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Abstract: The problem of predicting a vector of ordered parameters or its part arises

in contexts such as measurement error models, signal processing, data disclosure,

and small area estimation. Often estimators of functions of the ordered random

effects are obtained under strong distributional assumptions, e.g., normality. We

discuss a simple generalized shrinkage estimator for predicting ordered random ef-

fects. The proposed approach is distribution free and has significant advantage

when there is model misspecification. We give expression to and characteriza-

tion of the optimal shrinkage parameter; the expression involves the Wasserstein

distance between two model-related distributions. We provide a framework for es-

timating the distance and thereby estimating an empirical version of the oracle

optimal estimator. We compare the risk for the optimal predictor to that of other

distribution-free estimators. Extensive simulation results are provided to support

the theoretical results.
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shrinkage.

1. Introduction

A common model of interest is

yi = θi + ei, i = 1, 2, . . . ,m, (1.1)

where the σ−1
i ei are assumed independent and identically distributed as H(0, 1),

a mean zero unit variance distribution, with the constants σi assumed to be

known. Independent of the ei, the θi are given as θi = µi + ui, where the ui are

independently and identically distributed (i.i.d.) as mean zero, finite variance

random variables with distribution G. This model finds wide-spread applications

ranging from measurement error models, signal processing, data disclosure, small

area estimation to name a few. Here, we develop methodology for predicting the

ordered random effects, θ(i), in the context of Model (1.1).

Model (1.1) is a special case of the Fay-Herriot model (Fay and Herriot

(1979)) in small area estimation (SAE), where the area means θi are further

modeled using area specific covariate information xi = (xi1, . . . , xip)
′, and area
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specific random effects ui as θi = x′
iβ + ui. Following SAE terminology we refer

to θ = (θ1, . . . , θm)′ as the vector of area means. While predicting η(θ) = θ is

common, investigators have also studied prediction of other functions; vector of

ranks, the empirical distribution of the area means (Shen and Louis (1998)) and

the range of area means (Judkins and Liu (2000)). Here we are interested in

predicting the vector of order statistics η(θ) = θ() = (θ(1) ≤ θ(2) ≤ · · · ≤ θ(m)).

Prediction of the ordered means is significantly harder than prediction of the

linear function of the area means (Pfeffermann (2013)). When G and H are cor-

rectly specified, the posterior mean η̂ = E(η(θ)|y) minimizes the prediction mean

squared error (PMSE), R(η̂) = E[(η̂ − η(θ))′(η̂ − η(θ))] where y = (y1, . . . , ym)′

is the data. When ei
i.i.d.∼ N(0, σ2) and θi

i.i.d.∼ N(µ, σ2
θ) the Bayes estimator of θ

is θ̂B = y − (1− γ)(y − µ1), where

γ =
σ2
θ

σ2
θ + σ2

and 1 is a vector of ones. The empirical Bayes (EB) estimator is obtained by

replacing µ by ȳ, θ̂EB = y−(1−γ)(y−ȳ1), which is also the Best Linear Unbiased

Predictor (BLUP) in the class of all {(H,G)} with finite second moments. Brown

(1971) and Brown and Greenshtein (2009) have looked at Bayes/empirical Bayes

estimation under general prior. The plugged-in version η(θ̂B), however is not

the Bayes predictor and can result in substantial bias in prediction. Wright,

Stern, and Cressie (2003) considered a Bayesian scheme for predicting ordered

means but their procedure is sensitive to prior choice and requires substantial

computation.

When G and H are partially specified up to lower order moments Stein’s

shrinkage estimators (Stein (1956)) can be used for a variety of parametric func-

tions but for the ordered parameters no suitable predictors are available. When

error variances are assumed equal, Malinovsky and Rinott (2010) proposed a

class of shrinkage estimators

θ(i)(λ) = λy(i) + (1− λ)µ. (1.2)

They showed that the risk minimizing value of λ lies in the interval [γ,
√
γ] and,

based on simulation evidence, conjectured the asymptotic optimal value to be√
γ. The weight

√
γ also appears in Louis (1984), who proposed Bayes and

empirical Bayes predictors that minimize an expected distance function between

the empirical cdf of predictors of θ and empirical cdf of its true value.

We use similar shrinkage estimators under model (1.1) and derive expressions

for the optimal shrinkage parameter. The optimum estimator is shown to have

good finite sample performance with respect to mean squared prediction error,

even in comparison to the “best” estimator when G and H are known to be nor-

mal. Thus, we provide an estimator that can predict the order parameters with
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reasonable accuracy and does not make strong distributional assumptions. For

the equal error variance case we show that the optimal choice of λ in (1.2) is not

necessarily
√
γ, and characterize the cases when

√
γ is indeed the asymptotically

optimal choice for λ. Based on the derived expression for the optimal value of λ,

we propose a new class of predictors for the ordered parameters and provide a

framework for estimation of the optimal predictor. We illustrate its finite sample

performance via simulation.

2. Prediction of Ordered Random Effects

It is instructive to begin with a special case of model (1.1) in which the

design variances are all assumed to be equal. Under the assumed model, constant

error variance would imply that the errors are i.i.d.. Since we later consider the

case when the error variances are not equal, we do not separately consider the

case where the errors have equal variance but are not necessarily identically

distributed. We assume that θi arise following some distribution G, with mean

µ and variance σ2
θ , but we do not specify the forms of G and H.

2.1. Prediction in the equal variance model

Assume model (1.1) with constant variances, σ2
1 = · · · = σ2

m = σ2. The

marginal distribution of yi is denoted by F which under the assumed model has

mean µ and variance σ2
y = var(yi) = σ2

θ + σ2. For prediction of the ordered

parameters, we consider the class of shrinkage predictors (1.2). Under squared

error loss the PMSE for a sample of size m is

Rm(λ) = m−1E
( m∑

i=1

(θ(i) − λy(i) − (1− λ)µ)2
)

and the optimal risk minimizing value of λ is

λ∗
m =

m−1E
(∑m

i=1(y(i) − µ)(θ(i) − µ)
)

m−1E
(∑m

i=1(y(i) − µ)2
) . (2.1)

We study the limiting form of (2.1) as m → ∞ and evaluate the relative

efficiency of the optimal shrinkage coefficient with respect to other predictors.

Let

W(F,G) =
{∫ 1

0
[F−1(t)−G−1(t)]

2
dt
}1/2

denote the L2 Wasserstein metric between the distributions F and G, assumed

to have finite variance. We consider the predictors

θ(i)(γ) = γy(i) + (1− γ)µ and

θ(i)(
√
γ) =

√
γy(i) + (1−√

γ)µ.
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Following the form of the BLUP for the unordered parameters, a natural

choice for the predictor of the ordered quantities would be θ
(2)
() = (θ(1)(γ) ≤ · · · ≤

θ(m)(γ))
′, while the predictor θ

(1)
() = (θ(1)(

√
γ) ≤ · · · ≤ θ(m)(

√
γ))′ is the form

conjectured in Malinovsky and Rinott (2010) to have asymptotically optimum

performance. The PMSE associated with the predictors θ
(1)
() and θ

(2)
() are R

(1)
m =

Rm(
√
γ) and R

(2)
m = Rm(γ), respectively. For any estimator of the form θ(i)(λ)

define the relative efficiency with respect to θ(i)(
√
γ) as RE

(1)
m (λ) = R

(1)
m /Rm(λ),

and that of θ(i)(λ) with respect to θ(i)(γ) as RE
(2)
m (λ) = R

(2)
m /Rm(λ).

Let the distribution of the standardized observations, (yi − µ)/σy, be F
∗ and

that of the standardized parameters, (θi − µ)/σθ, be G
∗ where σ2

y = σ2
θ +σ2. We

require some conditions on F ∗ and G∗.

(A1): The distributions F ∗ and G∗ have finite fourth moments.

(A2): For all 0 < t < 1/2, F ∗(x) and G∗(x) have continuous, positive derivatives

on x ∈ (F ∗−1(t), F ∗−1(1− t)) and x ∈ (G∗−1(t), G∗−1(1− t)), respectively.

Theorem 1. Under (A1−A2), as m → ∞,

λ∗
m → λ∗ =

√
γ
(
1− W 2(F ∗, G∗)

2

)
,

Rm(λ∗)→ R∗ = σ2
θ

(
W 2(F ∗, G∗)− W 4(F ∗, G∗)

4

)
,

RE(1)
m (λ∗)→ RE(1) =

[
1− W 2(F ∗, G∗)

4

]−1
,

RE(2)
m (λ∗)→ RE(2) = 1 +

[(1−W 2(F ∗, G∗)/2)−√
γ]2

[1− (1−W 2(F ∗, G∗)/2)2]
.

The gain in PMSE at the optimal shrinkage value over that at
√
γ, is [1−

W 2(F ∗, G∗)/4]−1. This improvement can be quite significant if the Wasserstein

distance between F ∗ and G∗ is large and, as 0 ≤ W 2(F ∗, G∗) ≤ 2, potentially

there can be a two fold reduction in the PMSE of the optimal predictor over

that of θ(i)(
√
γ). We find in the simulations that the gain in efficiency from the

optimal predictor can be substantial.

Remark 1. If F ∗ and G∗ are equal, then W (F ∗, G∗) = 0 and λ∗ =
√
γ, and

the PMSE of the optimal predictor goes to zero as m goes to infinity. Here, the

distribution of the centered yi is a scaled version of that of the centered θi, and

a simple scaling of the observed values provides the optimal prediction.

In the context of equal error variance Malinovsky and Rinott (2010) conjec-

tured the optimum value of λ in (1.2) to be
√
γ. Theorem 1 implies that the
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result holds iff W (F ∗, G∗) = 0. As F ∗ and G∗ are distributions of the standard-

ized quantities, to derive necessary and sufficient condition for W (F ∗, G∗) = 0,

without loss of generality, we take µ = 0.

Theorem 2. Suppose (1.1) holds and the errors ei are independently and iden-

tically distributed as H with mean zero and variance σ2. Then the Wasserstein

distance metric W (F ∗, G∗) between the distributions of standardized θ and stan-

dardized y is zero if and only if θi has the same distribution as that of
∑∞

k=1 c
kek

where c =
√
γ = σθ/σy.

Proof.

If part : If θ =
∑∞

k=1 c
kek, then y =

∑∞
k=0 c

kek, where ek’s are i.i.d for all k.

Hence, cy has same distribution as θ and after standardization u and y have the

same distribution. Hence, W(F ∗, G∗) = 0.

Only if part : We can write cyi = cθi + cei. From W (F ∗, G∗) = 0, follows that

y∗i = cyi has same distribution as θi. Iterating the procedure we see that θ has

the same distribution as
∑∞

k=1 c
kek. Because c < 1, the series representation is

valid in mean squared sense.

Remark 2. Normal distributions on θ and e give W (F ∗, G∗) = 0, and hence

Gaussianity is a sufficient condition for Theorem 2 to hold. However, as shown

in Theorem 2, the class of distribution pairs (H,G) that will give W (F ∗, G∗) = 0

is a much wider class containing the normal distribution. In such cases, F ∗ is a

self-decomposable distribution (Lukacs (1970)) and examples of such distribution

could be found in Shanbhag and Sreehari (1977).

2.2. Optimal prediction with unequal design variances

With a slight modification, a shrinkage predictor similar to (1.2) can be

proposed in the unequal variance case as well. In order to derive the limiting form

of the optimal estimator we have to make assumptions about the convergence

of the empirical distribution of the standardized responses. Such assumptions

automatically hold in the i.i.d. case considered in Section 2.1.

Let v2i = var(yi) = σ2
θ + σ2

i and zi = (yi − µ)/vi. Then we propose a class of

shrinkage predictors for the ordered area means as

θ(i)(λ) = λz(i) + µ. (2.2)

The PMSE at λ is

Rm(λ) = m−1E
( m∑

i=1

(θ(i) − λz(i) − µ)2
)
.
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If σ2
i ’s are the same, the class of predictors in (2.2) reduces to the class (1.2).

Let γi = σ2
θ/(σ

2
θ + σ2

i ). Then analogous to the equal variance case, one could

look at the predictors θ
(1)
() = (θ

(1)
(1) ≤ · · · ≤ θ

(1)
(m))

′ where θ
(1)
(i) = σθz(i) + µ and

θ
(2)
() = (θ

(2)
(1) ≤ · · · ≤ θ

(2)
(m))

′ where θ
(2)
i = γiyi + (1− γi)µ.

Unlike the equal variance case, the predictor θ
(2)
(i) does not belong to the

class (2.2) but rather it is the ordered version of the area specific BLUP for

the unordered area means. Let R
(1)
m and R

(2)
m denote the PMSE of θ

(1)
() and

θ
(2)
() , respectively, with RE

(1)
m (λ) = R

(1)
m /Rm(λ) and RE

(2)
m (λ) = R

(2)
m /Rm(λ).

Let wi = (θi − µ)/σθ denote the standardized area means. Then the shrinkage

coefficient with minimum PMSE is given by

λ∗
m = σθ

m−1E
(∑m

i=1w(i)z(i)
)

m−1E
(∑m

i=1 z
2
i

) . (2.3)

We establish a simpler limiting form for the optimal shrinkage coefficient,

leading to suitable predictor that can be used once the unknown parameters

have been substituted with data estimates. Let F ∗
m and K∗

m denote the empirical

distributions of zi and
√
γizi, respectively.

(A3) The sequence of distributions F ∗
m and K∗

m are uniformly integrable and

converge in distribution to mean zero distributions F ∗ and K∗ with finite fourth

moments, respectively. The distribution of wi, G
∗ has finite fourth moment.

Theorem 3. Under (A3), if (A2) holds for F ∗, G∗ and K∗, as m → ∞

λ∗
m → λ∗ = σθ

[
1− W 2(F ∗, G∗)

2

]
,

Rm(λ∗)→ R∗ = σ2
θ

[
1−

(
1− W 2(F ∗, G∗)

2

)2
]
,

RE(1)
m (λ∗)→ RE(1) =

[
1− W 2(F ∗, G∗)

4

]−1

,

RE(2)
m (λ∗)→ RE(2) =

W 2(K∗, G∗)

[1− (1−W 2(F ∗, G∗)/2)2]
.

Based on the optimal value of the shrinkage coefficient, the proposed predic-

tor for the ordered θi is θ
∗
() = (θ∗(1) ≤ · · · ≤ θ∗(m))

′ where

θ∗(i) = σθ

[
1− W 2(F ∗, G∗)

2

]
z(i) + µ. (2.4)
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Remark 3. Our results hold for the more general loss function in which different

ordered effects have different weights for their corresponding risks. More details

of this can be found in the supplementary document.

2.3. An application to small area estimation

We consider SAE where a fixed area level effect is present, and the mean

value of the ith area, θi = E(yi | θi), potentially depends on the characteristics

of the area. Let θi = µi + ui and hence yi = µi + ui + ei. The µi are fixed effects

and the ui are random effects. Typically area specific fixed effects are modeled as

µi = x′
iβ. We take the ui as i.i.d. N(0, σ2

θ) and the ei as i.i.d. N(0, σ2
i ). Write the

standardized response as zi = (yi − x′
iβ)/vi where v

2
i = σ2

θ +σ2
i is the variance of

yi. Following the generalized shrinkage estimation development, we can predict

u(i) = σθz(i) . For predicting θ(i)’s we propose

θ∗i = σθzi + x′
iβ, (2.5)

and let θ∗
() = (θ∗(1) ≤ · · · ≤ θ∗(m))

′ be the ordered values of θ∗i .

Remark 4. Use of θ∗
() in the equal variance case is justified because maximum

a posteriori order for the latent random effects is the same as the order of the

observed quantities (under mild distributional assumptions). More details are

provided in the supplementary document. We do not address the rank esti-

mation issue directly. A short discussion on rank estimation is included in the

supplementary materials, in the context of model 1.1.

3. Empirical Version of the Predictors

In practice, the unknown parameters in the expression for the optimal shrink-

age predictor are replaced with their estimators. Thus, at (2.4), one plugs in the

estimated values of µ, W (F ∗, G∗) and σθ.

3.1. Empirical predictor

Unless otherwise mentioned we use the sample mean ȳ to estimate µ. Other

estimators, such as the sample median can be considered. Estimation of σθ is

straightforward, but estimation of W is more involved. A consistent method-of-

moment estimator of σ2
θ is

σ̂2
θ = max

{
m−1

m∑
i=1

y2i − ȳ2 −m−1
m∑
i=1

σ2
i , 0

}
.

Based on the estimated σθ, we can replace vi by v̂i =
√

σ̂2
θ + σ2

i . We also use

ẑi = (yi − ȳ)/v̂i as the observed standardized response in order to compute the

Wasserstein distance.
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If the family of distributions G(0, σ2
θ) is known up to σθ, then W (F ∗, G∗)

can be estimated empirically once F ∗ is estimated based on σ̂2
θ . In cases where

G is unknown we can proceed as follows.

We assume that the error distribution is a known finite location-scale mixture

of normal distributions (a good approximation toH(0, σ2
i )) and that each mixture

component is independent of the unobserved θ. We also use a finite normal

location scale mixture representation for the distribution of θ. Thus, we take

ei ∼
L∑
l=1

pe,l,iN(µe,l,i, σ
2
e,l,i), (3.1)

where pe,l,i, µe,l,i, and σ2
e,l,i are all known and

θi ∼ G =

K∑
k=1

pθ,kN(µθ,k, σ
2
θ,k). (3.2)

Then

yi ∼ Fi =
K∑
k=1

L∑
l=1

pk,l,iN(µk,l,i, σ
2
k,l,i),

where pk,l,i = pθ,kpe,l,i, µk,l,i = µθ,k + µe,l,i, and σ2
k,l,i = σ2

θ,k + σ2
e,l,i. One can

then use the EM algorithm to estimate the distributions and hence estimate the

Wasserstein distance based on the estimated distributions, say Ŵ (F ∗, G∗).

For computation and implementation, it is more efficient to use the finite

sample version of the Wasserstein metric (associated with the finite sample

version of the optimal shrinkage) and estimate that to plug-in into the pre-

dictor. Set, W 2
m(F,G) = (1/m)

∑m
i=1(F

−1(i/(m+ 1)) − G−1(i/(m+ 1)))
2
and

W̃ 2
m(F,G) = E((1/m)

∑m
i=1(F

−1
m (i/(m+ 1)) −G−1

m (i/(m+ 1)))2). Given the

normal location scale mixture representation of G we can generatem independent

observations from the distribution of θ and generate a copy of observed y’s using

the known error distribution. Then, W̃m(F,G) is estimated by its Monte-Carlo

estimator. Let, F ∗
m,j and G∗

m,j be the empirical distribution for standardized θ

and y in j th replication. We estimate

̂̃
W

2

m(F ∗, G∗) =
1

R

R∑
j=1

(
1

m

m∑
i=1

(
F ∗−1

m,j(
i

m+ 1
)−G∗−1

m,j(
i

m+ 1
)
)2

)
,

where R is the number of replications.

Let λ̂∗ be the value of the optimal shrinkage coefficient when σθ and W̃ (F ∗,

G∗) have been replaced by their estimators σ̂θ and
̂̃
W (F ∗, G∗). Then the esti-

mated optimal predictor (2.4) for the ordered area means is θ̂∗
() = (θ̂∗(1) ≤ · · · ≤

θ̂∗(m))
′ where
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θ̂∗(i) = σ̂θ

[
1−

̂̃
W

2

m(F ∗, G∗)

2

]
ẑ(i) + ȳ.

3.2. Accuracy of the empirical predictor

The empirical estimator is a plug-in version of the optimal predictor. To

judge its accuracy we derive asymptotic expression for the PMSE of the empirical

predictor. We need some assumptions to establish the asymptotic rates.

(A4): For all 0 < t < 1/2, F ∗(x) and G∗(x) have continuous and positive

derivative on x ∈ (F ∗−1(t), F ∗−1(1− t)) and x ∈ (G∗−1(t), G∗−1 (1− t)),

respectively.

(A5): Let S∗
F = {x : 0 < F ∗(x) < 1} and S∗

G = {x : 0 < G∗(x) < 1} be the

open supports of F ∗ and G∗. F ∗ and G∗ are twice differentiable on their

open supports and their corresponding densities, f∗ and g∗, are strictly

positive on their respective open supports.

(A6):

∫ 1

0

t(1− t)

f∗(F ∗−1(t))
2dt < ∞ and

∫ 1

0

t(1− t)

g∗(G∗−1(t))
2dt < ∞.

(A7): sup
0<t<1

t(1− t)|f∗′(F ∗−1(t))|
f∗(F ∗−1(t))

2 < ∞ and sup
0<t<1

t(1− t)|g∗′(G∗−1(t))|
g∗(G∗−1(t))

2 < ∞.

(A8): The densities f(x) and g(y) are monotone for x /∈ (F ∗−1(t), F ∗−1(1− t))

and y /∈ (G∗−1(t), G∗−1(1− t)) for some 0 < t < 1/2.

(A9): There exists c > 0, such that infiσ
2
i > c, and

∫
σ̂−2
θ,m1σ̂θ,m>0 < K for all

m > m0 for some m0 and K, where σ̂θ,m is the estimate of σθ based on

m observations.

(A10): Assume that
√
m consistent estimators of W 2

m(, ) and W̃ 2
m(, ) – Ŵ 2

m(, )

and
̂̃
W

2

m(, ) are available.

Assumptions (A4−A8) can be found in Barrio, Gin, and Utzet (2005) in the

context of convergence of integrated quantile differences. Here (A9) is needed

for the case when σθ is being estimated. Assumption (A10) is plausible since, if

the assumed location scale representation is correct, as in that case the MLE of

the parameters in the mixture model is
√
m - consistent for the true value and

Wm(, ) is a continuous function of the parameters.

Proposition 1. Under (A1)−(A2), (A10), for the equal error variance case at

(2.1), σθ/σy

(
1 − ̂̃

W
2

m(F ∗, G∗)/2
)
= λ∗

m + OP (m
−1/2). If (A4−A8) and (A10)

hold, then σθ/σy

(
1− Ŵ 2

m(F ∗, G∗)/2
)
= λ∗

m +OP (m
−1/2).
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Proposition 2. Under (A2)−(A3), (A10), for the unequal error variance case

at (2.3), σθ

(
1− ̂̃

W
2

m(F ∗, G∗)/2

)
= λ∗

m + Op(m
−1/2). Under (A2)−(A8) and

(A10), σθ

(
1− Ŵ 2

m(F ∗, G∗)/2
)
= λ∗

m +Op(m
−1/2).

The following results generalize Proposition 1 and 2 when the optimal shrink-

age predictor is based on plugged-in estimators for Wm, σθ and µ.

Theorem 4. Under (A1)−(A10), for the equal variance case at (2.1),

σ̂θ
σ̂y

(
1−

̂̃
W

2

m(F ∗, G∗)

2

)
= λ∗

m +Op(m
−1/2),

σ̂θ
σ̂y

(
1− Ŵ 2

m(F ∗, G∗)

2

)
= λ∗

m +Op(m
−1/2).

If W (F ∗, G∗) > 0,

[1−
̂̃
W

2

m(F ∗, G∗)

4
]−1 = RE(1)

m (λ∗
m) +Op(m

−1/2),

̂̃
W

2

m(K∗, G∗)

[1− (1− ̂̃
W

2

m(F ∗, G∗)/2)2]

= RE(2)
m (λ∗

m) +Op(m
−1/2).

Theorem 5. Under (A2)−(A10), for the unequal design variance case at (2.3),

σ̂θ

(
1−

̂̃
W

2

m(F ∗, G∗)

2

)
= λ∗

m +OP (m
−1/2),

σ̂θ

(
1− Ŵ 2

m(F ∗, G∗)

2

)
= λ∗

m +OP (m
−1/2).

If W (F ∗, G∗) > 0,[
1−

̂̃
W

2

m(F ∗, G∗)

4

]−1
= RE(1)

m (λ∗
m) +Op(m

−1/2),

̂̃
W

2

m(K∗, G∗)

[1− (1− ̂̃
W

2

m(F ∗, G∗)/2)2]

= RE(2)
m (λ∗

m) +Op(m
−1/2).

Theorems 4 and 5 provide approximations to the relative efficiency of the

estimated version of the optimal shrinkage predictor. In terms of PMSE the

proposed optimum shrinkage estimator performs better than the BLUP type

estimator in the equal error variance case. But for the unequal variances this

may not happen as the BLUP type estimator does not belong to the class of

estimators represented by (2.2). In our model-based approach to estimating
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W (F ∗, G∗), once the normal location-scale mixture model for θ is estimated we

can estimate W (K∗, G∗) as well. Thus, the relative efficiency of the BLUP type

estimator compared to the proposed optimum estimator can be estimated and

the estimator with lower value of estimated asymptotic PMSE can be used.

4. Simulation Study

4.1. Optimum shrinkage and Wasserstein correction

We carried out three examples. The sample sizes considered were m = 2,000

and m = 10,000. The larger sample size was chosen to evaluate the accuracy

of the estimation of the Wasserstein distance, and compare with the theoretical

asymptotic value. Each reported Monte Carlo value was based on 500 replica-

tions.

Example 1. The first experimental scenario was designed to evaluate the effect

of the Wasserstein distance on the performance of the different predictors. The

area mean distributions were chosen to be two component normal scale mixtures

parameterized by a single parameter:

θi ∼ a−1N(0, a− 1) + (1− a−1)N(0, (a− 1)−1).

Here E(θ) = 0 and V ar(θ) = 1, and W (F ∗, G∗) is an increasing function of

a ∈ [2,∞), with W = 0 for a = 2. The error distribution was fixed as standard

normal. For the simulation we took a ∈ {2, 5, 10, 100, 1,000}. The scale mixture

models for different values of a are denoted by Nmix(a).

Example 2. We look at two distributions for the area means: a Double Ex-

ponential distribution to reflect possible heavy tails in the distribution and a

two component location mixture of normals to account for possible multimodal-

ity in the area mean distribution. In particular we took θi ∼ 0.5N(4, 1) +

0.5N(−4, 1) and θi ∼ DE(
√
2), where, in each case, the errors were generated

independently using ei ∼ N(0, σ2
i ). For the normal mixture case, we considered

two cases, constant error variances, σ2
i = 16, and σ2

i ∼ Uniform(0, 16). For

the double exponential, we took σ2
i = 1 and σ2

i ∼ Uniform(0, 1). The double

exponential models and normal location mixture models with equal and unequal

variances are denoted by DEE , DEU , NmixE and NmixU , respectively.

The optimum shrinkage coefficient was used in each example. We considered

the shrinkage predictors θ∗
(),θ

(1)
() , and θ

(2)
() . For prediction we used the estimated

version of the predictors where σ2
θ and W are obtained following the procedure

described in Section 3 and plugged into the expression of the predictors. The

value K = 6 was used.
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Table 1. Relative performance of the different shrinkage predictors.

θ∗
() vs θ

(1)
() θ∗

() vs θ
(2)
()

Model W Ŵ RE2,000 RE10,000 RE∞ RE2,000 RE10,000 RE∞
Nmix(a)
a = 2 0 0.02 1.00 1.00 1.00 40.4 199 ∞
a = 5 0.25 0.24 1.01 1.01 1.01 2.19 2.12 2.15
a = 10 0.41 0.40 1.04 1.05 1.05 1.25 1.24 1.26
a = 20 0.53 0.47 1.07 1.08 1.08 1.09 1.08 1.07
a = 50 0.62 0.52 1.09 1.09 1.10 1.02 1.02 1.02
a = 100 0.67 0.61 1.10 1.12 1.13 1.00 1.01 1.01
DEE 0.14 0.13 1.00 1.00 1.00 4.84 5.13 5.13
DEU 0.11 0.10 1.00 1.00 1.00 3.67 3.94 3.94

NmixE 0.37 0.32 1.03 1.03 1.04 1.33 1.35 1.35
NmixU 0.29 0.28 1.02 1.02 1.03 1.18 1.18 1.18

Table 1 gives the ratio of PMSE of the optimal predictors compared with the
other predictors at the two sample sizes. Column 2 gives the value of the true
Wasserstein distance and column 3 gives the estimate of W averaged over the
Monte Carlo replications. Columns 4-6 give the relative efficiency of the optimal
shrinkage estimator θ∗

() compared to the estimator θ
(1)
() at sample sizes m =

2,000, 10,000, and m = ∞, respectively. The value at m = ∞ is the theoretical
value given in the Theorem 1. Columns 7−9 give the relative efficiency value
of the optimal estimator compared to θ

(2)
() at m = 2,000, 10,000, and m = ∞,

respectively.
In the normal scale mixture models, for smaller values of the Wasserstein dis-

tance, the optimal shrinkage predictor θ∗
() and the one ignoring the Wasserstein

correction, θ
(1)
() , are nearly identical. This is expected since for values of W close

to zero, the correction factor is close to one and the two predictors essentially
coincide. However, the BLUP-type estimator θ

(2)
() is much inferior to the other

estimators in the small W scenario. When W is large, the optimal estimator is
considerably better than θ

(1)
() , because ignoring the Wasserstein correction has a

significant effect on the predictor. Here BLUP-type estimator θ
(2)
() is nearly iden-

tical to the optimal predictor. For moderate W , the optimal shrinkage provide
substantial gains over both θ

(1)
() and θ

(2)
() .

In the normal mean-mixture example for unequal or equal variances θ∗
() and

θ
(1)
() perform better than the θ

(2)
() and, with Wasserstein correction, θ∗

() performs

better than θ
(1)
() in the equal variance case with relatively higher value of W . For

double exponential scenario θ∗
() and θ

(1)
() perform much better than the θ

(2)
() and,

because of the small value of W , the Wasserstein correction is unnecessary for
all practical purposes.
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Table 2. Relative performance of the different shrinkage predictors.

θ∗
() vs θ

(1)
() θ∗

() vs θ
(2)
()

α W Ŵ RE500 R̂E RE∞ RE500 R̂E RE∞
α = 0 0.30 0.27 1.02 1.02 1.02 2.40 2.70 2.64
α = 0.5 0.33 0.31 1.02 1.02 1.03 2.82 3.31 3.03
α = 1 0.34 0.33 1.02 1.03 1.03 2.97 3.72 3.38

Figure 1. Plot for the nonparametric fit for density of G. The left hand
panel shows a typical fit for shifted Gamma distribution for skewed G, the
right hand panel is a typical fit in example 1 with a = 10. The solid line is
the fitted and the dashed line is the true target density.

Example 3. We investigated the effect of skewness in the area mean distribution.

We took θi ∼ Gamma(1.5, 1.5) − 1, an asymmetric distribution for the random

effect part around mean zero and with support (−1,∞). Error terms were normal

and we took σ2
i = b(α+ (1− α)ci), with ci = |1− 2(i/m)|, b = 3 and 0 ≤ α ≤ 1.

We considered the cases α = 0, 0.5 and 1.

The relative efficiency of θ∗
() with respect to θ1

() and θ2
() is given in the Table

2 for m = 500 with the data estimate of the relative efficiencies given by R̂E,

where the number of replication was 100.

In these examples the proposed mixture model approach was able to estimate

G. Figure 1 shows the estimated density in two cases; in all cases the proposed

estimator provided a reasonable approximation to G.

4.2. Small area estimation

For the SAE model θi and ei are assumed to be normal. By Theorem 2, the

Wasserstein distance between the standardized distributions of the area means

and the responses is zero. Thus, by Theorem 3, the optimal shrinkage estimator
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Table 3. Relative efficiency of the proposed predictor to BLUP-type predic-
tor.

c m = 100 m = 300 m = 500
1 1.02 1.08 1.09
3 1.08 1.26 1.44
5 1.18 1.62 1.87

θ∗
() is identical to θ

(1)
() . We considered two cases.

Case 1: In this case m = 100, 300, and 500 small areas were considered.

We took the case with a single covariate and, for the i th area we had yi =

α + βxi + ui + ei . We took ui ∼ N(0, 16) with α = 1, β = 2. We generated

xi ∼ N(0, 1) and ei ∼ N(0, σ2
i ). The error variance values were generated as

σ2
i ∼ U(0, c). We chose c from c = 1, 3, 5. The simulation results are reported

for 500 Monte Carlo replications. The proposed estimator θ∗
() is compared with

the BLUP-type predictor θ
(2)
() . The relative efficiencies are reported in Table 3.

The proposed predictor outperforms the BLUP-type predictor. The differ-

ence is significantly higher when the γi are further from one, that is when c is 3

or 5. For large m, the percentage of improvement is generally greater with the

optimal predictor providing 10−50% gain in efficiency of prediction.

Case 2: The gain in the performance of the optimal predictor is due to better

prediction of the order statistics of the random effects ui. When the observed

values are highly influenced by the fixed effects, then the BLUP-type predictor

is expected to perform comparably with the optimal predictor since the main

reduction in risk is achieved by accurate prediction of the fixed effect part. To

evaluate the effect of the correlation of the responses with the fixed effect on

the performance of the optimal predictor we considered a more general case

with different values of β. For higher β the fixed effect α + βxi dominates

and the response yi is higher and this effects the performance of the shrinkage

estimator. We use the same model as before (Case 1), with α = 1, β = 2∗i, where
i = 1, 2, . . . , 15. Also, we varied the number of small areas as m = 100j2 with

j = 1, 2, 3, 4, 5. The area specific variances were generated as U(0, c), with c =

1, 3, 5, 8. The relative efficiencies of the BLUP-type predictor θ
(2)
() compared to

the optimal predictor θ
(1)
() are given in Figure 2. The lower the relative efficiency,

the better the performance of the proposed predictor in predicting the order

statistics.

The proposed predictor has significantly smaller PMSE for a variety of cases

where the correlation between the fixed effect and the response is moderate to

small. For larger values of β the responses are essentially the fixed effects, and
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Figure 2. From left to right the figures correspond to c = 1, 3, 5, 8, respec-
tively. The X-axis denotes i = 1, . . . , 30. Here m = 100j2 and j = 1, 2, 3, 4, 5
are denoted by •, ◦,�, ⋄ and △, respectively.

the relative efficiency approaches one. Since the optimal predictor is being re-

placed by its plug-in version, the relative efficiency of the BLUP-type estimator

is actually slightly larger than one, when the area means are essentially of the

same magnitude as that of the fixed part α+ βxi.

4.3. Comparison with the full Bayesian estimator

If the distributions G and H are known, Bayesian computation can be used

to generate the posterior samples of θi and estimate the posterior expectation

of the ordered means by taking the mean of the ordered posterior samples. The

posterior mean is the best estimator in terms of PMSE. It is interesting to com-

pare the Bayesian method to our distribution free approach. We also study the

sensitivity of the Bayesian estimator to model misspecification, especially in the

model for the random effects parameter θ. We considered Students t distribu-

tion with various degrees of freedom for G and assumed it to be misspecified as

normal distribution. Also, a mixture normal distribution was considered for θ

with G ∼ .5N(1.5, 1) + .5N(−1.5, 1). We took, equal variances (E) σ2
i = 1 and

unequal variances (U) σ2
i ∼ U(0, 1). In the Bayesian methodology we assumed

the prior on θ, G, to be N(µ, σ2) and assumed the following non-informative

priors Π(µ, σ2) ∝ 1. The ratio of the square root of the PMSE’s for the shrinkage

and the Bayesian methods are reported in Table 4. If the model is truly specified

then the ratio should be greater than one.

Under model misspecification the shrinkage generally performs better than

the Bayesian method, and for the correctly specified case the Bayesian is better,

as expected. However, even in the correctly specified model, the model free

estimator continues to have reasonable performance.
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Table 4. Relative efficiency of the optimal shrinkage and Bayes predictor.

G m=100 m=400 m=900
U E U E U E

T2.2 0.87 0.81 0.71 0.68 0.66 0.63
T3 0.92 0.87 0.77 0.73 0.69 0.68
T4 1.00 0.93 0.82 0.79 0.75 0.72
T6 1.02 1.04 0.92 0.92 0.82 0.81

N(0, 1) 1.19 1.22 1.23 1.22 1.23 1.21
Mixture 1.04 0.98 0.86 0.85 0.77 0.78

5. Conclusion

We propose an optimal estimator of ordered random effects in the class of

simple shrinkage estimators. The main attraction of the proposed estimator is

that it is distribution free. It is very robust to model misspecification and, as ev-

ident from simulations the distribution free estimator is reasonably efficient with

respect to the best (Bayesian) estimator in a correctly specified normal model.

The estimator provides an easy and direct way for predicting ordered random

effects under both equal and unequal error variances. From simulations, in many

setups we see significant relative gain in efficiency for the optimal shrinkage esti-

mator over other shrinkage estimators in the same class. We also derived limiting

form of the risk of the estimator and proposed a method for estimating the risk.

The estimator depends on the Wasserstein distance between two standardized

distributions and a method based on the observed yis is also given for estimating

it. The optimal estimator based on the estimated Wasserstein distance is shown

to have reasonable asymptotic properties. We also address the situation when

area specific covariate information is available.

Alternative classes of estimators could involve linear shrinkage estimators

with different shrinkage for the different order statistics, or classes of shrinkage

estimators that directly account for the joint dependence among the order statis-

tics. Inference in such classes may be more difficult, and this is an interesting

area for further exploration. Generalization to classes of estimators that can

effectively account for area specific covariates while having the advantage of be-

ing distribution free is a topic of future research. The proposed estimator gives

a good starting point and a preliminary framework for more general classes of

distribution-free estimators.

Supplementary Materials

The supplementary document has four sections. Details about Remark 3 are

given in Section 1. The justification and proof of results related to the small area

model in Remark 4 are given in Section 2. In the third section we prove some
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results from the manuscript and in the fourth, we discuss the rank estimation

issue.
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Appendix

Proof of Theorem 1. From (2.1)

λ∗
m =

m−1E
(∑m

i=1(y(i) − µ)(θ(i) − µ)
)

m−1E
(∑m

i=1(y(i) − µ)2
) .

Hence,

λ∗
m =

m−1 σθ
σy
E
(∑m

i=1[(y(i) − µ)/σy][(θ(i) − µ)/σθ]
)

m−1E
(∑m

i=1((y(i) − µ)/σy)2
) =

σθ
σy

E(S∗
(m)),

where

S∗
(m) =

1

2

{ 1

m

m∑
i=1

zi
2 +

1

m

m∑
i=1

wi
2 − 1

m

m∑
i=1

(
z(i) − w(i)

)2}
.

Because E((1/m)
∑m

i=1 z
2
i ) = 1 and E((1/m)

∑m
i=1w

2
i ) = 1 we have

S∗
(m) =

1

2

{ 1

m

m∑
i=1

zi
2 +

1

m

m∑
i=1

wi
2 − T1

}
,

where

T1 =
1

m

m∑
i=1

(
F ∗
m

−1(
i

m+ 1
)−G∗

m
−1(

i

m+ 1
)
)2

.

Then,

T1 = dm(F ∗
m, F ∗) + dm(G∗

m, G∗) + dm(F ∗, G∗) + C1 + C2 + C3, (A.1)

where

dm(F ∗
m, F ∗) =

1

m

m∑
i=1

(F ∗
m

−1(
i

m+ 1
)− F ∗−1(

i

m+ 1
))

2

,

dm(G∗
m, G∗) =

1

m

m∑
i=1

(G∗
m

−1(
i

m+ 1
)−G∗−1(

i

m+ 1
))

2

,

dm(F ∗, G∗) =
1

m

m∑
i=1

(F ∗−1(
i

m+ 1
)−G∗−1(

i

m+ 1
))

2

,
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C1 =
2

m

m∑
i=1

(F ∗
m

−1(
i

m+ 1
)− F ∗−1(

i

m+ 1
))(G∗

m
−1(

i

m+ 1
)−G∗−1(

i

m+ 1
)),

C2 =
2

m

m∑
i=1

(F ∗−1(
i

m+ 1
)−G∗−1(

i

m+ 1
))(G∗

m
−1(

i

m+ 1
)−G∗−1(

i

m+ 1
)),

C3 =
2

m

m∑
i=1

(F ∗
m

−1(
i

m+ 1
)− F ∗−1(

i

m+ 1
))(F ∗−1(

i

m+ 1
)−G∗−1(

i

m+ 1
)).

From Lemma A.1, we have E(dm(F ∗
m, F ∗)) → 0 , E(dm(G∗

m, G∗)) → 0, and

dm(F ∗, G∗) → W2(F∗,G∗). We state and prove Lemma A.1 later.

For C1,

E(C2
1 ) ≤ E

( 2

m

m∑
i=1

(F ∗
m

−1(
i

m+ 1
)− F ∗−1(

i

m+ 1
))2

)
×E

( 2

m

m∑
i=1

(G∗
m

−1(
i

m+ 1
)−G∗−1(

i

m+ 1
))2

)
. (A.2)

From Lemma A.1 E(C1) → 0. Similarly E(C2), E(C3) → 0.

From (A.1), Lemma A.1, and (A.2) we have

E
( 1

m

m∑
i=1

(
F ∗
m

−1(
i

m+ 1
)−G∗

m
−1(

i

m+ 1
)
)2)

→ W 2(F ∗, G∗).

Then, λ∗
m → λ∗ =

√
γ(1−W 2(F ∗, G∗) /2) and thus,

R(1)
m =

m∑
i=1

(θ(i) − µ−√
γ(y(i) − µ))2 = σ2

θ

m∑
i=1

(w(i) − z(i))
2 → σ2

θW
2(F ∗, G∗).

Also,
√
γ − λ∗

m =
σθ
σy

W 2(F ∗, G∗)

2
.

Hence,

Rm(λ) → R(1)
m − σ2

θ

W 4(F ∗, G∗)

4
= R∗.

To find a direct expression for R
(2)
m (γ), we use

R(2)
m (γ) = σ2

θm
−1E

( m∑
i=1

(w(i)−
√
γz(i))

2
)
= σ2

θ

(
1+γ−2

√
γm−1E

( m∑
i=1

z(i)w(i)

))
.

We have shown that m−1E(
∑m

i=1 z(i)w(i))) → (1−W 2(F ∗, G∗)/2). Hence,

R(2)
m (γ)→ σ2

θ

(
1 + (

√
γ − (1− W 2(F ∗, G∗)

2
))2 − (1− W 2(F ∗, G∗)

2
)2
)
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= R∗ + σ2
θ

(
√
γ − (1− W 2(F ∗, G∗)

2
)

)2

.

Lemma A.1. Under A1, and A2, as m goes to infinity, dm(F ∗, G∗) → W2(F∗,G∗)

and E(dm(F ∗
m, F ∗)), E(dm(G∗

m, G∗)) converges to zero.

The proof is in the supplementary materials.

Proof of Theorem 3. Let

S∗
(m)=

1

2
{ 1

m

m∑
i=1

zi
2 +

1

m

m∑
i=1

wi
2 − 1

m

m∑
i=1

(z(i)−w(i))
2}

=
1

2
{ 1

m

m∑
i=1

zi
2+

1

m

m∑
i=1

wi
2− 1

m

m∑
i=1

(F ∗
m

−1(
i

m+ 1
)−G∗

m
−1(

i

m+ 1
))

2

}.(A.3)

Here, E((1/m)
∑m

i=1 z
2
i ) = 1 and E((1/m)

∑m
i=1w

2
i ) = 1. The last summa-

tion converges to W 2(F ∗, G∗) by Lemma A.1, similar to Theorem 1.

Thus, R
(1)
m =

∑m
i=1(θ(i)−µ−z(i))

2 = σ2
θ

∑m
i=1(w(i)−z(i))

2 → σ2
θW

2(F ∗, G∗).

Similarly, R
(2)
m → σ2

θW
2(K∗, G∗). As, σθ − λ∗ = σθW

2(F ∗, G∗)/2, Rm(λ) →
σ2
θW

2(F ∗, G∗)− σ2
θW

4(F ∗, G∗)/4.
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