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S1 Proof

S1.1 Proof of Theorem 1

We give two lemmas first.

Lemma 1. Assume that X; — EX; are independent identically distributed

. 1/4 . .
random variables and % — 0. The second finite monments exists.
n

Then we have

1D (@)] = [D@)]| > 7} = o(1) (S1.1)

Pr{ max
1<i<n

where T, = O( /7).

(679
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Proof of Lemma 1 We first rewrite D, (i) as a sum of independent

variables:
) | (itanct i+2an—1
D,(i) = @_%{ Z (j—i+1)X;+ +Z (3a, —2j +2i — 2)X;
Jj=i it+an
i+3an—1
+ ) (30zn—j+i—1)Xj}. (S1.2)
420,

Then the variance of D, (i) equals, for a constant C' > 0:

i+an—1 1420, —2
Var{g( Y G—i+ DX+ Y (20430, —2j —2)X;

n

j=i j=itom
1+3a, —2
+ > (430, —j— 1)Xj)}
i+20,—1
Var(Xy) o= o C?
_ —‘”;(4 1) (D 2+ ) (Ban —2h)°) = — =0, (S1.3)
n i=1 h=1 n

It is obvious that the variance of D(i) is then free of the index i with
0, = C/y/a.. In addition, as D, (i) is a weighted sum of {X;}™,, we then
further rewrite it. Define a weight function w,(t, j) as denoting [nt] as the

largest integer that is smaller or equal to [nt],

wn(t,5) = Ynt] < j < [nt] + o, — 1}(1'—[2#
(3a, — 2j + 2[nt] — 2)
(3an —J+ [Tlt] — 1)

+ {[nt] + o, < j < [nt] + 2c,, — 1}

+ {[nt] + 2a, < j < [nt] + 3a, — 1}

)

where I{ B} denotes indicator function of set B. As for evert ¢ there exists
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€ (0,1) such that ¢ = [nt;], we have

(j—i+1)

wn(ti, ) = {lnti] < j < Int] + an — 14—

(B, — 27 + 2[nt;] — 2)
(Bay, —j + [nt;] — 1).

2
o

+ {[nt;] + 2cv, < j < [nt;] + 3a,, — 1}

(S1.4)
D, (i) can then be rewritten as D, (i) = > i1 Wn(ti,7)X;. Then D (i) —

D(i) = > i1 Walti, 7)(X; — E(X;)). Thus we have

DA =D0 g nllod) i, pix,)

n

el Y, (t) = Dali) = D(i)/0, and ¢; = X; — E(X;).

On

Then we have that
= din(ti, j)ej, (S1.5)
j=1

where 0, (t;,j) can be seen as a special case of Equation (18) in Wu and
Zhao (2007). In addition, define Q,(t;) = [wn(t:, 1)| + D7, [Wn(ti, 7) —
Wy (ti,7 — 1)] and €, = maxj<i<,{Q(t;)}. Some elementary calculations

lead to

4oy, + 3
ao,

As Q,(t;) is free of ¢ and then 2, = 4;"”3 The application of Theorem 3

in Wu (2007) and Equation (6) in Wu and Zhao (2007) suggest that there
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exists a Gaussian process below with the standard Brownian motion B(-),

V(L) = Z@(ti,j)war(Xl){B(j) —B(j — 1)}

such that almost surely for all ¢

Y, (t;) — Y ()] < o(Q(t:)n*logn),

n

and then

max |V, (t;) — Y (t;)| = o(Qnt/*logn).

1<i<n n

This yields that almost surely
max |Y,(t;)| = max |Y,(t;) — Y, (t;) + Y, (t;)]

1<i<n 1<i<n

< max |Y, (t;)] + max |Y,(t;) — Y.'(t;)]

1<i<n 1<i<n n

< max |V ()] + o(Q,n*logn),

1<i<n

and

max || Do (i)] — |l~?(i)|‘/an < max

1<i<n ~ 1<i<n

Du(i) = D(i)| /o

= Imax
1<i<n

Yn (tz)

< max Y (t;)] + o(Q,n'*logn).

1<i<n

(S1.7)

(S1.8)

(S1.9)

(S1.10)

(S1.11)

Due to the fact 0, = O(1/y/a,,) and the result in (S1.6), we can see

that Q, = 2%+ = O(1/y/a,,). By the condition nlogn _y ) e have for

2
an,

Ve,
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any 7,

Pr{ max D (i)] = |D(@)]| > 70} = Pr{max | Do (i)] — ID(i)|‘/<fn > Tn/0On}
< Pr{ma [V (1) + o(”l/}%) .
< Pr{%l%’i Y¥(t)|+1>7/on}

(S1.12)
From (S1.7), we have
Var(Y*(i)) = %(i 2-i% + i(?)ozn —2h)%) = 1. (S1.13)
n-n =1 h=1

In other words, Y*(¢;) follows the standard normal distribution, and thus,

with an application of Proposition 2.1.2 in Roman (2017), we have, for large

Tn/ana
Pr{lrglaé}; Yy(t)| +1>m7/0,} <n max Pr{|Y,(t:)| + 1> 7,/0.}
=nPr{|Y(t1)| > 7n/on — 1}

< /(2= exp{— (2~ 1)
! " (S1.14)

Taking 7, /0, = v/2logn + 1, we have as n — oo

1
n/(ﬁ —1)exp {—5(& — 1)2} = exp {logn —log+/2logn — logn}
On o

1
=4/ — 0
2logn

That is when 7, = 0,(v/2logn + 1) = O(y/log o, /+/a,) and n — oo, we
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have

Pr{ max
1<i<n

1D, (3)] — |D<¢)|‘ >l < ,/2101gn 0. (S1.15)

This means that max;<;<,,

1D, (3)| — |D(z)\‘ = Op(y/ l‘fn”). We complete the

proof of Lemma 1.
For the consistency of the estimated change points defined in the cri-

terion, we first give the detailed computation of [?(z) It is easy to see

that
.
0, o1+ o <1< 2 — 2an,;
H'"*(";(j’f’zan))ﬁk, 2 — 200, <1< 2 — Qp;
[(if(zk704,171))+...+an]+[(agfl)+...+(an7(i7(zk7an)))} Bk 2h— Q< P < 25 — an .
~ . an ) f— 2 )
bel={ |
[(zk_Z+2)+"'+0‘n]+[(a7&%1)+"'+(an—(3k—H’l))] ﬁk’ 2L — OCT" <1 S 2k

1+~-~+((zk+an)—i+1)6k

oz 2 <1< 2+ ap;

0, 2+ ap <1< Zpy1 — 200,.

From this formula, we have a more detailed calculation that will be used in
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the proof of Lemma 2 and Theorem 2.1:

O) Zp-1t+ap < 1 < Rk — 20[7“

(i—zp+2an+1)-(1— 2k +2a,) . .
s B 2k = 20m <1< zp — O

—i2 — o i+2iz —i+ 2k 7z,% +anzk+% (a%fan) B
k>

2

2 — 0y <1< 2zp— G — By;

an
3 a .
(Z_QQ )ﬁka Z_Zk:_?n_Bna
—i2—ani+2izk—i+zk—z,%-i—oznzk—l-%(a%—an) an B . o
- Bry 25— % — B, <i <z — %
n
|D(i)] = 2B, i =z — 3Qn; (51.16)
7i2fani+2izkfi+zkfzz+anzk+%(aﬁfan) n .
oz Bk, Zk——<2<2k—2+Bn,
3 _
(53— aQ )Bk, i =z, — “ 4+ By
—i2—ani+2izk—i+zk—zi +anzp+i(a2—an) . .
oz L, 2 — %+ By <1< 2z

(—itzptan+2)(—i+1+an+zk) /B
2 ks

Qn

2 <1< 2+ ap;

0, 2k + o <1< 21 — 200,

We can then know that when 2,1 —2a,, <1 < z,— % , | D(3)| monotonically
increases with ¢ while when z, — % <@ < 2, + ay, |D(i)| monotonically

decreases.
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|D ()| +cn

Similarly, we can derive T'(i) = Btix 32 o

04+cn . 7
e = L Zk—1+ Qp <1< 2 — 500,
O0+c 7 : 5
(ifzk+2an+1)~(ifgk+2an) ) Rk — 30n <1< 2k — 2%n;
2 ﬂk+cn
n
0+cn, 5 . o .
71'27ani+2izk7i+zkfz£+anzk+%(a%fan) » Rk 2a” <1< Z 204n Bn’
ﬁk+cn
an
. B%MBCZ , i =z, — 20, — By,
(Z—E‘FE)ﬁlﬁ-cn
O+cn, _ — ) —
7i27ani+2izk7i+zk7z£+anzk+%(a%fan) ’ 2k 2an Bn <1< 2k 2an7
) ﬁk+cn
n
0+4cn N
e 1=z — 20
Zﬁk“rcn, k )
(17zk+2an+:2);(1fzk+2an)Bk+0n 2 ' < 2 B
_i2—ani+2izk—i+zk—zi+anzk+%(a%_an)IB e y Rk — 20, <1 X 2k — 20 + Dy,
. 2 k n
— «
T =4 sy, = (S1.17)
a2 n .
3 BQHB ’ Z:Zk_2an+Bn7
(zfa*?Jra*?)ﬁkJrcn
n(i zn+1a +1)-(i—zp+ % an)
—#ktgontl)-(izzptgan
i Puten 2k — 20, + By < i < 2z — 3«
7i2focni+2izk7i+zk7z%+anzk+%(a%fan) ) k n n = <k 21
o2 ,8k+cn
n
(i—zp+3ant+l)-(i—zp+Lan)
o2 ﬂk‘f’cn

zk—%an<i§zk—an,

—itzptant+l)-(—itzptan+2 )

(—itzptan )2( itz tan )6k+Cn
An

27ani+2izk7i+zk7z%+anzk+%(oz,%fan)

—1

« Br+cn . 1
n
(Gptram) =) (zp Tan) 128 s 2 <1<z — 50n,
n

a
7i27ani+2izk7i+zk7zk+anzk+%(a,%‘fan)

o ,Bk+cn 1 X
n0+cn y Rk T Ean <1 S 2k,
(2 +3 an)—i+1) (2 + 5 an)—i+2)
2 +cn i
0n+cn ) 2 <1 S Zk + Qo
O+cn . 7
| 0fer = b Zg +ap <1< Zpp — 500,

We now give another lemma and its proof.

Lemma 2. Assume that X; — EX; are independent identically distributed
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random variables, we could define A = {i : T(i) < d} and AL = {i :
T,.(i) < d} for any 0 < d < 1. We have for any di, dy and d3 with

0<d3<d1<d2<1.
Pr{A% C A%} 1 Pr{A% C A"} 1. (S1.18)

Further, for any k =1,..., K the intervals (my, My) are disjoint and each
contains only one local minimizer zy — 3, /2 of T'(i). Further, for any d
with 0 <d < 1,

max | T, (i) — T(§)| = o,(1). (S1.19)

icAd
Proof of Lemma 2 To prove this lemma, we first analyse the prop-

erties of T,,(i) = % around the point z;, — 2c,, where z; is the

change point. Write it as

Tn<l> - |Dn<23)| +cn
1Dy (i + 500,)| + ¢

_ |1~?n(j)! — D) + !l?(i)\ + cn
Buld)] - 1D( + Sa)| + DG + Sa,) T <o

Op(2E) +D(i)] + cu

Op( ;%n) + ’[)(7/ + %O‘n)‘ + Cn

(S1.20)

For the flat parts in the sequence with |D(i)| = 0 for all i, we have

19) (\/logn)_f_o_’_cn
(i) = ———2 = 0,(1). (S1.21)
0,(=0) + 0+ ¢,

When a change point appears, we have that, from (S1.16) and the discussion

]

right below it, for Vi € [z — Lan, 2, — 2a), |D(G)| = 0, |D(i + 3a,,)]
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monotonically increases and at i = z, — 2a,,, we have

1Dy (2 — 200,)| + cn Op(V2) + 0+ ¢y
T (2 — 200) = = - - = 0,(1).
|Dn(Zk - §an>| +c, Op( ) + Zﬁk + Cn

(S1.22)
As we discussed before, for any i € [z — 20, 2k — 3], | D(i)| monotonically
increases, and |D(i + 2a,)| monotonically decreases, then 7},(i) uniformly

converges to the monotonically increasing 7'(i) and

1 Da(z—San)| 4 e Op(JER) + 3Bt p

—ay,) = —= = - — 00.
|Dn(2k+0€n)| +Cn Op( 10gn)+0+cn

Tn(zk - 9
Van

(51.23)

Step 1 To prove the subset equations in (S1.18) and the uniform con-
vergence in (S1.19). Define A% = {i : T'(i) < do} and A% = {i : T,,(i) < d;}
where d; < ds. Recall the decomposition of (S1.20). By the definition of

A we have for all i € A%, we have Ty,(i) < d;. Then,
= ~ .3
0p(€n) + |D(0)| + cn < di(0p(cy) + |D(i + §a">| +¢cn).

That is,

|D(z)\ +c, < d1(|D(i + ;an)\ + ¢n) + 0p(cn).

We can get, uniformly over all 7, in probability, for large n

1D(i)] + cn
1D(i + 2a,)| + cn

T(i) =
(S1.24)
<d; + 0(1) < dy.



S1. PROOF

In other words, with a probability going to one, A% C A% = {ij : T(i) <
do}. We can similarly prove that with a probability tending to one, A% C
A for dy with dy < d; < 1.

Step 2. To prove that for any k& = 1,..., K the intervals (my, My)
are disjoint and each contains only one local minimizer z; — 2a,, of T'(4).
Consider a value d with d > 0.5. Let 7y, and M, satisfy the following

conditions:

T, —1) >d, T(m) < d,
T(My) <d, T(M,+1)>d.

Denote the interval (rmy, M k). From the previous proof, we can easily derive
that in probability, (my, M) C (1, ]\7[k) Further, from the properties, we
also know that all (ﬁzk,]\;[k) are contained in A¢ and disjoint, also each
interval contains only one local minimizer zj —2a, of T'(7). When we choose
a value d with 0 < d < 0.5 we can derive that in probability, (i, My) C
(my, My). Similarly, we also know that all (1, M) are contained in A¢
and disjoint, also each interval contains only one local minimizer z; — 2, of
T'(7). These two properties imply that in probability (my, M}) are contained
in A%® and disjoint, also each interval contains only one local minimizer
2, — 2a, of T(i).

Step 3. To prove the weak convergence of T, (i) to T'(i) over the set
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A% As in probability A% C A% such that T(i) < dy < 1, we consider
a large set to derive the uniform convergence. For any i € A%, we have,

uniformly,

To(i) — T(i) = — |Dn(2)‘ + Cp _ ’D(Z” + Cn
" ’Dn(i"'_%o‘n)‘ + Cn ’D(i+%an)‘ +Cn
(D (i)] + ) (| D(i + $a)| + ¢n) = (1D()]| 4 ¢o) (| Dn(i + Sa)| + ¢0)

(|D, (i + San)| + cn)(|D(i + San)| 4 n)
g [qf)n(i)l - |f)(i))||(f)(j+ s0n)| + )]
(IDn(i 4 3a)| + o) (|D(i + 30,)| + ¢n)
_ [0DuGi+ 300)] = 1D + §an) DIDG) + )]
(I1Dn(i 4+ 3a)| + o) (|D(i + 300,)| + ¢n)
[0p () (ID(i + Sa)| + ¢a)] = [0p(ca) (| D(i)] + ¢2)]
(1Dn (i + 3an)| + ca)(ID(i + San)| + )

~{

— 0p(Cn) e
o) + (DG + B 4 T

=2l () = 0,(1).

Cn

Thus max;c 44, |15,(7) — T'(2)] = 0,(1). The proof is finished.

Proof of Theorem 1. We consider the first part in the theorem. By
Lemma 2, in probability z; — 2a,, € (Mg, Mk) C A4 implies that z, — 2a,, €
(my, My,) € A% C A4, Thus uniformly over 1 < k < K in probability, we
have

e < 2x — 20, < M. (S1.25)

At the population level with T'(i)’s, by the uniqueness of z; — 2, in the in-

terval (myg, My), searching for z —2a, in (my, M}) is equivalent to searching
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for zx — 2y, in the non-random (1my, Mk) in probability.

Write 2, —2a, as the local minimizer of T},(7)’s in the interval (my, M) C
(g, My,) € A%, Recall that by Lemma 2 max;c qa, [T, (i) — T'(3)| = 0,(1).
We can then work on each interval (my, My). For any k with 1 < k < K|
from (S1.17), T'(z, —2cv,) is the only local minimum and by the definition of
Zk — 2ay, To(1) > T, (2 — 2av,) in the interval in probability. From (S1.22)

and (S1.23), we have that, as |D(z, — 2a,)| = 0,

Du(z — 200)] = O,(v/log 1/ y/an) = op(ca) (S1.26)

a‘nd7 as |D(Zk - %O‘n)| = 3Bk‘/47

Dl — 5| — 36:/4 = Op(v/logn/y/ar) = oylea).  (S1.27)

Further, from the calculation of T'(i) before, we can see that letting B, =

a(log o) ~1/5, for amy j = O(B,)

1D (2 — 200 £ 5)| = O(cn). (S1.28)

To prove that Z;/zx — 1 = 0,(1), we only need to prove that |z —
2k| = Op(By,). To this end, applying the strictly decreasing and increasing
monotonicity of 7'(i) on the two sides of zp — 2c, respectively, and the
uniform convergence of T,(z) to T'(i) in probability in the set A%® we only

need to show that T, (zx — 2y, = By,) — T, (2 — 2,) > 0 in probability.
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Consider T,,(zx — 2, — B,,) first. Note that

0 n mn
Ty (2 — 200 — By) = + cn + 0p(Cn) . (S1.29)

(-5 f—g)ﬁk + ¢ + 0p(cn)

)

Let b, = (B—§ — B2)3,. To simplify the notations, in the following all

2
Qp Qp

derivations are in probability. We can derive that

To(zk — 200, — By) — Tz — 2a,)

Cn+0( logn) Cn+0( logn)
O(7) +en+ 35k — O(\/(lgn)‘l-cn 5
o Cn + Qn2 _Cn+an1
BnQ_bnl /Bnl

. (anZ + Cn)ﬁnl - (anl + CTL)(BHQ - bnl)
(anl + Cn)(ﬁnl - ﬁn?) + (an2 - anl)ﬁnl + (anl + Cn)bnl
Bnl (ﬁn? - bnl)

(anl + Cn)O( \}(lgn) + O( 1Ogn)ﬁnl + (a'nl + Cn)bnl
ﬁnl (ﬁn? - bnl)
((@n + en)bu)[OGLEEE) + O lBE B + 1

671,1 (ﬁnQ - bnl)
When (an1 + ¢,)bn1v/a,,/v1ogn — oo, and b,1v/a, /v/logn — oo, we then

have for large n, the value in the brackets is larger than a positive constant
and then the numerator is positive as ¢,/ /v/logn — oo and ¢, > 0 such
that a, + ¢, = ¢, (1 + “C—T;l) = c,(1+ O( log”)) > 0 and (an1 + ¢p)bp1 > 0.

We then have T, (2, — 2a,, — By,) — Ty (21 — 2ai,) > 0 when b,; - ¢, - Vo, =

n

B2 B2
a—g~cn~\/an/ logn > 22 - /log a, — o0.
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For i = 2z, — 2a,, + B,,, we have

By Bn—l-l

LBk + o + 0plcn)

T.(zk — 20, + By) = )
(3 - B— 28)Br + o+ 0p(ca)

(S1.31)

Let b0 = Wﬁk. We similarly have, in probability,

n

To(zk — 200, + By) — Ty(2z1 — 2avy,)

¢+ O(ER) + by ¢+ O(22)
et O(SEL) + 26 — by O(LED) + ¢, + 26y

Cn+ang + b2 Cotam
Brz — b Bn1
(cn + an3 + bn2) B — (an1 + ) Buz + (@n1 + ¢n)bma
Br1(Bnz — bn1)
~ (@n3 = an1)Bur + (ana + ) (Bt = Bnz) + (an1 + cn)bns + bu2Bn
a B (Bns — bn)

m@%mﬁ¢m+mmggummﬂ
Bnl(ﬁni& )
bn [O(\fb%:;)ﬁnl + (an1 + Cn)O(%) + Bni1]

Bnl (B’ni’) - bnl)

(S1.32)
The inequality is due to (a,1+¢,)by1 > 0. Thus as long as b,e-v/a,, //logn >
B20y,*? /\/logn — oo, the first term in the brackets converges to zero.
Note that a,; and c, both tend to zero. The second term converges

to zero. As (1 = O( lOg”) + ¢y + 2f, in which O( \}lg") and ¢, go

to zero, [, then tends to [ and thus f,; is larger than zero for large

n. Therefore, (O(\;O%T;)Bnl + (an + Cn)o(f—m) + Bn1) is greater than

zero. The whole numerator and then the difference is larger than zero



W. Zhao, X. Zhu and L. Zhu

such that T,(zx — 20, + By) — Th(zk — 2a,) > 0. Altogether, when

3
B2 ¢, an?/y/logn — oo, then
To(zk — 20, = By) — To (21 — 2av,) > 0. (S1.33)

As we argued before, Z; cannot be larger than z, + B,, in probability. Also,

based on the definition in Lemma 2, we can get that (zx — 2a,, — By, 2, —

20, + By,) C A% That is
—B, + z — 20, < Z, — 20, < B,, + 2z, — 2a,.

ASB—Z—>O

B
|<— =0
U o

2k — 2k

in probablity. In other words, for any ¢ > 0, we have the uniform conver-
gence over all £k < K: asn — oo

P( max ]Zk — K

1<k<K ' a,

This proves that uniformly over all £ < K, 2, is a consistent estimator of
zr in the above sense. The proof of the first part of Theorem 1 is finished.
We now prove the second Part of Theorem 1. From the proof of the
first part, we can see that we can consistently estimate all z; for 1 < k < K.
Thus, clearly K = K with a probability going to one.
Now we prove the third part of Theorem 1. In the case with divergent

K, along with the steps in the proof of Lemma 2 and of the first part of the
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theorem, we still have that maxy, T),(zx — 2a,,) — 0 in probability. That is,
the local minima of T},(z; — 2ay,) can also converge to zero. The consistency
can be proved almost the same as that for given K. Also K = K with a
probability going to one in the divergent case. We then omit the details

and finish the proof.

S1.2 Proof of Theorem 2

Denote the minimum change magnitude as 8, = min;<x<k, Br. . con-
verges to 0 at the rate of O((log a,,)~'/%) by the assumption.
From the proof of Lemma 2 and (S1.17), we have that, letting B, =

an(log a,)"V19, for any j = O(B,),

|D(z, — 2au, £ 7)| = O(cp). (S1.35)

To this end, applying the strict monotonicity of T'(i), respectively, on the
two sides of z — 2, and the uniform convergence of T}, (i) to 7'(¢) in proba-
bility in the set A%5, we only need to show that T}, (2, — 2a, + B,,) — Tr, (2 —
2a;,) > 0 in probability. In other words, we only need to check, similarly as

those in (S1.30) and (S1.32),

but -+ Cn -V, /\/logn — oo (51.36)

where by = (Z—22)8.. As B. = O((log ) ~/%) and B, = a (log ) /17,
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we have the above convergence. Then

T, (zx — 200, = By) — Ty (2 — 2av,) > 0. (S1.37)

Thus zp — B, < Z; < z; + B, in probability. As f—: — 0, we have uniformly
over all k < K in probability

By,

Zk_zk|§——>0.
(8%

The proof is finished.

S1.3 Proof of Theorem 3

We now prove the consistency of the estimators of the variance change
points. From the criterion construction, the proof is very much similar
to that for Theorem 1 as long as we pay attention to the rate of uniform
convergence of D, (i) that is in this case the variance difference. Rather
than only considering the first and second moment, we should take both
second and forth moment into account. As the second monment of variable

exists, there exists a constant C' such that E(X7) > C for all j. Then we
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have that
Z;L 1wn(tz7])X]2

max | D, (i) — D(i)| = maxlog

= maxlog

Z? p wa(t 17]>E(X2)
D1 Walts, )X — 370 walti, j)E(XF)
Z;L L wa(t w])E(XQ)
> wn(ti,j)Xf — Z? | Wa(ti, ) E(XF)

)

= max log(1 +

<
< max— an (ti,J)X an (ti,J)E ))

7=1

(S1.38)
For both of the mean and variance scenario, the number of variables that

D, (4) involves is the same. As the forth finite moment exists, we have that

the convergence rate max; |37 wy(ti, ) X7 — D77 wa(ti, ) E(X7)| = Op(4/ %)
And thus we have max; |D,,(i) — D(i)| = Op(./%). We then finish the

proof without repeating the details that are used to prove Theorem 1.
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