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S1 Proof of Theorem 1

First, by Theorem 3.1 of Yang et al. (2020), we have the following variational

risk bound for the α < 1 case:

∫
1

n(n− 1)T
D(n)
α (θ, θ∗)q̂θ,α(dθ)

≤ α

n(n− 1)T (1− α)
Ψn,α(qθ, qX ) +

1

n(n− 1)T (1− α)
log

(
1

ζ

)
,

with probability at least (1 − ζ) for any ζ ∈ (0, 1). This result establishes

a connection between the variational Bayes risk and the α-VB objective

function, which implies that minimizing the α-VB objective function Ψn,α

will also minimize the variational Bayes risk.

The next step of the proof is to further simplify the above upper bound
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based on a certain choice of the variational family of the latent variable

X and the model parameter θ. Recall that θ = (β, σ2, τ 2) denotes all the

model parameters, and θ∗ = (β∗, σ∗2, τ ∗2) is their true values. From now

on, we use π = (σ2, τ 2) to denote the parameters that characterize the

distribution of latent variables, and use π∗ = (σ∗2, τ ∗2) to denote their true

values.

We still use the mean-field decomposition q(X , θ) = q(X )q(θ). How-

ever, the dependence structure between the observations and the latent

variables in our model is different from the simplifying assumptions in Yang

et al. (2020), since we no longer have i.i.d. observations or observation-

specific latent variables. In our case, for any fixed qθ, we choose the varia-

tional distribution q(X ) in the following way:

q(X ) ∝

(
T∏
t=1

∏
i 6=j

p(Yijt|β∗,X it,Xjt)

)
×

(
n∏
i=1

(
p(X i1|π∗)

T∏
t=1

p(X it|π∗,X i(t−1))

))
,

where the normalizing constant is p(Y |θ∗).

With this choice of variational family, the α-VB objective function be-

comes

Ψn,α(qθ, qX ) = −
∫

Θ

(ln(θ)− ln(θ∗)) q(dθ) + ∆J(qθ, qX ) +
1

α
D(qθ||pθ)

= −
∫

Θ

(
ln(θ)− ln(θ∗) + l̂n(θ)− ln(θ)

)
q(dθ) +

1

α
D(qθ||pθ)

= −
∫

Θ

(
l̂n(θ)− ln(θ∗)

)
q(dθ) +

1

α
D(qθ||pθ),
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where the first term on the right hand side is

−
∫

Θ

(
l̂n(θ)− ln(θ∗)

)
q(dθ)

=−
∫

Θ

(∫
X

log
p(Y |X , β)p(X |π)

q(X )
q(dX )− log

(∫
X

p(Y |X , β∗)p(X |π∗)
q(X )

q(dX )

))
q(dθ)

=−
∫

Θ

(∫
X

T∑
t=1

∑
i 6=j

log
p(Yijt|β,X it,Xjt)

p(Yijt|β∗,X it,Xjt)
q(dX )−D(p(X |π∗)||p(X |π))

)
q(dθ)

+

(∫
Θ

∫
X
p(Y |θ∗)q(dX )q(dθ)−

∫
Θ

log

(∫
X

p(Y |X , β∗)p(X |π∗)
q(X )

q(dX )

)
q(dθ)

)
.

Note that the last expression in the equation above contains two terms and

the second term is 0. Therefore, the variational risk bound becomes∫
1

n(n− 1)T
D(n)
α (θ, θ∗)q̂θ,α(dθ)

≤ α

n(n− 1)T (1− α)
Ψn,α(qθ, qX ) +

1

n(n− 1)T (1− α)
log

(
1

ζ

)
=− α

n(n− 1)T (1− α)

∫
Θ

∫
X

( T∑
t=1

∑
i 6=j

log
p(Yijt|X it,Xjt, β)

p(Yijt|X it,Xjt, β∗)

−
n∑
i=1

D(p(X it|π∗)||p(X it|π))

)
q(dX )q(dθ)

+
1

n(n− 1)T (1− α)
(D(q(θ)||p(θ)) + log(1/ζ))

:=− α

n(n− 1)T (1− α)
W1 +

1

n(n− 1)T (1− α)
(D(q(θ)||p(θ)) + log(1/ζ)) .

(S1.1)

The variational risk bound (S1.1) can be viewed as an analogue of

Corollary 3.2 in Yang et al. (2020). Now in order to apply Chebyshev’s

inequality to obtain the desired result, we need to bound the first and
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second moments of the first term of the right-hand side of (S1.1).

Recall the following definition of the KL-neighborhoods of the true

model parameters given in the statement of Theorem 1:

Bn(π∗, επ) :=
{
π : D (p(X 1|π∗)||p(X 1|π)) ≤ ε2π, V (p(X 1|π∗)||p(X 1|π)) ≤ ε2π

}
,

Bn(β∗, εβ) :=

{
β : sup

X11,X21

D(p(Y121|β∗,X11,X21)||p(Y121|β,X11,X21)) ≤ ε2β,

sup
X11,X21

V (p(Y121|β∗,X11,X21)||p(Y121|β,X11,X21)) ≤ ε2β

}
,

where V (p||q) :=
∫
p log2(p

q
)dµ. Then we choose qθ(θ) as the probability

density function (pdf) q∗θ , which is the pdf of the product measure of restric-

tions of the priors of the model parameters to KL-neighborhoods Bn(π∗, επ)

and Bn(β∗, εβ).

By Fubini’s Theorem,

Eθ∗ [W1]

=Eθ∗
[∫

Θ

q∗θ(θ)

∫
X

(
T∑
t=1

∑
i 6=j

log
P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
−

n∑
i=1

D(p(X i|π∗)||p(X i|π))

)
q(dX )dθ

]

=

∫
Θ

{
Eθ∗

[∫
X

(
T∑
t=1

∑
i 6=j

log
P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
−

n∑
i=1

D(p(X i|π∗)||p(X i|π))

)
q(dX )

]}
q∗θ(θ)dθ

=

∫
Θ

{
−

n∑
i=1

D(p(X i|π∗)||p(X i|π))

− n(n− 1)T

∫
X
D(p(·|X11,X21, β

∗)||p(·|X11,X21, β))q(dX )

}
q∗θ(θ)dθ.

Since q∗θ is the restriction of p(θ) into the KL-neighborhoods defined above,
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we have

− α

n(n− 1)T (1− α)
Eθ∗ [W1] ≤

α
(
n(n− 1)Tε2β + nε2π

)
n(n− 1)T (1− α)

.

Furthermore, the variance

Varθ∗ [W1]

=Varθ∗

[∫
Θ

q∗θ(θ)

∫
X

(
T∑
t=1

∑
i 6=j

log
P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
−

n∑
i=1

D(p(X i|π∗)||p(X i|π))

)
q(dX )dθ

]

=Varθ∗

[
Eq(X ),q∗θ (θ)

[
T∑
t=1

∑
i 6=j

log
P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
−

n∑
i=1

D(p(X i|π∗)||p(X i|π))

]]

=Varθ∗

[
T∑
t=1

∑
i 6=j

Eq(X ),q∗θ (θ)

[
log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)

]
−

n∑
i=1

Eq∗θ (θ) [D(p(X i|π∗)||p(X i|π))]

]

=
T∑

t,s=1

∑
i 6=j

∑
k 6=l

Cov

(
Eq(X ),q∗θ (θ)

[
log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)

]
, Eq(X ),q∗θ (θ)

[
log

P (Ykls|Xks,X ls, β)

P (Ykls|Xks,X ls, β∗)

])
(S1.2)

+
n∑

i,j=1

Cov
(
Eq∗θ (θ) [D(p(X i|π∗)||p(X i|π))] , Eq∗θ (θ) [D(p(X j|π∗)||p(X j|π))]

)
(S1.3)

−
T∑
t=1

∑
i 6=j

n∑
k=1

Cov

(
Eq(X ),q∗θ (θ)

[
log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)

]
, Eq∗θ (θ) [D(p(X k|π∗)||p(X k|π))]

)
.

(S1.4)
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First, note that for any 1 ≤ i 6= j ≤ n, t = 1, . . . , T ,

log
P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
=Yijt(β − ||X it −Xjt||2)− Yijt(β∗ − ||X it −Xjt||2)

− log
(

1 + eβ−||Xit−Xjt||2
)

+ log
(

1 + eβ
∗−||Xit−Xjt||2

)
=Yijt(β − β∗)− log

(
1 + eβ−||Xit−Xjt||2

1 + eβ∗−||Xit−Xjt||2

)
.

Thus, after taking expectation with respect to X and β, only the first term

is random. Let

Eq(X ),q∗θ (θ)

[
log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)

]
:= c1Yijt + c2(i, j, t),

where c1 and c2 are constants that depend on the variational distribution

q.

Then the term (S1.2) becomes

T∑
t,s=1

∑
i 6=j

∑
k 6=l

Cov [c1Yijt + c2(i, j, t), c1Ykls + c2(k, l, s)] = c2
1

T∑
t,s=1

∑
i 6=j

∑
k 6=l

Cov [Yijt, Ykls] .

The number of terms in the summation is n2(n − 1)2T 2, but for any t

and s, Cov [Yijt, Ykls] = 0 when i 6= k and j 6= l. Also, for any i, j = 1, . . . , n
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and t = 1, . . . , T , the variance term can be bounded in the following way:

Varθ∗

[
Eq(X ),q∗θ (θ)

[
log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)

]]
=Varθ∗

[∫
Θ

q∗θ(θ)

∫
X
qX (X ) log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
dXdθ

]
≤Eθ∗

[∫
Θ

q∗θ(θ)

∫
X
qX (X ) log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
dXdθ

]2

≤Eθ∗
[∫

Θ

q∗θ(θ)

[∫
X
qX (X ) log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
dX
]2

dθ

]

=

∫
Θ

Eθ∗
[∫

X
qX (X ) log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
dX
]2

q∗θ(θ)dθ

≤
∫

Θ

Eθ∗
[∫

X
qX (X ) log2 P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)
dX
]
q∗θ(θ)dθ

=

∫
Θ

[∫
X
V [p(·|β∗,X11,X21)||p(·|β,X11,X21)] qX (X )dX

]
q∗θ(θ)dθ

≤ε2β,

where the second and third inequalities are due to Jensen’s inequality, and

the second equality is due to Fubini’s theorem. Thus, by Cauchy-Schwarz

inequality,

term (S1.2)

≤
T∑

t,s=1

∑
i 6=j

∑
k 6=l

√
Varθ∗

[
E
[
log

P (Yijt|X it,Xjt, β)

P (Yijt|X it,Xjt, β∗)

]]
· Varθ∗

[
E
[
log

P (Ykls|Xks,X ls, β)

P (Ykls|Xks,X ls, β∗)

]]
≤ (n(n− 1)T 2 + n(n− 1)(n− 2)T 2)ε2β

≤ n(n− 1)2T 2(ε2β + ε2π).

The other two terms: term (S1.3) = term (S1.4) = 0. By Chebyshev’s
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inequality, for any fixed (εβ, επ) ∈ (0, 1) and any D > 1,

Pθ∗
(
W1 ≤ −Dn(n− 1)T (ε2β + ε2π)

)
≤ Pθ∗

(
W1 − E[W1] ≤ −(D − 1)n(n− 1)T (ε2β + ε2π)

)
≤ Var [W1]

(D − 1)2n2(n− 1)2T 2(ε2β + ε2π)2

≤ 1

(D − 1)2n(ε2β + ε2π)
. (S1.5)

Since the variational family of θ is the restriction of the prior on the

KL-neighborhoods Bn(π∗, επ) and Bn(β∗, εβ), we have

D(q∗θ(θ)||pθ(θ)) = − logPπ [Bn(π∗, επ)]− logPβ [Bn(β∗, εβ)] ,

where Pπ and Pβ denote the probability measures corresponding to the

priors of π and β, respectively. This together with inequality (S1.5) implies

that for any fixed (ε2π, ε
2
β) ∈ (0, 1)2 and D > 1, it holds with probability at

least 1− 2
(D−1)2n(ε2β+ε2π)

that∫
1

n(n− 1)T
D(n)
α (θ, θ∗)q̂θ,α(dθ) ≤ Dα

1− α
(ε2π + ε2β)− 1

n(n− 1)T (1− α)
logPπ(Bn(π∗, επ))

− 1

n(n− 1)T (1− α)
logPβ(Bn(β∗, εβ)).

S2 Proof of Theorem 2

For any i, j = 1, . . . , n and t = 1, . . . , T , the KL divergence

D (p(·|β∗,X it,Xjt)||p(·|β,X it,Xjt)) = E [Yijt] (β∗ − β)− log

(
1 + eβ

∗−||Xit−Xjt||2

1 + eβ−||Xit−Xjt||2

)

≤ |β − β∗| − log e−|β−β
∗| ≤ 2|β − β∗|,



S2. PROOF OF THEOREM 2

and the V -divergence

V (p(·|β∗,X it,Xjt)||p(·|β,X it,Xjt))

=Eβ∗

(Yijt(β∗ − β)− log

(
1 + eβ

∗−||Xit−Xjt||2

1 + eβ−||Xit−Xjt||2

))2


=E
[
Y 2
ijt

]
|β∗ − β|2 + log2

(
1 + eβ

∗−||Xit−Xjt||2

1 + eβ−||Xit−Xjt||2

)
− (β∗ − β) log

(
1 + eβ

∗−||Xit−Xjt||2

1 + eβ−||Xit−Xjt||2

)
E[Yijt]

≤|β∗ − β|2 + |β∗ − β|2 = 2|β∗ − β|2.

Note that (β∗−β) log

(
1+eβ

∗−||Xit−Xjt||
2

1+eβ−||Xit−Xjt||2

)
E[Yijt] ≥ 0, and the last inequality

is based on the following fact

e−|x−y| ≤ 1 + ex

1 + ey
≤ e|x−y|.

This implies that the KL neighborhood Bn(β∗, εβ) contains the set{
β : |β − β∗| ≤ c

2
ε2β
}

for some constant c, and the volume of this set is

at most of the order O(ε2β). Consequently, by the thick prior assumption,

the prior mass of this set Pβ(
{
β : |β − β∗| ≤ c

2
ε2β
}

) is at least of the order

O(1/ε2β).

Similarly, for any i = 1, . . . , n,

D(p(X i|σ∗2, τ ∗2)||p(X i|σ2, τ 2)) =

[
−d

2
log

(
σ∗2

σ2

)
− d

(
σ∗2

2σ∗2
− σ∗2

2σ2

)]
+

[
−d

2
log

(
τ ∗2

τ 2

)
− d

(
τ ∗2

2τ ∗2
− τ ∗2

2τ 2

)]
· (T − 1).

Since we restrict model parameters in a compact set, by Lipschitz con-
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tinuity, there exists some constant C, such that

Bn(π∗, επ) ⊃
{

(σ2, τ 2) : |σ2 − σ∗2| ≤ Cε2π, |τ 2 − τ ∗2| ≤ Cε2π
}
.

The volume of the set on the right-hand side is (2Cε2π)2. Thus, for any

D > 1, we have the following risk bound with probability tending to 1 as

n→∞, ∫
1

n(n− 1)T
D(n)
α (θ, θ∗)q̂θ,α(dθ)

≤ Dα

1− α
(ε2π + ε2β)− 2 log εβ

n(n− 1)T (1− α)
− 2 log(2Cε2π)

n(n− 1)T (1− α)
.

Choosing εβ = επ = 1√
n
, then the risk bound is of the order O( 1

n
).

S3 Proof of Theorem 3

As stated in the main text, showing theoretical properties of the regular VB

requires extra conditions. We first restate the two assumptions proposed

by Yang et al. (2020).

Assumption 1. For some εn > 0 and any ε > εn, there exist a subset of

the parameter space Fn,ε ⊂ Θ and a test function φn,ε such that

Pθ(F cn,ε) ≤ e−cn(n−1)ε2 ,

Eθ∗ [φn,ε] ≤ e−cn(n−1)ε2n ,

Eθ [1− φn,ε] ≤ e−cn(n−1)h2(θ||θ∗), ∀ θ ∈ Fn,ε such that h2(θ||θ∗) ≥ ε2.
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Assumption 2. There exists a constant C > 0 such that

Pθ [Bn(π∗, εn)] ≥ e−Cnε
2
n ,

Pθ [Bn(β∗, εn)] ≥ e−Cnε
2
n .

Assumption 1 is the statistical identifiability condition characterized by

the test function condition (see Ghosal and Van Der Vaart (2007)). Since

we restrict the parameter space to a compact set, such a test function exists

and Assumption 1 is automatically satisfied.

Assumption 2 is the prior concentration condition. With Assumptions 1

and 2 in the main text, it can be shown that Assumption 2 here is satisfied.

Under Assumption 2, with a similar proof as the proof of (S1.5) in

Theorem 1, we can show that for any D > 1, there exists an event An such

that

Pθ∗(An) ≥ 1− 1

2(D − 1)2nε2n
,

and there exist variational distributions (q∗θ , q
∗
X ), such that under event An,

Ψn(q∗θ , q
∗
X ) ≤ 2Dn(n− 1)Tε2n − logPπ (Bn(π∗, επ))− logPβ (Bn(β∗, εβ))

≤ 2Dn(n− 1)Tε2n + 2Cε2n,

where Ψn denotes the regular VB objective function.

Under Assumption 1, by Theorem 3.5 of Yang et al. (2020), for any
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ε ≥ εn, there exists an event Bε, such that

Pθ∗(Bε) ≥ 1− 2e−cn(n−1)Tε2n ,

and under event Bε, we have the following upper bound to the variational

Bayes risk for any (qθ, q(X )) in the variational family

Q̂θ(F cn,ε) log
Q̂θ(F cn,ε)
Pθ(F cn,ε)

+ (1− Q̂θ(F cn,ε)) log
1− Q̂θ(F cn,ε)
1− Pθ(F cn,ε)

+ cn(n− 1)T

∫
θ∈Fn,ε,h2(θ||θ∗)≥ε2

h2(θ||θ∗)Q̂θ(dθ)

≤Ψn(qθ, qX ) +
cn(n− 1)Tε2n

2
+ log 2, (S3.6)

where Q̂θ(·) is the probability measure corresponding to the VB solution

q̂θ.

Thus, under the event An ∩ Bε, we have

Q̂θ(F cn,ε) log
Q̂θ(F cn,ε)
Pθ(F cn,ε)

+ (1− Q̂θ(F cn,ε)) log
1− Q̂θ(F cn,ε)
1− Pθ(F cn,ε)

+ cn(n− 1)T

∫
θ∈Fn,ε,h2(θ||θ∗)≥ε2

h2(θ||θ∗)Q̂θ(dθ)

≤Cn(n− 1)Tε2n, (S3.7)

where C > 0 is a constant.

Note that both the sum of the first terms and the third term in the left

hand side of (S3.7) are nonnegative, so there exist constants C ′, C ′′, such
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that

Q̂θ(θ ∈ Fn,ε, h2(θ||θ∗) ≥ ε2) ≤ 1

ε2

∫
θ∈Fn,ε,h2(θ||θ∗)≥ε2

h2(θ||θ∗)Q̂θ(dθ) ≤ C ′
ε2n
ε2
,

Q̂θ(F cn,ε) ≤C ′′
ε2n
ε2
.

The inequality in the second expression above is due to the following facts:

Q̂θ(F cn,ε) log Q̂θ(F cn,ε) + (1− Q̂θ(F cn,ε)) log(1− Q̂θ(F cn,ε)) ≥ − log 2,

−Q̂θ(F cn,ε) log P̂θ(F cn,ε)− (1− Q̂θ(F cn,ε)) log(1− P̂θ(F cn,ε)) ≥ −Q̂θ(F cn,ε) log P̂θ(F cn,ε)

≥ cn(n− 1)Tε2.

Let ε = kεn for k = 1, 2, . . . ,
⌊
ecn(n−1)Tε2n/4

⌋
, we can show that the fol-

lowing inequality holds with probability at least 1− 1
2(D−1)2nε2n

−2e−cn(n−1)Tε2n/4 ≥

1− 1
(D−1)2nε2n

,

Q̂θ(h
2(θ||θ∗) ≥ ε2) ≤ Q̂θ(θ ∈ Fn,ε, h2(θ||θ∗) ≥ ε2) + Q̂θ(F cn,ε) ≤ (C ′+C ′′)

ε2n
ε2
.

Let ε = n1/4εn, then

Q̂θ(h
2(θ||θ∗) ≥ ε2) ≤ (C ′ + C ′′)

ε2n
ε2
→ 0.
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Therefore, for any R < e2cn(n−1)Tε2n , the variational Bayes risk

∫
{h2(θ||θ∗)≤R2}

h2(θ||θ∗)q̂θ(dθ) =

∫ R2

0

Q̂θ(h
2(θ||θ∗) ≥ t)dt

=

∫ ε2n

0

Q̂θ(h
2(θ||θ∗) ≥ t)dt+

∫ R2

ε2n

Q̂θ(h
2(θ||θ∗) ≥ t)dt

≤ ε2n +

∫ R2

ε2n

Q̂θ(h
2(θ||θ∗) ≥ t)dt

= ε2n + 2

∫ R

εn

sQ̂θ(h
2(θ||θ∗) ≥ s2)ds

≤ ε2n + 2

∫ R

εn

s · (C ′ + C ′′)
ε2n
s2
ds

≤ Cε2n(1 + log
R

εn
).

S4 Additional Simulation: VB vs MCMC

In this simulation we compare the performance of the proposed VB algo-

rithm with a Metropolis within Gibbs MCMC sampling algorithm. We

used parallel tempering to facilitate the mixing of MCMC. Details of this

MCMC algorithm are given in the next section. To make the computation

feasible for MCMC, we simulated 20 dynamic networks, each with only

n = 50 nodes and T = 10 time points. We considered two cases for the

variance of the transition distribution: τ 2 = 0.0004 for the small transition

case and τ 2 = 0.01 for the large transition case. We considered networks

with different edge density by setting β = 0.5, −0.5, −1.5 for the dense,
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moderate and sparse cases, respectively.

The parallel tempering algorithm took about half an hour on average to

obtain 100,000 samples (10,000 for burn-in and 90,000 for inference), while

the proposed VB algorithm only took several seconds. The performance

was evaluated by the AUC values of in-sample predictions. The results

of the two algorithms are summarized in Figure 1. Their performances in

terms of AUC values are close. Compared with MCMC, the variational

algorithm achieves similar performance with much less computation time.

S5 Details of the Parallel Tempering Algorithm

We used the following parallel tempering algorithm in the comparison be-

tween VB and MCMC in Section S4.

� For k = 1, . . . , K, construct target distributions πk ∝ exp
{

log(p(Y|β,X )p(X |σ2,τ2)p(β))
Tk

}
,

where TK > · · · > T1 are the temperatures. The lowest temperature

T1 = 1 corresponds to the target distribution we are interested in.

� Initialize X (0)
k and β

(0)
k randomly for k = 1, . . . , K. Here the subscript

k indicates the sample in the k-th temperature level.

� Suppose the sample at step t is (X (t)
k , β

(t)
k ), k = 1, . . . , K.

– Draw u ∼ Uniform(0, 1).
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Figure 1: The average in-sample AUC values for VB and MCMC on simulated networks.

(Left column: small transition; right column: large transition. First row: dense networks;

second row: moderate networks; third row: sparse networks.)
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– If u ≤ a0, for k = 1, . . . , K, draw (X (t+1)
k , β

(t+1)
k ) using the Metropolis-

Hastings within Gibbs algorithm (given below) with target distri-

bution πk.

– Otherwise, randomly choose a neighboring pair of temperatures Ti

and Ti+1, and swap (X (t)
i , β

(t)
i ) and (X (t)

i+1, β
(t)
i+1) with probabilty

min

{
1,

πi

(
X (t)
i+1,β

(t)
i+1

)
πi+1

(
X (t)
i ,β

(t)
i

)
πi

(
X (t)
i ,β

(t)
i

)
πi+1

(
X (t)
i+1,β

(t)
i+1

)
}

.

In our simulations, we set the number of temperatures K = 3, and the

three temperatures are T1 = 1, T2 = 10 and T3 = 20. The tuning parameter

a0 = 0.9.

Now we give the detail of the Metropolis-Hastings within Gibbs algo-

rithm for temperature T1 = 1. The algorithms for other temperatures are

similar and will be omitted. Recall the likelihood function of the model and

the priors are given by

p(Y |β,X ) =
T∏
t=1

∏
i 6=j

eYijt(β−||Xit−Xjt||2)

1 + eβ−||Xit−Xjt||2
,

p(X |σ2, τ 2) ∝
n∏
i=1

(
e−
||Xi1||

2

2σ2 ·
T∏
t=2

e−
||Xit−Xi(t−1)||

2

2τ2

)
, p(β) ∝ e

− (β−ξ)2

2ψ2 .

The full conditional distributions of the latent variables and the inter-

cept are given by
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� For t = 1, i = 1, . . . , n:

p(X i1|·) ∝

(
n∏
i=1

e−
||Xi1||

2

2σ2
− ||Xi2−Xi1||

2

2τ2

)
·

(∏
i 6=j

eYij1(β−||Xi1−Xj1||2)

1 + eβ−||Xi1−Xj1||2

)

� For t = 2, . . . , T :

p(X it) ∝

(
n∏
i=1

e−
||Xit−Xi(t−1)||

2+||Xi(t+1)−Xit||
2

2τ2

)
·

(∏
i 6=j

eYijt(β−||Xit−Xjt||2)

1 + eβ−||Xit−Xjt||2

)

�

p(β|·) ∝ e
− (β−ξ)2

2ψ2 ·

(
T∏
t=1

∏
i 6=j

eYijt(β−||Xit−Xjt||2)

1 + eβ−||Xit−Xjt||2

)

All of these full conditional distributions are drawn via Metropolis-Hastings

with normal random walk proposals. In order to resolve the non-identifiability

issue associated with latent space models, we perform a Procrustes trans-

formation after we draw a new set of {X it}’s.

S6 Details on the Implementation of the Algorithm

in Simulation Studies

In the simulation of Section S4, the initial latent positions were drawn from

a mixture Gaussian distribution with equal probability on two components

centered at (−0.5, 0) and (0.5, 0), respectively, and the variance of both

components was set to be σ2 = 0.5. In the simulation of Section 5, the

initial latent positions were drawn from a mixture Gaussian distribution
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with equal probability on two components centered at (−1.5, 0) and (1.5, 0),

respectively, and the variance of both components was set to be σ2 = 0.5.

The variance of the transition distribution was set to be τ 2 = 0.01 for the

small transition case and τ 2 = 0.16 for the large transition case.

The edge density of the network can be controlled by the intercept β.

In the simulation of Section S4, we set β = 0.5, −0.5, −1.5 for the dense,

moderate and sparse cases, respectively. The corresponding edge density

is around 0.24, 0.10 and 0.06, respectively. The prior distribution for β

was set to be N (0, 2). In the simulation of Section 5, the average degree

of dense, moderate and sparse networks are approximately 7.5, 4, and 1.8,

respectively. The prior for β was set to be N (0, 2).

The VB algorithm requires initial values for the variational parameters.

In the simulation of Section S4, the initial values of {µ̃it} (i = 1, . . . , 50,

t = 1, . . . , 10) were obtained through multi-dimensional scaling (MDS). The

initial value for the covariance matrix Σ̃ was set to be the identity matrix I2.

The initial values for ξ̃ and ψ̃ were 0 and 2, respectively. In the simulation

of Section 5, the variational parameters {µ̃it} (i = 1, . . . , n, t = 1, . . . , T )

were randomly initialized. The initial values of other variational parameters

were set to be the same as the simulation of Section S4.
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S7 Simulation for Networks with 5000 Nodes

We carried out simulation studies for networks with n = 5000 nodes under

two settings. To control the density of the networks, we set the intercept

β = −2.5 for the dense case, and β = −4.5 for the sparse case. All other

settings were the same as the simulation in Section 5. The prior for β

was set to be N (0, 0.01). The variational parameters {µ̃it} (i = 1, . . . , n,

t = 1, . . . , T ) were still randomly initialized. The average AUC values and

their standard errors are given in Table 1. We can see that the variational

method still performed well with these large networks, and the performance

on dense networks is better than sparse ones.

Time 1 2 3 4 5 6 7 8 9 10

Dense,

small τ2

0.8496 0.8488 0.8488 0.8495 0.8497 0.8489 0.8507 0.8536 0.8545 0.8582

(0.0021) (0.0034) (0.0028) (0.0025) (0.0031) (0.0020) (0.0023) (0.0026) (0.0014) (0.0015)

Sparse,

large τ2

0.7561 0.7564 0.7580 0.7608 0.7635 0.7663 0.7676 0.7699 0.7725 0.7762

(0.0015) (0.0025) (0.0024) (0.0020) (0.0018) (0.0014) (0.0013) (0.0011) (0.0024) (0.0014)

Table 1: The average AUC values and standard errors (in parentheses) for VB on simu-

lated networks with n = 5000 nodes.

S8 Additional Simulation: the Effect of α in α-VB

In this simulation, we studied the effect of α in the α-VB algorithm. While

the authors provided some simulation results for the α-VB algorithm in
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Yang et al. (2020), we focus on the effect of the choice of α in the dynamic

latent space model.

In the α-VB framework, the upper bound of the KL-divergence is given

by

Dα ≤−
nT

2
log(det(Σ̃)) +

(
n

2σ2
+
n(T − 1)

τ 2

)
tr(Σ̃)

+
1

2σ2

n∑
i=1

µ̃Ti1µ̃i1 +
1

2τ 2

T∑
t=2

n∑
i=1

(µ̃it − µ̃i(t−1))
T (µ̃it − µ̃i(t−1))

+
1

2α

(
ψ̃2

ψ2
− log

ψ̃2

ψ2
+

(ξ̃ − ξ)2

ψ2

)
−

T∑
t=1

∑
i 6=j

{
Yijt

(
ξ̃ − 2 tr(Σ̃)− ||µ̃it − µ̃jt||2

)
− log

(
1 +

exp{ξ̃ + 1
2
ψ̃2}

det(I + 4Σ̃)1/2
· exp{−(µ̃it − µ̃jt)T (I + 4Σ̃)−1(µ̃it − µ̃jt)}

)}
+ constant.

Note that the update equations for variational parameter µ̃ and Σ̃ stay

the same. The update equations for ξ̃ and ψ̃2 are listed as follows.

� Update of ξ̃:

ξ̃(s+1) ←
(

1 + αψ2f ′′(ξ̃(s))
)−1

[
ξ + αψ2

(
T∑
t=1

∑
i 6=j

Yijt + f ′′(ξ̃(s))ξ̃(s) − f ′(ξ̃(s))

)]
.

� Update of ψ̃2: ψ̃2 (s+1) ←
(

1
ψ2 + 2αf ′(ψ̃2 (s))

)−1

.

In this simulation study, we tried four different α values: 0.2, 0.5, 0.9,

1.0. The proposed VB algorithm corresponds to the α = 1.0 case. For each

case, twenty datasets were simulated, each with n = 100 and T = 10. The

data generating process was the same as the one for dense networks with
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small transition in the simultion in Section 5. The average AUC values for

each choice of α are given in Table 2.

T 1 2 3 4 5 6 7 8 9 10

α = 0.2 0.8961 0.8952 0.8960 0.8968 0.8971 0.8965 0.8970 0.8982 0.8984 0.9016

α = 0.5 0.8961 0.8952 0.8960 0.8968 0.8971 0.8965 0.8970 0.8982 0.8984 0.9016

α = 0.9 0.8961 0.8952 0.8960 0.8968 0.8971 0.8965 0.8970 0.8982 0.8984 0.9017

α = 1.0 0.8961 0.8952 0.8960 0.8968 0.8971 0.8965 0.8970 0.8982 0.8984 0.9016

Table 2: The average AUC values given by the α-VB algorithm with four different choices

of α.

As shown in Table 2, the performance of the α-VB algorithm for the

dynamic latent space model is not very sensitive to the choice of α. This

is due to the fact that the α-VB penalization is only used on the intercept

β here, and the majority of variational parameters related to the latent

positions are not affected.

As mentioned in Yang et al. (2020), in general one may want to choose

an α value that is close to 1 in practice (e.g., α = 0.9). In this case, the

algorithm will enjoy theoretical guarantees without requiring extra assump-

tions, and at the same time the parameter estimation will be close to the

α = 1 case.
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S9 Addition Simulation: Asymptotic Behaviors

In this simulation study, we first verified the consistency of parameter esti-

mation of the proposed VB algorithm as the number of nodes in the network

goes to infinity. Note that both VB and MCMC are schemes for approx-

imating the posterior distribution, but the true posterior distribution is

unknown. Our theoretical results indicate that we can compare the VB

estimate with the true parameter value.

In all simulations, the true value of the intercept β = −2. Other than

this, the data generating process was the same as the one for dense networks

with small transitions in Section 5. The average AUC values and mean

squared errors (MSEs) (E[(β̂ − β)2]) are given in Tables 3 and 4. As the

sample size increases, the estimation accuracy of the model parameter β

improves.

T 1 2 3 4 5 6 7 8 9 10

n = 100 0.6657 0.6297 0.6623 0.6407 0.6282 0.6297 0.6364 0.6724 0.6614 0.6632

n = 200 0.7343 0.7299 0.7389 0.7341 0.7346 0.7381 0.7322 0.7478 0.7482 0.7560

n = 400 0.7612 0.7572 0.7582 0.7553 0.7576 0.7679 0.7651 0.7663 0.7683 0.7743

n = 800 0.7562 0.7583 0.7586 0.7625 0.7648 0.7635 0.7667 0.7682 0.7704 0.7727

Table 3: The average AUC values given by the VB algorithm with increasing number of

nodes.
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n 100 200 400 800

MSE 0.4567 0.0876 0.0228 0.0052

Table 4: The MSEs of the intercept β with increasing number of nodes.

We also ran another simulation study to explore the behavior of the

proposed algorithm when the number of time steps T → ∞. In this simu-

lation, we fixed the number of nodes n = 50, and tried several different T

values. For each case, we calculated the average AUC value for all snap-

shots. Results in Table 5 are based on 20 simulations. The performance of

the proposed algorithm does not change much as the number of time steps

increases.

T 10 20 40 80 160 320

Average AUC 0.8987 0.8979 0.9024 0.9021 0.9078 0.9136

Table 5: The average AUC values given by the VB algorithm with increasing number of

time steps.

S10 Teenage Friendship Network Data

Figure 2 shows the networks formed by the 129 pupils who were present at

all three measurement time points from the “Teenage Friends and Lifestyle

Study” dataset. This network data is analyzed in Section 6.1.
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Figure 2: Friendship networks from “Teenage Friends and Lifestyle Study” at times 1, 2

(top) and 3 (bottom).



Yan Liu AND Yuguo Chen

Bibliography

Ghosal, S. and Van Der Vaart, A. (2007), “Convergence rates of posterior

distributions for noniid observations,” The Annals of Statistics, 35, 192–

223.

Yang, Y., Pati, D., and Bhattacharya, A. (2020), “α-Variational Inference

with Statistical Guarantees,” The Annals of Statistics, 48, 886–905.


	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Additional Simulation: VB vs MCMC
	Details of the Parallel Tempering Algorithm
	Details on the Implementation of the Algorithm in Simulation Studies
	Simulation for Networks with 5000 Nodes
	Additional Simulation: the Effect of  in -VB
	Addition Simulation: Asymptotic Behaviors
	Teenage Friendship Network Data

