃

(k), and

E(A(k)) = δn,mP̃(k), where Õi,j, P̃
(k), and P̃(k) take values between zero and one,

and are considered to be at a constant level. In the following, we use σi(P̃
(k))

to denote the ith singular value of P̃ (k), and use C to denote a positive constant

value.

Theorem 1. For simplicity, we assume m ≤ n. Let Ŝki,j be the estimator of

P (Si,j ≥ k) using the zero-imputation method given in Algorithm 1. Assume that

the sparsity parameter satisfies δn,m ≥ C1log(n)/n, and that mδn,m → ∞ and

mini,jÕi,j = C̃2 > 0. For all C1, there exist C0, C2, and C3 such that if the

singular value threshold λ in Algorithm 1 is C0

√
δn,mn and the lower truncation

of the observation probability εn,m is C2δn,m, which is smaller than C̃2δn,m, then
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with probability at least 1− n−C3, we have for 2 ≤ k ≤ K,

1

mn

∑
i,j

{
Ŝki,j − P (Si,j ≥ k)

}2

≤ min
0≤r≤m

{
C4r

mδn,m
+
C5

mn

∑
i≥r+1

σ2
i (P̃

(k))

}
. (2.2)

Remark 3. The condition mδn,m → ∞ is used in other matrix estimation

work, such as Theorem 2.1 in Chatterjee and others (2015), and Theorem 1.1

in Keshavan, Montanari and Oh (2009). Intuitively, we need the number of

observations to be at least in the order of n log n so that with high probability,

each row and column have at least one observation (Candès and Tao (2010)).

Under Bernoulli sampling of the set of observed entries, this essentially requires

nmδn,m to be of order n log n, which implies mδn,m →∞. If m and n are of the

same order, the sparsity level can reach the lower bound δm,n = Clog(n)/n and

the (main term of) convergence rate is 1/log(n), which matches the state-of-the-

art results in sparse matrix completion.

Remark 4. Theorem 1 provides a general bound for the error. The rate

of convergence depends on the structure of the singular values. Corollary 1

and Corollary 2 provide the convergence rates for a finite-rank structure and

a polynomial decay structure, respectively.

Remark 5. The one-step update mentioned earlier can be shown to have the

same general bound, with smaller pre-constants; see Theorem 3 in Chen et al.

(2019) for a relevant discussion.

Xu (2018) and Chatterjee and others (2015) provide asymptotic results

for singular value thresholding approaches for binary matrix completion with

a homogeneous observation probability. We modify some of their proofs to prove

the above result. The error bound is comparable with that of Xu (2018) and

improves on that of Chatterjee and others (2015). For example, if we assume that

the singular values decay at a polynomial rate σr �
√
mn/rα, for some α > 1,

then the error is in the order of {1/(mδn,m)}1−1/(2α), which improves slightly on

the bounds in Theorem 1.1 in Chatterjee and others (2015), and is comparable

with the bound proved in Corollary 1 in Xu (2018). If the singular values vanish

to zero after a finite number, then the error is in the order of 1/(mδn,m), which

matches the result in Xu (2018). Recall that E(Si,j) = 1 +
∑K

k=2 P (Si,j ≥ k). For

the above-mentioned two singular value structures, it is straightforward to prove

the following convergence results for Ŝi,j = 1 +
∑K

k=2 Ŝ
k
i,j = 1 +

∑K
k=2 P̂ (Si,j ≥ k).

Corollary 1. Given the conditions in Theorem 1, if all matrices P̃ have finite

rank, then {1/(mn)}
∑

i,j{Ŝi,j − E(Si,j)}2 = Op{1/(mδn,m)}.

Corollary 2. Given the conditions in Theorem 1, if for all matrices P̃ , the

singular values decay at a polynomial rate σr �
√
mn/rα, for some α > 1, then

{1/(mn)}
∑

i,j{Ŝi,j − E(Si,j)}2 = Op[{1/(mδn,m)}1−1/(2α)].
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3. The BGRD and the Cold-Start Problem

The cold-start problem refers to predicting the rating for a new user or item

when we do not yet have any observed scores. The problem can be divided into

three sub-problems: item cold start, user cold start, and both cold start. The

rating matrix S is then separated into four parts: Old–Old, Old–New, New–Old,

and New–New:

S =

(Old-item New-item

Old-user S(1) S(2)

New-user S(3) S(4)

)
. (3.1)

The cold-start problem asks that we infer the ratings in S(2), S(3), and S(4),

given the observations in S(1) and any available covariates of users and items.

To use the covariate information efficiently to solve cold-start problems, we use

BGRD theory. This theory states that each binary matrix, if viewed as an

exchangeable random graph, can be generated by first generating independent

user latent positions {ui, 1 ≤ i ≤ n} from a distribution F1 and independent item

latent positions {vj, 1 ≤ j ≤ m} from a distribution F2, and then generating the

(i, j)th entry from a Bernoulli distribution with parameter uTi vj. Our approach

first estimates {ui : 1 ≤ i ≤ n} and {vj, : 1 ≤ j ≤ m} from S(1) using the zero-

imputation algorithm, and regards these as training data for the BGRD. Then, we

use a nonparametric regression framework to predict the latent positions (u0, v0)

for a new entry. The last step projects (u0, v0) onto the set of weighted summation

estimates to ensure that all the resulting inner products uTv are between zero

and one, and satisfy the BGRD requirement. Before discussing the algorithm, we

first state the existence and identifiability of the BGRD, and derive the canonical

form of ui and vj. These results are adapted from the graph root distribution

developed in Lei (2021) for network data analysis.

Definition 1. Let K be a separable Hilbert space, and F1 and F2 be two

probability measures on K. A probability measure F = F1 × F2 is called a

BGRD if, for any two points u ∼ F1 and v ∼ F2, we have

P (uTv ∈ [0, 1]) = 1.

The BGRD is naturally connected to the concept of a graphon for a random

two-way binary array A = (Ai,j). The Aldous–Hoover Theorem (Aldous (1981);

Hoover (1982)) states that any separately exchangeable binary array can be

generated by first i.i.d. sampling {si} and {tj} from Uniform (0, 1), and then

generating Ai,j from a Bernoulli distribution with probability W (si, tj) for a

graph function (graphon) W : [0, 1]2 → [0, 1]. Considering the square-integrable

graphons W (s, t) ∈ L2([0, 1]2), we have the functional SVD,

W (s, t) =
∑
r

λrφr(s)ψr(t). (3.2)
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A graphon W with the SVD in (3.2) is said to admit strong decomposition if∑
r

λrφ
2
r(s) <∞,

∑
r

λrψ
2
r(t) <∞ a.e.

Theorem 2 (Existence of BGRD). Any exchangeable bipartite random graph

generated by a graphon W that admits a strong SVD can be generated by a BGRD.

To avoid ambiguity due to scaling, we restrict ourselves to equally weighted

BGRDs.

Definition 2. A BGRD is equally weighted if the second moments of u and v

are matched, that is, EuuT = EvvT .

An equally weighted BGRD clearly remains equally weighted after a rotation.

To deal with ambiguity due to rotation, we first define the following equivalence

class.

Definition 3. We say two equally weighted BGRDs F and G are equivalent up

to orthogonal transforms, written as F
o.t.
= G, if there is an orthogonal transform

Q such that (u, v) ∼ F ⇔ (Qu,Qv) ∼ G.

Theorem 3 (Identifiability of BGRD). Two square-integrable equally weigh-

ted BGRDs F and G give the same exchangeable bipartite random graph sampling

distribution if and only if F
o.t.
= G.

Because all equally weighted BGRDs are identifiable up to a rotation Q, we

call a representative in the class canonical if the second moments for u and v are

diagonal matrices.

Now, for a binary matrix in each parallel step, from Algorithm 1, the estimate

of the underlying probability matrix takes the form
∑

1≤i≤p(σ̂i − λ)ÛiV̂
T
i , where

p = max{i : σi > λ}. Assume we have n1 users and m1 items in S(1). Then, our

canonical representations of the latent positions are as follows:

û = [û1, . . . , ûn1
]T = [

√
σ̂1 − λÛ1, . . . ,

√
σ̂p − λÛp] ∈ Rn1×p, (3.3)

and

v̂ = [v̂1, . . . , v̂n1
]T = [

√
σ̂1 − λV̂1, . . . ,

√
σ̂p − λV̂p] ∈ Rm1×p.

Each row represents the estimated p-dimensional latent position of the user

or item. We use the training points and the node covariates/attributes to predict

the latent positions of a new user and a new item in each parallel step 2 ≤ k ≤ K.

Here, we focus on new users. The estimation of new items is similar.

Given the estimates for old users {ûi}n1

i=1 and the user’s covariate {Xi}ni=1,

where n1 is the number of old users, the best estimation, in terms of the mean

prediction error, for the new user’s latent position is E[u|X]. According to the

definition of conditional expectation, this can be approximated by a weighted



430 LU AND CHEN

version of empirical data, that is,
∑n1

i=1wiui, where the weights {wi} depend

on the joint distribution of u and X and on the marginal distribution of X,

and may have a complex form involving all the available data. Note that as

long as the estimated latent positions take this weighted summation form, all the

resulting inner products uTv will be between zero and one, and satisfy the BGRD

requirement. This motivates us to consider the following two-step approach.

First, we use a nonparametric statistical learning method to estimate u given X,

denoting the learned position as u∗. In the second step, we project u∗ onto the

set of weighted estimates. Specifically, we try to find the weighted version that

is closest to the learning-based prediction in terms of the link probability.

Recall that û ∈ Rn1×p and v̂ ∈ Rm1×p are the estimated latent positions, and

u∗ ∈ Rp×1 is the statistical learning-based prediction for a new user. Then, the

estimated position ũ = ûTw ∈ Rp×1 can be obtained by solving the following

optimization problem:

min
ũ

1

2
‖v̂ũ− v̂u∗‖2 (3.4)

s.t.


ũ = ûTw∑n1

i=1wi = 1

wi ≥ 0 (i = 1, . . . , n1).

This optimization problem is convex and has a unique solution in terms of

ũ, but the constraint set is complex to deal with. Solving (3.4) is equivalent

to minimizing (1/2)‖v̂ûTw − v̂u∗‖2 + λIC{w} in terms of w, where IC is the set

indicator function, and C is the probability simplex. Because this is a convex

optimization problem, we can apply the projected gradient descent algorithm

to solve it by updating the weights from iteration t to t + 1 as wt+1 = ΠC(wt −
η∇g(wt)), where ΠC is the projection to a simplex operator that can be computed

using the algorithm in Wang and Carreira-Perpinán (2013), η is the learning rate,

and ∇g is the gradient of the quadratic function that appears in the objective

function. Although the solution may not be unique in terms of w when n1 > m1,

they still correspond to the unique solution ũ. In our numerical studies, we use the

random forest method (Breiman (2001)) to predict each dimension in u∗. Using

the projection step does not appear to make a big difference, because the random

forest output is often very close to a weighted estimator. If a learning method

directly produces u∗ in the form of a weighted summation ûTw, the projection

step is not needed.

We summarize our method for a user’s cold-start rating estimation in

Algorithm 2. The method for a new item or when they are both new can be

derived analogously.
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Figure 1. Rating frequency plot for Movie-lens data: ML-100k on the left and ML-1M
on the right.

Algorithm 2 Zero-imputation method for predicting new users’ ratings

Input: Observed rating matrix S(1) ∈ Rn1×m1 ; a dimension p; minimum observation
probability εn1,m1 ; covariate matrix X.

Output: Predicted rating matrix Ŝ(3) ∈ Rn2×m1 .
1: Parallel for k in 2,. . . K do
2: Obtain A(k), A(k) by using truncation and the zero-imputation approach.

3: A(k) =
∑

1≤i≤(m1∧n1) σ̂
k
i Û

k
i (V̂ ki )T . . SVD of upper-truncation matrix

4: Obtain the canonical form of the latent positions ûk, v̂k from (3.3).
5: Obtain uk,∗ ∈ Rn2×p by applying multivariate learning methods, such as random

forests.
6: Obtain ũk ∈ Rn2×p from (3.4).
7: Repeat steps 3–6 for A(k).
8: end Parallel
9: Ŝk(3) = ũkv̂kT /max(ũkv̂kT + ũkv̂

T
k , εn,m). . Scale back

10: Ŝ(3) = 1 +
∑K
k=2 Ŝ

k
(3). . Prediction

4. Movie-Lens Data Analysis

We use the Movie-lens 100k (ML-100k) and Movie-lens 1M (ML-1M)

data sets (https://grouplens.org/datasets/movielens/) to demonstrate our

method. The ML-100k data set contains 100k ratings from 943 users about 1,682

movies. Each user has rated at least 20 movies, and the overall average rating is

3.53.

The ML-1M data set contains over 1 million rating scores from 6,040 users

about 3,952 movies. Here, the average score is 3.58, and each user has at least

20 ratings. The distributions of the ratings are shown in Figure 1.

Both data sets have a large number of missing values, with the observation

rate being about 5%. The missingness is suspected to be heterogeneous,

with higher ratings more likely to be observed (Harper and Konstan (2015)).

We heuristically check the missingness pattern by regressing the observation

https://grouplens.org/datasets/movielens/
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Figure 2. Box plot of the estimated observation probabilities by rating for the ML-1M
data set.

Table 1. Prediction error for unobserved values in the ML-100k and ML-1M data sets.
Here, “Zero-imputation,” “Zero-imputation-1,” “rSVD,” “gSVD,” “1BITMC-rSVD,”
“ItemImpute,” and “UserImpute” refer to the proposed method, one-step update of zero-
imputation, regularized SVD (Paterek (2007)), group SVD (Bi et al. (2017)), propensity
score debiased rSVD (Ma and Chen (2019)), movie-based mean imputation, and user-
based mean imputation, respectively.

ML-100k ML-1M

RMSE MAE RMSE MAE

Zero-imputation 0.9246 0.7233 0.8650 0.6774

Zero-imputation-1 0.9065 0.7213 0.8501 0.6713

rSVD 0.9415 0.7355 0.8848 0.6941

gSVD 0.9054 0.7112 0.8748 0.6869

1BITMC-rSVD 0.9143 0.7197 0.8684 0.6810

ItemImpute 1.023 0.8159 0.9799 0.7831

UserImpute 1.042 0.8336 1.036 0.8295

probabilities Oi,j on the ratings Si,j. The observation probabilities are estimated

by applying the soft-thresholding SVD method to the binary recording matrix R.

Figure 2 shows the estimated observation probabilities by rating in the ML-1M

data set.

We can see from the graph that the average observation probabilities seem

to be higher for higher ratings.

Numerous methods exist for predicting unobserved entries in recommenda-

tion systems under homogeneous missing schemes. Based on our knowledge, very

few of these methods work for heterogeneous missingness or for completely cold-

start problems. For comparison, we include the results of the regularized SVD

method with an ANOVA-type mean correction (Webb (2006); Paterek (2007)),
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denoted as “rSVD” and implemented using the R package rrecsys. This method

was originally developed to predict unobserved entries with homogeneous missing

schemes, and is popular because of its relatively simple objective function and

competitive performance. In view of heterogeneous missingness, we include the

propensity score adjustment approach as a comparison (Ma and Chen (2019)). In

particular, we use the inverse propensity scores estimated from a one-bit matrix

completion (Davenport et al. (2014)) as weights to debias the rSVD method.

This is denoted as “1BITMC-rSVD” and is implemented based on the public

available code at https://mdav.ece.gatech.edu/software/. We also include

the results from a group-specific SVD (Bi et al. (2017)), denoted as “gSVD,”

and implemented using the public available code at https://sites.google.

com/site/xuanbigts/software. This method uses missing patterns and/or

users’ and items’ covariates to create groups and provide more accurate latent

positions than those of rSVD for new users and items. We also include naive

mean imputations based on observed values as baseline comparisons. We denote

the one-step update of the zero-imputation method as “Zero-imputation-1.” The

methods are tuned as suggested in the original works to provide the best results.

To evaluate the performance, we randomly split the overall observed scores

into 90% for training and 10% for testing. The performance is measured using

the root mean squared error (RMSE) and the mean absolute error (MAE),

RMSE =

√∑M
i=1(ŝi − si)2

M
,

MAE =

∑M
i=1 |ŝi − si|

M
,

where {si}Mi=1 represents the ratings in the unobserved set (or the new sets in

completely cold-start problems), and M is the test set size.

Table 1 records the performance of the various methods for the within-sample

unobserved predictions. As shown, the methods perform similarly, except for the

two mean-imputation methods. All of the methods have better accuracy with

the larger data set. The proposed zero-imputation method, “gSVD” method,

and ”“1BITMC-rSVD” method produce slightly better results than those of the

“rSVD” method, because they account for heterogeneous missing data.

For the completely cold-start problem, the public movie-lens data include

the user covariates age, gender, and occupation, and a covariate called movie

genre. We believe that it would be straightforward to obtain additional attributes

for movie other than movie genre, such as directors, actors, and so on, all of

which contain information about the general popularity and quality of the movie.

To better illustrate the cold-start problem, we created two movie covariates to

roughly mimic the general popularity and quality. The first is constructed as the

total number of ratings for the movie. The second is the total number of ratings

https://mdav.ece.gatech.edu/software/
https://sites.google.com/site/xuanbigts/software
https://sites.google.com/site/xuanbigts/software
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Table 2. Prediction error for cold-start problems in the ML-100k and ML-1M data
sets. Here, “Zero-imputation,” “rSVD,” “gSVD,” “1BITMC-rSVD,” and “MeanImpute”
refer to the proposed method, regularized SVD (Paterek (2007)), group SVD (Bi et al.
(2017)), propensity score debiased rSVD (Ma and Chen (2019)), and corresponding mean
imputation, respectively.

Item-Cold User-Cold Both-Cold

RMSE MAE RMSE MAE RMSE MAE

ML-100k

Zero-imputation 0.9836 0.7724 0.9640 0.7716 1.038 0.8280

rSVD 1.067 0.8618 0.9803 0.7783 1.097 0.9167

gSVD 1.030 0.8227 0.9606 0.7734 1.066 0.8608

1BITMC-rSVD 1.075 0.8779 0.9642 0.7777 1.105 0.9277

MeanImpute 1.043 0.8322 0.9645 0.7765 1.097 0.9165

ML-1M

Zero-imputation 0.9324 0.7382 0.9699 0.7727 1.018 0.8193

rSVD 1.090 0.9014 0.9781 0.7811 1.131 0.9613

gSVD 0.9998 0.8021 0.9740 0.7799 1.058 0.8647

1BITMC-rSVD 1.103 0.9131 0.9791 0.7877 1.143 0.9725

MeanImpute 1.036 0.8313 0.9742 0.7791 1.117 0.9366

Table 3. Classification for scores greater than or equal to four, or less than four. The
AUC and overall accuracy are evaluated on the test set.

ML-100k ML-1M

AUC Accuracy AUC Accuracy

Zero-imputation 0.792 0.725 0.818 0.747

rSVD 0.700 0.703 0.731 0.737

gSVD 0.724 0.728 0.732 0.739

1BITMC-rSVD 0.708 0.705 0.721 0.728

ItemImpute 0.650 0.654 0.673 0.681

UserImpute 0.625 0.630 0.636 0.645

above three. Note that because “rSVD” and “1BITMC-rSVD” are not designed

to handle the cold-start problem, we simply use the average of the user’s/item’s

sample position, estimated from the Old–Old data, to predict the latent position

of a new user or item, and then predict the ratings as the inner product of these

latent positions. For gSVD, we use the 10-means method based on the covariates

of the users/items to generate the group labels.

We randomly select 10% of users and movies for the cold-start sections, and

use the other 90% for training. Table 2 summarizes the performance of the

various methods for the cold-start problems in the two data sets. Unsurprisingly,

the proposed method and the “gSVD” method outperform the other methods,

and the proposed method performs the best overall.

One by-product of the proposed zero-imputation method is the binary

classification of ratings being “good” versus “bad,” for any cut value k. We
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can classify S ≥ 4 versus S < 4 using the estimated A(4). Table 3 displays

the classification results for our method and the other methods. The proposed

zero-imputation method performs better than the other methods in terms of the

AUC and overall accuracy. The overall accuracy is computed at a cut-off value

such that the empirical proportions of ones match.

5. Simulations

In this section, we conduct a simulation study. The data are generated to

match the features observed in the Movie-lens data.

We use three different sample sizes, namely, small (1500×800), medium

(3000×1500), and large (5000×2500). The small and large cases correspond

to the ML-100k and ML-1M sample sizes, respectively. We first generate the

nonmissing rating matrix S0 and a masking procedure R, and then use S0 ◦R as

the observed data.

Following the simulation settings in previous papers, we generate the rating

matrix as follows. First, generate the users’ latent positions {ui} from a 12-

dimensional normal distribution N ((0.5 × 16,−0.1 × 16)T ,Σ), where Σi,j =

0.62I{i = j}. The items’ positions {vj} are generated from N ((0.5 × 16, 0.1 ×
16)T ,Σ). Here, we generate S0

i,j by first sampling from N (uTi vj, 0.6
2), then

clipping it into the interval [1,5], and finally rounding the number to the nearest

integer in {1,2,3,4,5}. We consider a heterogeneous missing scenario, where we

have a higher chance of observing a higher score. The observed probabilities used

to generate R are (0.022, 0.02, 0.02, 0.05, 0.1)T for scores 1 to 5, respectively. The

RMSE and MAE are evaluated on all unobserved entries and averaged over 50

simulations. With regard to the computational time, for (n,m) = (5000, 2500), a

single simulation for the proposed method takes 6.3 seconds, the “rSVD” method

takes 1.6 seconds, the “gSVD” method takes more than 20 seconds, and “1BIT-

rSVD” takes more than six minutes. These values include the time taken to select

the tuning parameters. Although the “rSVD” method is the fastest, it does not

have a special treatment for the heterogeneous missing scheme, and produces a

larger error in both the data analysis and the simulations. The results are run

on a PC with an 8-core Intel Core i7-10700F processor and 32 GB RAM.

For the cold-start problems, we create two covariates. The first is the average

of the first six latent dimensions of u/v, and the second is a normal nuisance

variable N (0, 0.62).

Table 4 shows the result for the unobserved entries, and Table 5 shows the

result for the cold-start problem with sample size (n,m) = (5000, 2500). The

results for the other sample sizes show similar patterns. The results are consistent

with those based on the Movie-lens data. All of the methods exhibit reasonable

performance for unobserved entry prediction and improve as the sample size

grows. Compared with “Zero-imputation,” “Zero-imputation-1,” “gSVD,” and
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Table 4. Prediction errors for unobserved values with heterogeneous missingness in the
simulated data (the number in parentheses is the standard deviation).

(1500,800) (3000,1500) (5000,2500)

RMSE MAE RMSE MAE RMSE MAE

Zero-imputation 0.9954(0.013) 0.8017(0.011) 0.9421(0.006) 0.7536(0.006) 0.8890(0.004) 0.7082(0.003)

Zero-imputation-1 0.9750(0.012) 0.7420(0.014) 0.9197(0.005) 0.7048(0.006) 0.8555(0.004) 0.6566(0.005)

rSVD 1.004(0.038) 0.7645(0.050) 0.9808(0.032) 0.7444(0.045) 0.9630(0.019) 0.7304(0.032)

gSVD 0.9847(0.011) 0.7703(0.010) 0.9649(0.006) 0.7347(0.006) 0.9356(0.004) 0.7146(0.004)

1BITMC-rSVD 1.002(0.010) 0.7937(0.011) 0.9790(0.006) 0.7752(0.015) 0.8748(0.011) 0.6667(0.010)

ItemImpute 1.151(0.016) 0.9249(0.015) 1.143(0.009) 0.9220(0.009) 1.141(0.006) 0.9207(0.006)

UserImpute 1.167(0.017) 0.9331(0.016) 1.151(0.011) 0.9255(0.010) 1.147(0.006) 0.9241(0.006)

Table 5. Prediction errors for cold-start problems in the simulated data with sample size
(n,m) = (5000, 2500) (the number in parentheses is the standard deviation).

Item-Cold User-Cold Both-Cold

RMSE MAE RMSE MAE RMSE MAE

Zero-imputation 0.9813(0.023) 0.7582(0.023) 0.9680(0.017) 0.7475(0.017) 0.9772(0.026) 0.7646(0.027)

rSVD 1.101(0.020) 0.8927(0.029) 1.089(0.025) 0.8854(0.033) 1.184(0.033) 0.9907(0.041)

gSVD 1.018 (0.018) 0.8015(0.016) 1.008(0.018) 0.7959(0.017) 1.058(0.029) 0.8571(0.028)

1BITMC-rSVD 1.082(0.016) 0.8804(0.012) 1.077(0.018) 0.8762(0.014) 1.176(0.031) 0.9709(0.023)

MeanImpute 1.151(0.014) 0.9283(0.013) 1.144(0.016) 0.9237(0.013) 1.254(0.020) 1.123(0.019)

“1BITMC-rSVD,” the “rSVD” method does not account for the heterogeneous

missingness and shows larger errors and larger variations. The one-step update

for the zero-imputation method outperforms all other methods. The proposed

method and the “gSVD” method work reasonably well for cold-start predictions.

We see that the proposed method shows a sharper improvement in larger data

sets and in cold-start problems.

Supplementary Material

The online Supplementary Material contains proofs of Theorem 1, Corollary

2, Theorem 2, and Theorem 3.
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