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Abstract: We propose an automatic selection of the bandwidth of the recursive

nonparametric estimation of the regression function defined by the stochastic ap-

proximation algorithm. Here the explanatory data are curves and the response is

real. We compare our recursive estimators with the nonrecursive estimator pro-

posed by Ferraty and Vieu (2002). The two methods are based on the wild boot-

strapping approach, where resampling is done from a suitably estimated residual

distribution. Moreover, we establish a central limit theorem for our proposed re-

cursive estimators. We use the wild bootstrap to select the bandwidth and some

special stepsizes. As such, the proposed recursive estimators are competitive in

terms of the estimation error, but much better in terms of computational costs.

The proposed estimators are used in simulated and real functional data sets.

Key words and phrases: Asymptotic normality, curve fitting, functional data, re-

gression estimation, smoothing, stochastic approximation algorithm, wild func-

tional bootstrap.

1. Introduction

The progress in computing technology, in terms of both memory capacity and

computing speed, has made it possible to record vast amounts of data. Thus,

many variables can be observed when studying the same phenomenon. This

is especially true when we have a family of variables {X (θ)}θ∈Θ indexed by

a parameter θ, varying in a space Θ (e.g., R, Rp, or Θ ⊂ H, where H is a

Hilbertian space). Obviously, it is technically impossible to measure X (θ) for

each θ ∈ Θ. Nevertheless, it is possible to consider a smooth discretization

{θi}i=1,...,I of Θ in order to consider that the behavior of {X (θ)}θ∈Θ is close to

that of {X (θi)}i=1,...,I . Such a family {X (θ)}θ∈Θ of random variables is called a

functional random variable (see Ferraty and Vieu (2002, 2004)).

There has been growing increasing interest in functional data analysis. For

an introduction to this field, refer to Ramsy and Silverman (2002), who provide a

detailed exposition of both the theoretical and practical aspects of functional data

analyses. The existing literature contains numerous studies on functional linear
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models (e.g., see among many others, Cardot, Ferraty and Sarda (1999), Cai

and Hall (2006), Hall and Horowitz (2007)). In the framework of nonparamet-

ric estimations with functional predictors and scalar responses (e.g., see among

others Ferraty and Vieu (2002, 2004, 2006), Preda (2007), and Biau, Gerou and

Guyader (2010)).

Here, we are interested in the problem of recursively estimating a regression

when the explanatory data are curves and the response is real. This problem

can be formulated by considering that {Yi,Xi}ni=1 is a sample of independent

and identically distributed couples, where Yi is real-valued and Xi takes values in

some functional space E , equipped with a semi-norm ‖.‖. Assume that E |Yi| <∞
and define the regression functional as

r (u) := E [Yi|Xi = u] ; u ∈ E , ∀i ∈ N. (1.1)

Model (1.1) can be written as follows:

Yi = r (Xi) + εi, i =, . . . , n,

where εi is a random variable, such that E [εi|Xi] = 0 and E
[
ε2
i |Xi

]
= σ2

ε (Xi) <
∞.

The purpose of this study is to adapt the recursive estimator proposed

in Slaoui (2016) to the case when the covariate is functional and the response is

real. Thus, our proposed recursive estimator for the operator r is the following :

r̂n (χ, h) =
ân (χ, h)

f̂n (χ, h)
,

with

ân (χ, h) = (1− γn) ân−1 (χ, h) + γnh
−1
n K

(
‖χ−Xn‖

hn

)
Yn, (1.2)

f̂n (χ, h) = (1− γn) f̂n−1 (χ, h) + γnh
−1
n K

(
‖χ−Xn‖

hn

)
, (1.3)

where (γn) and (hn) are sequences of positive real numbers that go to zero, and

K is a kernel. Throughout this paper, we suppose that â0 (χ, h) = f̂0 (χ, h) = 0,

and let Πn =
∏n
i=1 (1− γi). Then, we can estimate the operator r by:

r̂n (χ, h) =
Πn
∑n

k=1 Π−1
k γkh

−1
k K (‖χ−Xk‖/hk)Yk

Πn
∑n

k=1 Π−1
k γkh

−1
k K (‖χ−Xk‖/hk)

. (1.4)

Several assumptions are made on the kernel K, bandwidth (hn), and stepsize

(γn). The recursive property (1.4) is particularly useful for large samples, because

r̂n can be updated easily using each additional observation.

The first results for the recursive kernel estimator of the operator r when the
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response variable is real and the covariable is functional are obtained by Amiri,

Crambes and Thiam (2014). They proposed the following estimators

r[l]
n (χ, h) =

∑n
i=1 Yi/(F (hi)

l)K (‖χ−Xi‖/hi)∑n
i=1 1/(F (hi)

l)K (‖χ−Xi‖/hi)
, l ∈ [0, 1] ,

where F is the cumulative distribution function of the random variable ‖X − χ‖.
We can check easily that these estimators are a special case of our proposed re-

cursive estimators (1.4), with a stepsize (γn) = (hnF (hn)−l[
∑n

k=1 hkF (hk)
−l]−1).

Furthermore, we show the special case when X is a geometric process (or frac-

tal), with F (hn) ∼ hκn, and κ > 0. Here, the optimal bandwidth that minimizes

E [r̂n (χ, h)− r (χ)]2 depends on the choice of the stepsize (γn). In particular, we

show that under some regularity conditions of the functional regression r, and

using the stepsizes (γn) =
(
γ0n
−1
)
, where γ0 > 0, the bandwidth (hn) must equal{κ

2

σ2
ε (χ)

(φ′ (0))2

(γ0 + κ/(κ+ a))2

2γ0

M2

M2
0

}1/(κ+2)

n−1/(κ+2)

 .

The first purpose of this study is to propose an automatic selection for the band-

width using the plug-in method and then through the wild bootstrap method.

Second, we compare the proposed recursive estimators r̂n to the nonrecursive

functional regression estimator introduced by Ferraty and Vieu (2002) for inde-

pendent data. They constructed the functional estimate of the operator r using

the standard kernel methods (Nadaraya (1964) and Watson (1964)), defined as

r̃n (χ, h) =

∑n
i=1 YiK (‖χ−Xi‖/hn)∑n
i=1K (‖χ−Xi‖/hn)

. (1.5)

This estimator was considered by Ferraty and Vieu (2004, 2006), whereas Masry

(2005) considered the asymptotic normality of (1.5) in the dependent case. Ben-

henni, Hedli-Griche and Rachdi (2010) considered the case of a fixed-design with

correlated errors. Lian (2012) examined the case when the predictors and re-

sponses are both functions. The remainder of the paper is organized as follows.

In Section 2, we state our main results. Section 3 is devoted to our application

results, first by simulation (subsection 3.1) and second using a real data set (sub-

section 3.2). We conclude the article in Section 4. Appendix A gives the proofs

of our theoretical results.

2. Assumptions and Main Results

Let F be the cumulative distribution function of the random variable ‖X − χ‖:
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F (t) = P (‖X − χ‖ ≤ t) .

We first define the following class of regularly varying sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We

say that (vn) ∈ GS (γ) if

lim
n→+∞

n

[
1− vn−1

vn

]
= γ. (2.1)

Condition (2.1) was introduced by Galambos and Seneta (1973) to define

regularly varying sequences (see also Bojanic and Seneta (1973)) and by Mokka-

dem and Pelletier (2007) in the context of stochastic approximation algorithms.

Note that GS stands for Galambos and Seneta. Typical sequences in GS (γ) are,

for b ∈ R, nγ (log n)b, nγ (log log n)b, and so on.

In this section, we investigate the asymptotic properties of the proposed

estimators (1.4). Here, we refer to the following assumptions:

(A1) The function φ (u) := E [{r (X )− r (χ)} | ‖X − χ‖ = u] is assumed to be

derivable at t = 0.

(A2) K : R→ R is a continuous, bounded function with support on the compact

[0, 1], such that inft∈[0,1]K (t) > 0.

(A3) For any s ∈ [0, 1], τh (s) := (F (hs))/(F (h))→ τ0 (s) <∞ as h→ 0.

(A4) i) (γn) ∈ GS (−α) with α ∈ ]1/2, 1].

ii) (hn) ∈ GS (−a) with a ∈ ]0, 1[.

iii) (F (hn)) ∈ GS (−Fa) with Fa ∈ ]0, α[.

iv) limn→∞ (nγn) ∈ ]min {Fa, (α+ Fa) /2− a} ,∞].

v) (gn) ∈ GS (−g) with g ∈ ]0, a[.

vi) (F (gn)) ∈ GS (−Fg) with Fg ∈ ]0,Fa[.

Assumption (A4) (iv) on the limit of (nγn) as n goes to infinity is standard in

the framework of stochastic approximation algorithms. It implies in particular

that the limit of
(

[nγn]−1
)

is finite. For simplicity, we introduce the following

notation:

ξ = lim
n→∞

(nγn)−1 , (2.2)

M0 = K (1)−
∫ 1

0
(tK (t))′ τ0 (t) dt,

M1 = K (1)−
∫ 1

0
K ′ (t) τ0 (t) dt,
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M2 = K2 (1)−
∫ 1

0

(
K2 (t)

)′
τ0 (t) dt.

Our first result is the following proposition, which gives the bias and the variance

of r̂n.

Proposition 1 (Bias and variance of r̂n). Let Assumptions (A1)-(A4) hold.

1. If a ∈]0, (α−Fa) /2], then

E [r̂n (χ, h)]− r (χ) = hnφ
′ (0)

1− (Fa − a) ξ

1−Faξ
M0

M1
[1 + o (1)] . (2.3)

If a ∈] (α−Fa) /2, 1[, then

E [r̂n (χ, h)]− r (χ) = o

(√
γnF (hn)−1

)
.

2. If a ∈ [(α−Fa) /2, 1[, then

V ar [r̂n (χ, h)]

= σ2
ε (χ)

(1− (Fa − a) ξ)2

(2− (Fa + α− 2a) ξ)

M2

M2
1

γn
F (hn)

[1 + o (1)] . (2.4)

If a ∈]0, (α−Fa) /2[, then

V ar [r̂n (χ, h)] = o
(
h2
n

)
. (2.5)

3. If limn→∞ (nγn) > max {Fa, (Fa + α) /2− a}, then (2.3) and (2.4) hold

simultaneously.

The bias and the variance of the estimator r̂n defined by the stochastic

approximation algorithm (1.4) then heavily depend on the choice of the stepsize

(γn).

Let us first state the following theorem, which gives the weak convergence

rate of the estimator r̂n defined in (1.4).

Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1)-(A4)

hold.

1. If there exists c ≥ 0 such that γ−1
n h2

nF (hn)→ c, then√
γ−1
n F (hn) (r̂n (χ, h)− r (χ))

D→ N

(
c1/2φ′ (0)

1− (Fa − a) ξ

1−Faξ
M0

M1
, σ2

ε (χ)
(1− (Fa − a) ξ)2

(2− (Fa + α− 2a) ξ)

M2

M2
1

)
.

2. If γ−1
n h2

nF (hn)→∞, then
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1

hn
(r̂n (χ, h)− r (χ))

P→ φ′ (0)
1− (Fa − a) ξ

1−Faξ
M0

M1
,

where
D→ denotes the convergence in distribution, N is the Gaussian distribution,

and
P→ denotes convergence in probability.

Let us now consider the case when the bandwidth (hn) is chosen such that

limn→∞ γ
−1
n h2

nF (hn) = 0 (which corresponds to undersmoothing). Thus, the

proposed estimator fulfills the following central limit theorem:√
γ−1
n F (hn) (r̂n (χ, h)− r (χ))

D→ N

(
0, σ2

ε (χ)
(1− (Fa − a) ξ)2

(2− (Fa + α− 2a) ξ)

M2

M2
1

)
.

We let φ denote the distribution functionN (0, 1), and tα/2 be such that φ
(
tα/2

)
=

1 − tα/2 (where α ∈]0, 1[). Then, the asymptotic confidence band of r (χ), with

level 1− α, is given byr̂n (χ, h)± φ
(
tα/2

)√
γ−1
n F̂ (hn)

√√√√(2− (Fa + α− 2a) ξ)

(1− (Fa − a) ξ)2

M̂2
1

M̂2σ̂2
ε (χ)

 ,
where F̂n is the empirical distribution function, and

M̂i = Πn

n∑
k=1

Π−1
k γkF̂ (hk)

−1Ki

(
‖χ−Xk‖

hk

)
, i ∈ {1, 2} (2.6)

σ̂2
ε (χ) =

Πn
∑n

k=1 Π−1
k γkK (‖χ−Xk‖/hk)Y 2

k

Πn
∑n

k=1 Π−1
k γkK (‖χ−Xk‖/hk)

− (r̂n (χ, h))2 . (2.7)

In order to measure the quality of our recursive estimator (1.4), we use the

following quantity:

MSE [r̂n (χ, h)] = (E (r̂n (χ, h))− r (χ))2 + V ar (r̂n (χ, h)) .

The next proposition gives the MSE of the recursive estimators defined in (1.4).

Proposition 2 (MSE of r̂n (χ, h)). Let Assumptions (A1)-(A4) hold.

1. If a ∈]0, (α−Fa) /2[, then

MSE [r̂n (χ, h)] = h2
n

(
φ′ (0)

)2(1− (Fa − a) ξ

1−Faξ

)2 M2
0

M2
1

+ o
(
h2
n

)
.

2. If a = (α−Fa) /2, then

MSE [r̂n (χ, h)] = h2
n

(
φ′ (0)

)2(1− (Fa − a) ξ

1−Faξ

)2 M2
0

M2
1
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+σ2
ε (χ)

(1− (Fa − a) ξ)2

(2− (Fa + α− 2a) ξ)

M2

M2
1

γn
F (hn)

+o

(
h2
n +

γn
F (hn)

)
.

3. If a ∈] (α−Fa) /2, 1[, then

MSE [r̂n (χ, h)] = σ2
ε (χ)

(1− (Fa − a) ξ)2

(2− (Fa + α− 2a) ξ)

M2

M2
1

γn
F (hn)

+ o

(
γn

F (hn)

)
.

2.1. Stepsize selection

In the framework of nonparametric kernel estimators, to determine the op-

timal choice of stepsize, Mokkadem, Pelletier and Slaoui (2009a) consider (γn) ∈
GS (−1) in order to ensure an optimal convergence rate. Furthermore, they con-

sider two points of view: a pointwise estimation and estimation by confidence

intervals. For the pointwise estimation, the criteria they use to find the opti-

mal stepsize to minimize the mean squared error (MSE) or the integrated mean

squared error (MISE). In our context, we display a set of stepsizes (γn) that

minimize the MSE or the MISE of the estimator r̂n (χ, h) defined by (1.4); in

particular, we show that the sequence (γn) =
(
n−1

)
belongs to this set. Note

that these minimum MSE and MISE are larger than those obtained for the

nonrecursive estimator r̃ (χ, h), defined by (1.5). Thus, for a pointwise estima-

tion and when rapid updating is not as important, it is preferable to use the

nonrecursive estimator rather than any recursive estimator r̂n (χ, h), defined by

(1.4).

Moreover, for the confidence interval point of view, they find the optimal

stepsize by minimizing the variance. In our context, we display a set of stepsizes

(γn) that minimize the variance of r̂n (χ, h); it follows from (2.4) that the sequence

(γn) =
(
[1− a]n−1

)
belongs to this set. Let us underline that the variance

of the estimator r̂n (χ, h) defined with this stepsize is smaller than that of the

nonrecursive estimator r̃n (χ, h), defined by (1.5). Consequently, even when the

online aspect is not as important, it is preferable to use recursive estimators when

constructing confidence intervals.

Remark 1. Under assumptions (A1)-(A4), and (γn) =
(
[1− a]n−1

)
, the vari-

ance of r̂n (χ, h) is equal to:

V ar [r̂n (χ, h)] = (1−Fa)σ2
ε (χ)

M2

M2
1

1

nF (hn)
[1 + o (1)] ,

whereas the variance of r̃n (χ, h) is equal to:
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V ar [r̃n (χ, h)] = σ2
ε (χ)

M2

M2
1

1

nF (hn)
[1 + o (1)] .

Furthermore, Mokkadem, Pelletier and Slaoui (2009b) consider (γn), such

that nγn → ∞, and then use the averaging principle of the stochastic approxi-

mation algorithm to ensure an optimal convergence rate. Throughout this paper,

we consider (γn) ∈ GS (−1) and the pointwise estimation point of view.

2.2. Bandwidth selection

In the framework of nonparametric kernel estimators, the bandwidth selec-

tion methods studied in the literature can be divided into three broad classes:

cross-validation techniques, plug-in methods, and the bootstrap idea. A detailed

comparison of the three techniques can be found in Delaigle and Gijbels (2004).

They concluded that, chosen appropriately, the plug-in and bootstrap selectors

both outperform the cross-validation bandwidth, and neither of the two is best

in all cases. Therefor, we consider a plug-in method in the special case when X
is geometric process (or fractal) with F (hn) ∼ hκn, with κ > 0. Then, for a more

general context, we used a wild bootstrap to approximate the distribution of the

error of the recursive kernel regression estimators (1.4).

2.2.1. Plug-in method

In this subsection, we consider the special case when X is a geometric process

(or fractal) with F (hn) ∼ hκn, with κ > 0.

Recursive estimators. The following corollary indicates that the bandwidth

that minimizes the MSE of r̂n depends on the stepsize (γn) and then the corre-

sponding MSE depends also on the stepsize (γn).

Corollary 1. Let Assumptions (A1)-(A4) hold. To minimize the MSE of r̂n,

the stepsize (γn) must be chosen in GS (−1), the bandwidth (hn) must equal{κ
2

σ2
ε (χ)

(φ′ (0))2

M2

M2
0

(1−Faξ)2

(2− (Fa + α− 2a) ξ)

}1/(κ+2)

γ1/(κ+2)
n

 .

Then, we have

AMSE [r̂n (χ, h)]

= 3× (κ/2)2/(κ+2) (1− (Fa − a) ξ)2

(2− (Fa + α− 2a) ξ)2/(κ+2) (1−Faξ)2κ/(κ+2)(
σ2
ε (χ)

)2/(κ+2) (
φ′ (0)M0

)2κ/(κ+2)
M

2/(κ+2)
2 M−2

1 γ2/(κ+2)
n .
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The following corollary shows that, for a special choice of the stepsize (γn) =(
γ0n
−1
)
, where limn→∞ nγn = γ0 and (γn) ∈ GS (−1), the optimal value of hn

depends on γ0. Then, the corresponding AMSE depends on γ0.

Corollary 2. Let Assumptions (A1)-(A4) hold. To minimize the AMSE of

r̂n (χ, h), the stepsize (γn) must be chosen in GS (−1), and the bandwidth (hn)

must equal{κ
2

σ2
ε (χ)

(φ′ (0))2

M2

M2
0

(γ0 + κ/(κ+ a))2

2γ0

}1/(κ+2)

n−1/(κ+2)

 .

Then, we have

AMSE [r̂n (χ, h)]

= 3× (κ/4)2/(κ+2) (σ2
ε (χ)

)2/(κ+2)
γ
−2/(κ+2)
0

(γ0 + (κ+ 1)/(κ+ 2))2

(γ0 + κ/(κ+ 2))2κ/(κ+2)(
φ′ (0)M0

)2κ/(κ+2)
M

2/(κ+2)
2 M−2

1 n−2/(κ+2)

= Coeff (κ, γ0)
(
σ2
ε (χ)

)2/(κ+2) (
φ′ (0)M0

)2κ/(κ+2)
M

2/(κ+2)
2 M−2

1 n−2/(κ+2),

where Coeff (κ, γ0) = 3 × (κ/4)2/(κ+2) γ
−2/(κ+2)
0 ((γ0 + (κ+ 1)/(κ+ 2))2)/((γ0+

κ/(κ+ 2))2κ/(κ+2)).

Under assumptions (A1)-(A4), the plug-in bandwidth (hn) must equal{κ
2

(γ0 + κ/(κ+ a))2

2γ0

}1/(κ+2)

σ̂2
ε (χ)

M̂2

Î2
0

n−1/(κ+2)

 . (2.8)

Then, the corresponding plug-in AMSE is equal to

AMSE [r̂n (χ, h)] = Coeff (κ, γ0)
(
σ̂2
ε (χ)

)2/(κ+2)

M̂−2
1 M̂

2/(κ+2)
2 Î

2κ/(κ+2)
0 n−2/(κ+2), (2.9)

where Î0, M̂1, M̂2, and σ̂2
ε (χ) are asymptotically unbiased estimators of φ′ (0)M0,

M1, M2, and σ2
ε (χ), respectively.

Î0 = Πn

n∑
k=1

Π−1
k γkF̂ (hk)

−1 (Yk − r̂n (χ, h))K

(
‖χ−Xk‖

hk

)
,

where, M̂i, for i ∈ {1, 2}, and σ̂2
ε (χ) are given in (2.6) and (2.7).

Nonrecursive estimator. First, recall that under assumptions (A1)-(A3) and

(A4)ii), the bias and variance of r̃n (χ, h) are given by
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E [r̃n (χ, h)]− r (χ) = hnφ
′ (0)

M0

M1
[1 + o (1)]

and

V ar [r̃n (χ, h)] = σ2
ε (χ)

M2

M2
1

1

nF (hn)
[1 + o (1)] .

It follows that

MSE [r̃n (χ, h)] = h2
n

(
φ′ (0)

)2 M2
0

M2
1

+ σ2
ε (χ)

M2

M2
1

1

nF (hn)
+ o

(
h2
n +

1

nF (hn)

)
.

Then, to minimize the MSE of r̃n (χ, h), the bandwidth (hn) must equal({
κ

2

σ2
ε (χ)

(φ′ (0))2

M2

M2
0

}1/(κ+2)

n−1/(κ+2)

)
.

Then, we have

AMSE [r̃n (χ, h)] = Coeff (κ)
(
σ2
ε (χ)

)2/(κ+2) (
φ′ (0)

)2κ/(κ+2)

M
2/(κ+2)
2 M

2κ/(κ+2)
0 M−2

1 n−2/(κ+2),

where Coeff (κ) = ((κ+ 2)/κ) (κ/2)2/(κ+2). The plug-in bandwidth (hn) must

equal {κ
2
M̃2

σ̃2
ε (χ)

Ĩ2
0

}1/(κ+2)

n−1/(κ+2)

 .

Then, the corresponding plug-in AMSE is equal to

AMSE [r̃n (χ, h)] = Coeff (κ)
(
σ2
ε (χ)

)2/(κ+2)
Ĩ

2κ/(κ+2)
0 M̃−2

1 M̃
2/(κ+2)
2 n−2/(κ+2),

where Ĩ0, M̃1, M̃2, and σ̃2
ε (χ) are asymptotically unbiased estimators of φ′ (0)M0,

M1, M2, and σ2
ε (χ), respectively.

Ĩ0 =
1

nF̂ (hn)

n∑
k=1

(Yk − r̃n (χ, h))K

(
‖χ−Xk‖

hn

)
,

M̃i =
1

nF̂ (hn)

n∑
k=1

Ki

(
‖χ−Xk‖

hn

)
, i ∈ {1, 2} ,

σ̃2
ε (χ) =

∑n
k=1K (‖χ−Xk‖/hn)Y 2

k∑n
k=1K (‖χ−Xk‖/hn)

− (r̃n (χ, h))2 .

We observe from Table 1 and Figure 1 that, for κ bigger than 0.7, the AMSE

of the nonrecursive estimators is smaller than that of the recursive estimator.

2.2.2. Wild bootstrap method

The main idea of the wild bootstrap proposed in Härdle and Marron (1991),
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Table 1. Numerical results of the coefficient of the AMSE of the nonrecursive and the
proposed estimator with the optimal γ0 obtained for each chosen κ ∈ {0.2, 0.4, 0.6, 0.7,
0.8, 1, 2, 4}.

nonrecursive Recursive
κ Coeff Coeff [γ0]
κ = 0.2 1.356131 0.439570 [0.624817]
κ = 0.4 1.569193 1.023768 [0.718623]
κ = 0.6 1.716357 1.635163 [0.794197]
κ = 0.7 1.772305 1.930109 [0.827012]
κ = 0.8 1.818969 2.211670 [0.857143]
κ = 1 1.889882 2.725681 [0.910684]
κ = 2 2.000000 4.326444 [1.093070]
κ = 4 1.889882 5.076874 [1.270579]

Figure 1. the ratio of AMSE [r̃n (χ, h)] and AMSE [r̂n (χ, h)] with the optimal γ0 in
the function of κ.

and adapted to a functional version in Ferraty, Mas and Vieu (2007) is that,

rather that using the naive bootstrap approach of resampling from the pairs

{Yi,Xi}ni=1, we resample from the estimated residuals ε̂i = Yi − r̂n (Xi). Then,

we use the obtained data to construct an estimator with a distribution that

approximates the distribution of the original estimator, and where each bootstrap

residual ε∗i is drawn from a two-point distribution, such that E (ε∗i ) = 0, E
(
ε∗2i
)

=

ε̂2
i , and E

(
ε∗3i
)

= ε̂3
i . Such a distribution is equal to

G∗i =

(
5 +
√

5

10

)
δε̂i((1−

√
5)/2) +

(
5−
√

5

10

)
δε̂i((1+

√
5)/2).

Our adapted procedure for the bandwidth selection when estimating the operator

r recursively in the case of functional setting is as follows:
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Step 1: Given the bootstrapped residuals ε∗i drawn from the distribution G∗i .

Step 2: Resampling, new observations Y ∗i = r̂∗n (χi, g) + ε∗i , where

r̂∗n (χ, g) =
Πn
∑n

k=1 Π−1
k γkg

−1
k K (‖χ−Xk‖/gk)Y ∗k

Πn
∑n

k=1 Π−1
k γkg

−1
k K (‖χ−Xk‖/gk)

,

and g should be larger than h (an explanation of why it is essential to

oversmooth g is given later).

Step 3: Given the bootstrapped data {Xi, Y ∗i }
n
i=1, we compute the kernel re-

gression estimator,

r̂∗n (χ, h) =
Πn
∑n

k=1 Π−1
k γkh

−1
k K (‖χ−Xk‖/hk)Y ∗k

Πn
∑n

k=1 Π−1
k γkh

−1
k K (‖χ−Xk‖/hk)

.

The bootstrapped bandwidth h∗ is then defined by:

h∗ = h∗ (χ) = arg min
h∈H

(
1

NB

NB∑
b=1

(r̂∗n (χ, h)− r̂n (χ, g))2

)
,

where H is a fixed set of bandwidths and NB is the number of replications.

The wild bootstrap method for the nonrecursive regression estimator when the

explanatory data are curves and the response is real is given in Ferraty, Mas and

Vieu (2007).

The bootstrap bias of the estimator constructed from the resampled data is

b̂n (χ, h, g) = E∗ [r̂∗n (χ, h)]− r̂n (χ, g)

= Πn

n∑
k=1

Π−1
k γkh

−1
k K

(
‖χ−Xk‖

hk

)
r̂n (χ, g)

f̂n (χ)
− r̂n (χ, g)

=
φn (χ, h, g)

f̂n (χ)
− r̂n (χ, g) , (2.10)

where

φn (χ, h, g) = Πn

n∑
k=1

Π−1
k γkh

−1
k K

(
‖χ−Xk‖

hk

)
r̂n (χ, g)

=
ψn,1 (χ, h, g)

f̂n (χ, g)
+
ψn,2 (χ, h, g)

f̂n (χ, g)
,

with

ψn,1 (χ, h, g) = Π2
n

n∑
k=1

Π−2
k γ2

kh
−1
k g−1

k K

(
‖χ−Xk‖

hk

)
K

(
‖χ−Xk‖

gk

)
Yk,

ψn,2 (χ, h, g) = Π2
n

n∑
k,k′=1
k 6=k′

Π−1
k Π−1

k′ γkγk′h−1
k g−1

k′ K

(
‖χ−Xk‖

hk

)
K

(
‖χ−Xk′‖

gk′

)
Yk′ ,
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f̂n (χ, g) = Πn

n∑
k=1

Π−1
k γkg

−1
k K

(
‖χ−Xk‖

gk

)
.

For an explanation of why the bandwidth gn should be larger than hn, we let

b̂n (χ, h) = r̂n (χ, h)− r (χ) ,

and then prove the following theorem.

Theorem 2. Let Assumptions (A1)-(A4) hold. Then,

E
[(
b̂n (χ, h, g)− b̂n (χ, h)

)2
]

' C1
γn

F (gn)
+ C2

F (hn)

F (gn)
+ C3

γn
F (hn)

+ C4h
2
n + C5g

2
n,

where,

C1 =
(2− (Fa + α− 2a) ξ) (2− (Fg + α− 2a) ξ)

(4− (Fa + 3α− 2a− 2g) ξ)

(
r2 (χ) + σ2

ε (χ)
) K2 (0)

M2

+σ2
ε (χ)

(1− (Fg − g) ξ)2

(1− (Fg + α− 2g) ξ)

M2

M2
1

,

C2 =
(2− (Fa + α− 2a) ξ) (2− (Fg + α− 2a) ξ)

(2− (Fa + α− a− g) ξ)2 r2 (χ)K2 (0)
M2

1

M2
2

,

C3 = σ2
ε (χ)

(1− (Fa − a) ξ)2

(1− (Fa + α− 2a) ξ)

M2

M2
1

,

C4 =
(
φ′ (0)

)2 (1− (Fa − a) ξ)2

(1−Faξ)2

M2
0

M2
1

,

C5 =
(
φ′ (0)

)2 (1− (Fg − g) ξ)2

(1−Fgξ)2

M2
0

M2
1

.

Theorem 2 shows that the distribution of r̂n (χ, h) − r (χ) is approximated

by the distribution r̂∗n (χ, h)− r̂n (χ, g). Moreover, we need that r̂n (χ, h) tends to

r (χ). This requires choosing gn tending to zero at a rate slower than the optimal

bandwidth hn for estimating r̂n (χ).

Computational cost. The advantage of recursive estimators over their nonre-

cursive counterparts is that their update, from a sample of size n to one of size

n + 1, requires fewer computations. This property can be generalized; we can

check whether it follows from (1.2) that, for all n1 ∈ [0, n− 1],

ân (χ, h) =

n∏
j=n1+1

(1− γj) ân1
(χ, h)
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+

n−1∑
k=n1

 n∏
j=k+1

(1− γj)

 γk
hk
K

(
‖χ−Xk‖

hk

)
Yk +

γn
hn
K

(
‖χ−Xn‖

hn

)
Yn

= α1ân1
(χ, h) +

n−1∑
k=n1

βk
γk
hk
K

(
‖χ−Xk‖

hk

)
Yk +

γn
hn
K

(
‖χ−Xn‖

hn

)
Yn,

where α1 =
∏n
j=n1+1 (1− γj) and βk =

∏n
j=k+1 (1− γj).

Similarly, it follows from (1.3) that for all n1 ∈ [0, n− 1],

f̂n (χ, h) =

n∏
j=n1+1

(1− γj) f̂n1
(χ, h)

+

n−1∑
k=n1

 n∏
j=k+1

(1− γj)

 γk
hk
K

(
‖χ−Xk‖

hk

)
+
γn
hn
K

(
‖χ−Xn‖

hn

)

= α1f̂n1
(χ, h) +

n−1∑
k=n1

βk
γk
hk
K

(
‖χ−Xk‖

hk

)
+
γn
hn
K

(
‖χ−Xn‖

hn

)
.

Here, we suppose that we receive a first sample of size n1 = bn/2c (the lower

integer part of n/2). Then, we receive an additional sample of size n − n1. It

is clear that we can use a plug-in or a wild bootstrap to construct an optimal

bandwidth based on the first sample of size n1 and an optimal bandwidth based

on the second sample of size n−n1. Then the proposed estimator can be viewed

as a linear combination of two estimators, which improve the computational cost

significantly.

Remark 2. It is possible to suppose that we receive more than two samples

separately.

3. Applications

The aim of our applications is to compare the performance of the recursive

estimators defined in (1.4) to the nonrecursive estimator defined in (1.5) using a

resampling bootstrap method.

3.1. Simulation studies

We construct random curves in the following way:

X (t) = a cos (4t) + b cos (5t) + c cos (6t) + d sin (5t) + e sin (6t)

+f sin (7t) + g (t− π)2 , t ∈ [0, 2π] ,
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Figure 2. A sample of 50 simulated curves.

where a, b, d, e, and g are real random variables drawn from a uniform distri-

bution on (0, 1), and c and f are real random variables drawn from a normal

distribution N (0, 0.5). Each curve is discretized into p = 100 equidistant points

on [0, π].

The response variable is simulated from the following regression model:

Y = r (X ) + ε, with ε ∼ N (0, 1) ,

and where

r (X ) =

∫ π

0

∣∣X ′ (t)∣∣ sin(π
2
t
)
dt.

Some of these curves are presented in Figure 2. For our application, we

simulated two samples: a learning sample of size nl = 200, on which all estimates

are computed, and a testing sample of size nt = 100, which is used to examine

the behavior of our method. The number of bootstrap replications is NB = 500,

for each application. In this functional context, the proposed estimator depends

on the following parameters; First, the semi-norm ‖.‖ of the functional space E
is taken to be the L2- norm between the first-order derivatives of the curves.

Second, because the choice of the kernel function K is not crucial, we use the

quadratic kernel K (u) =
(
1− u2

)
1[0,1] (u) for all u ∈ R. The bandwidth h is

assumed to belong to some grid in terms of nearest neighbors, h ∈ {h1, . . . , h50},
where hk is the radius of the ball of center χ, containing exactly k among the

curves data X1, . . . ,X200.

We provide a box-plot (see, Figure 3) of the quantities (Ŷ [j] − Y [j])2, where



432 SLAOUI

Figure 3. The mean square prediction error (MSPE) of the nonrecursive estimator (1.5)
and the proposed recursive estimator (1.4) over 500 bootstrap replications of n = 200
curves.

Ŷ [j] represents the predicted value at the jth iteration of the simulation (j =

1, . . . , 500). From these results, we observe that the nonrecursive estimator pro-

posed by Ferraty and Vieu (2002) is better than our proposed recursive estimators

in terms of the estimation error, but the main interest of using our recursive es-

timators is because it can give much better computational time. Performing the

two methods, the running time using the recursive regression estimators (1.4) was

roughly 28 s on the author’s workstation, whereas that using the nonrecursive

regression estimator (1.5) was roughly 50 s on the same workstation.

3.2. A real-data chemometric application

These data are available online at http://www.lsp.ups-tlse.fr/staph/

npfda/npfda-spectrometric.dat. This time series of spectra has been mea-

sured from wavelengths λ = 850 to λ = 1,050 nm for 215 finely chopped pieces

of meat. From this time series, we extracted the 215 spectra of light absorbance

curves X1, . . .X215 as functions of the wavelength, discretized into p = 100 points.

In addition, the responses include the percentage of fatness. These curves are

graphed in Figure 4. Moreover, as measures of proximity, we focus on the family

of semi-metrics√∫ (
χ

(m)
i (t)− χ(m)

j (t)
)2
dt, m ∈ {0, 1, 2, 3} ,

http://www.lsp.ups-tlse.fr/staph/npfda/npfda-spectrometric.dat
http://www.lsp.ups-tlse.fr/staph/npfda/npfda-spectrometric.dat
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Figure 4. Spectrometric curves data.
−

−
−

−
−

−
−

−
−

Figure 5. Shape of the dervatives of the spectrometric curves, m = 0 (in the top left
panel), the first derivative (in the top right panel), the second derivative (in the down
left panel), and the third derivative (in the down right panel).

where χ(m) denotes the mth derivatives of χ and χ(0) = χ. We plot the successive

derivatives in Figure 5 (using B-spline approximation, see Febrero-Bande and

Oviedo de la Fuente (2012)). We can observe that the second derivative act as a

filter and then can select more pertinent information.
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Figure 6. Spectrometric data: Predicted values on the testing sample using the non-
recursive estimator (in the left panel) and using the recursive estimator (in the right
panel).

Our main interest in this section is to compare the performance of the two

methods by determining the relation between the spectrum and the fatness. We

estimate functional regression model using the nonrecursive estimator (1.5) and

the recursive estimator (1.4).

Our sample of 215 pairs (Xi, Yi) will be decomposed into a learning sample

(L) of size 160 on which the various statistical methods are constructed and

a second sample (T ) of size 55 on which the predictive performances of these

methods is tested. We measure the performance of the two estimators using the

MSPE:

MSPE =
1

55

∑
i∈T

(
Ŷi − Yi

)2
,

where Ŷi is the prediction for Yi obtained for each new curve Xi, i ∈ T us-

ing one of the two estimators. The MSPE was computed using the recur-

sive estimator (MSPE (Recursive) = 3.831634) or the nonrecursive estima-

tor (MSPE (nonrecursive) = 1.211091). The nonrecursive estimator gives a

smaller MSPE than that of the recursive estimator. Performing the two meth-

ods, the running time using the recursive regression estimators (1.4) was roughly

63 s on the author’s workstation, whereas that of the nonrecursive estimator (1.5)
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was roughly 176 s on the author’s workstation. Moreover, in Figure 6, we plot

the predicted values obtained using the two methods as a function of the true

value for the 55 spectra in our testing sample.

4. Conclusion

We propose an automatic selection of the bandwidth of a recursive non-

parametric regression estimation for independent functional data. The proposed

estimators asymptotically follow a normal distribution. The estimators are com-

pared with the nonrecursive Ferraty and Vieu regression estimator for functional

data. We showed that, using some selected bandwidth and stepsizes, the pro-

posed recursive estimators will be very competitive. Our simulation confirms the

nice features of our proposed recursive estimators and satisfactory improvement

in CPU time compared with the nonrecursive estimator.

In conclusion, the proposed method allows us to obtain a competitive esti-

mate to that of the nonrecursive Ferraty and Vieu (2002). Moreover, we plan to

extend this work by proposing other bandwidth selection methods.

Supplementary Material

The Supplementary Material contains the proofs for the main results stated

in the paper.
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Appendix

A. Proofs

Throughout this section we use the following notation:

Πn =

n∏
j=1

(1− γj) ,

an (χ) = Πn

n∑
k=1

Π−1
k γkh

−1
k K

(
‖χ−Xk‖

hk

)
Yk,
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fn (χ) = Πn

n∑
k=1

Π−1
k γkh

−1
k K

(
‖χ−Xk‖

hk

)
, (A.1)

Let us first state the following technical lemma.

Lemma 1. Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), and m > 0 such that m−v∗ξ > 0

where ξ is defined in (2.2). We have

lim
n→+∞

vnΠm
n

n∑
k=1

Π−mk
γk
vk

=
1

m− v∗ξ
.

Moreover, for all positive sequence (bn) such that limn→+∞ bn = 0, and all δ ∈ R,

lim
n→+∞

vnΠm
n

[
n∑
k=1

Π−mk
γk
vk
bk + δ

]
= 0.

Lemma 1 is widely applied throughout the proofs. Let us underline that it

is its application, which requires Assumption (A2)(iii) on the limit of (nγn) as n

goes to infinity.

The proof Proposition 1, Theorem 1 and Theorem 2 are given in Supplemen-

tary material.
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