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REFERENCE PRIORS FOR THE GENERALIZED

EXTREME VALUE DISTRIBUTION
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Abstract: We derive a collection of reference prior distributions for a Bayesian

analysis under the three-parameter generalized extreme value (GEV) distribution.

These priors are based on an established formal definition of noninformativeness.

They depend on the ordering of the three parameters, and we show that the GEV

is unusual in that some orderings fail to yield proper posteriors for any sample

size. We also consider a reparametrization that explicitly regards a return level

estimation, which is the most common goal of a GEV analysis, to be the most

important inferential task. We investigate the properties of the derived priors using

a simulation, and apply the priors to an analysis of a fire threat index in California.

Key words and phrases: Noninformative priors, objective Bayes, posterior normal-

ity.

1. Introduction

For a Bayesian analysis under the three-parameter generalized extreme value

(GEV) model, a formal notion of the noninformativeness of the prior distribution

can be achieved using a reference analysis. We derive reference priors under

the standard parametrization of the GEV, showing that the resulting posterior

distributions are improper for some, but not all orderings of the parameters. We

further show that re-parametrizing to prioritize an inference on a high quantile

results in the same behavior as the standard parametrization. Using a simulation,

we compare the performance of the reference priors with that of two previously

recommended priors: an alternative rule-based noninformative prior, and a prior

based on domain knowledge, finding none to be uniformly most desirable. The

tradeoffs are evident in our analysis of the extremes of a fire threat index observed

in California. In the absence of specific domain knowledge about the tail of

the process under investigation, particularly when an estimation about a high

quantile is the goal of the analysis, the reference prior described here, which

prioritizes an inference on that high quantile, might be considered a good default
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option. We emphasize that our purpose is not to suggest a prior that is superior

to existing priors in terms of its estimation performance, but rather to derive

a prior that satisfies the notion of noninformativeness in the reference analysis

sense, particularly when a return level estimation is the primary goal.

In a Bayesian inference, one typically proposes a parametric model

M = {p(y|θ) : y ∈ Y,θ ∈ Θ},

in which the conditional probability density p(y|θ) is assumed to be an appropri-

ate characterization of the true underlying mechanism of how the observed data

are generated. Then, an analysis is performed using the available information

to infer the parameters that describe the model. Naturally, the choice of model

involves a certain amount of subjectivity. In practice, it may be desirable to

perform a Bayesian analysis that is objective, in the sense that it depends only on

the assumed model and the available data, and excludes personal beliefs about

the model parameters. To achieve this, it is necessary to adopt structural rules

that formalize what it means for prior distributions to be noninformative.

The flat prior, which assigns an equal probability across the support of the pa-

rameters, as justified by Jakob Bernoulli’s principle of insufficient reason (Stigler

(1986, p.135)), is a straightforward, but näıve solution. This seemingly noninfor-

mative prior suffers from multiple pathologies, often producing marginalization

paradoxes (Dawid, Stone and Zidek (1973)) or implicitly containing large amounts

of information that could dominate the analysis. Its casual use is therefore dis-

couraged.

In view of the limitations of using constant priors, Jeffreys (1961) formulated

a rule for selecting priors,

πJ(θ) ∝ det(I(θ))1/2, (1.1)

where I(θ) is the Fisher information matrix. An attractive property of Jeffreys’s

rule is that it is invariant under a reparametrization of the parameter θ. Jeffreys’s

rule chooses priors by convention, rather than as a unifying representation of

ignorance (Kass and Wasserman (1996)), which is also true of several subsequent

efforts to construct rules for selecting priors. Maximum entropy priors are another

well-studied type of noninformative prior. The entropy of π captures the amount

of uncertainty implied by π, and a prior with larger entropy is considered to be

less informative. This leads to selecting the prior that maximizes the entropy

(Jaynes (1982)). See Kass and Wasserman (1996) for a complete review and

critique of Jeffreys’s rule and maximum entropy.
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Here, we consider the class of reference priors suggested by Bernardo (1979),

which has proven to be very successful in many settings, including exponential

regression (Ye and Berger (1991)), multinomial models (Berger and Bernardo

(1992)), and auto-regressive time series models (Berger and Yang (1994)). For

a collection of regular priors P, the amount of missing information about the

(univariate, for the moment) parameter θ, which could potentially be obtained

by repeatedly sampling from the assumed modelM, is measured for each π ∈ P.

The reference prior is defined as the prior πθ = π(θ |M,P) that maximizes the

missing information within the class of candidate priors P, which ensures that

the information from the available data is not dominated by prior beliefs. When

there are multiple parameters involved inM, the reference prior is then developed

using a stepwise procedure.

In this study, we are interested in finding reference priors for the family of

GEV distributions, the distribution function of which can be parametrized by

θ = (µ, τ, ξ):

P (y |θ) =

exp
{
−
[
1 + ξ

(y−µ
τ

)]−1/ξ
}
, ξ 6= 0,

exp
{
− exp

[
−y−µ

τ

]}
, ξ = 0,

for 1 + ξ(y − µ)/τ > 0 when ξ 6= 0, where the scale parameter τ > 0, location

parameter µ ∈ R, and shape parameter ξ ∈ R. The GEV is an important class

of distributions, because it arises as the limiting distribution of re-normalized

maxima taken over increasingly large samples of random variables. It is there-

fore considered the standard tool for analyzing the far right tail of a univariate

process. However, the support of a GEV distribution is dependent on its pa-

rameter, which makes it challenging to derive the common asymptotic properties

of likelihood-based estimators. Frequentist asymptotic results have only recently

been established for the local maximum likelihood estimator (MLE) found on a

predetermined compact subset of Θ; see Dombry (2015) and Bücher and Segers

(2017). Zhang and Shaby (2022) further showed that the local MLE found on a

compact set is actually the unique and global maximizer of the GEV likelihood

function when n is sufficiently large.

Nevertheless, it is difficult to examine the joint likelihood function over the

entire parameter space Θ when applying Bayesian methods. There have been

relatively few systematic explorations of prior specifications, most of which are

proposed explicitly for sub-families of GEV distributions. Ramos et al. (2020)

established two reference priors specific to the Fréchet distribution. Ho (2010) in-

vestigated a noninformative matching prior, and Eugenia Castellanos and Cabras
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(2007) studied a Jeffreys prior for the parameters of the generalized Pareto dis-

tribution, which is closely related to the GEV. Sun (1997) derived reference and

matching priors for the two-parameter Weibull distribution. For GEV likeli-

hoods, Northrop and Attalides (2016) extensively discussed posterior propriety

when paired with the Jeffreys prior (while holding µ fixed), the maximal data

information (MDI) prior (Zellner (1971)), and independent uniform priors. We

conduct an analogous investigation to that of Northrop and Attalides (2016), but

with reference priors. Beranger, Padoan and Sisson (2021) focused on estimating

the return levels in a Bayesian framework with the prior π(θ) ∝ 1/τ .

To derive the reference priors using a conditioning argument described in

Bernardo (2005), we use the large-sample Bayesian results from Zhang and Shaby

(2021). Given an independent and identically distributed (i.i.d.) sequence of ob-

servations, they formally established the asymptotic posterior normality for the

family of GEV distributions, as seen in the Bernstein–von Mises theorem—the

posterior distribution of the GEV parameter vector, paired with a class of priors

that factorizes as π(θ) ∝ g(ξ)/τ , converges to a normal distribution centered at

the true parameter. The tail heaviness of g(ξ) when ξ → ∞ was controlled to

obtain the posterior propriety and asymptotic normality. This class of priors is

commonly seen in location-scale models, although the asymptotic posterior nor-

mality is ensured by a wider class of priors as long as the conditioning argument

from Bernardo (2005) is valid for any one prior.

More importantly, because the reference prior depends on the ordering of the

parameter vector, we investigate the properties of the resultant posteriors under

different orderings. In particular, the reference technique provides no guarantees

that it will give priors that correspond to proper posteriors, although only a few

cases are known of models that satisfy the assumptions of the standard reference

technique and fail to yield proper posteriors (Berger, De Oliveira and Sansó

(2001); Ramos et al. (2017)). We therefore check the posterior propriety under

different orderings of θ = (µ, τ, ξ), and find, somewhat surprisingly, that some

are not proper.

2. Reference Priors for the GEV Distribution

2.1. Formal definitions of reference priors

We begin by looking at model M with a univariate parameter θ. To mea-

sure the missing information of π ∈ P that could be obtained from one sam-

ple generated from the model M, Bernardo (2005) calculates the Kullback–

Leibler distance of the joint density p(y, θ) = p(y | θ)π(θ) from p(y)π(θ), where



REFERENCE PRIORS FOR THE GEV DISTRIBUTION 2189

p(y) =
∫

Θ p(y | θ)π(θ)dθ. We denote this distance by I{π |M}.
For n conditionally independent observations given θ {y1, . . . , yn}, we denote

the corresponding multivariate model by Mn = {
∏n
i=1 p(yi | θ) : yi ∈ X , θ ∈ Θ}.

As n → ∞, I{π |Mn} becomes an accurate measure of the missing information

about θ with respect to the prior π. The reference prior πθ is defined as the prior

function such that, for some increasing sequence {Θi} with limi→∞Θi = Θ and∫
Θi
πθ(θ)dθ <∞,

lim
n→∞

[I{πθi |Mn} − I{πi |Mn}] ≥ 0, ∀Θi, ∀π ∈ P, (2.1)

where πθi and πi are renormalized versions of πθ and π, respectively, restricted

on Θi.

If Θ is a finite parameter space, (2.1) yields the maximum entropy, and

the reference prior is the uniform distribution. If Θ is a continuous parameter

space, the reference prior can be more complex, and it might be difficult to

express it in explicit form, depending on the regularity conditions imposed on P.

However, if the posterior distribution of the parameter is asymptotically normal

with standard deviation s(θ̃n)/
√
n, where θ̃n is a consistent estimator of θ, then

the reference prior is proportional to s(θ)−1, given that it is a permissible prior.

Extending the reference prior to the case of several parameters in the model

M is achieved by reducing the multiple parameter problem to a sequential ap-

plication of the established procedure for the single parameter case. We first

assume an ordering of inferential priority {θ1, . . . , θm}, with θ1 being the most

important. Conditioning on all the more “important” parameters, we calculate

the reference prior for the nuisance parameter θm, and then move the nuisance

parameter out of the model by integrating the product of this prior and the model

density. This process repeats until only the most important parameter θ1 is left

in the model. In the end, the product of m conditional reference priors yields

the reference prior under the particular ordering. In general different orderings

produce different priors.

The aforementioned procedure seems formidable. Fortunately, under asymp-

totic posterior normality, reference priors can be easily obtained in terms of the

corresponding Fisher information matrix.

Lemma 1. (Bernardo (2005, Thm. 14)) Let P0 be the class of all continuous

priors with support Θ, and let M = {p(y |θ); y ∈ Y,θ ∈ Θ =
∏m
j=1 Θj} be the

assumed model. From any one prior in P0, if the posterior density π(θ | y1, . . . , yn)

is asymptotically normal with covariance V (θ̃n)/n, where θ̃n is a consistent esti-

mator of θ, let Hj be the inverse of the upper j×j submatrix of V , and let hjj(θ)
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be the bottom-right element of Hj. Then, the reference prior corresponding to the

ordering {θ1, . . . , θm} is

π(θ |M,P0) = π(θm | θ1, . . . , θm−1)× · · · × π(θ2 | θ1)π(θ1),

where π(θm | θ1, . . . , θm−1) = h
1/2
mm(θ), and for i = 1, . . . ,m− 1,

π(θj | θ1, . . . , θj−1) ∝ exp

∫
Θj+1

m∏
l=j+1

π(θl | θ1, . . . , θl−1) log{h1/2
jj (θ)}dθj+1

 ,
with θj+1 = {θj+1, . . . , θm}. Moreover, if Θj does not depend on {θ1, . . . , θj−1},
and the functions hjj(θ) can be factorized in the form

h
1/2
jj (θ) ∝ fj(θj)gj(θ1, . . . , θj−1, θj+1, . . . , θm), j = 1, . . . ,m,

then the reference prior is simply πθ(θ) =
∏m
j=1 fj(θj).

Because of the irregularity of the GEV likelihood function, it is not obvious

that it is safe to derive reference priors using Lemma 1, which assumes posterior

asymptotic normality. However, Zhang and Shaby (2021) have formally estab-

lished posterior asymptotic normality with covariance I−1(θ̂n)/n for independent

GEV sequences for Θ = {(τ, µ, ξ) : τ > 0, ξ > −1/2}, in which θ̂n is the local

MLE with strong consistency. We proceed using the reference prior algorithm

described in Lemma 1.

2.2. Fisher information matrix for GEV distribution

The score function of the GEV log-likelihood and the Fisher information

matrix have been derived by Prescott and Walden (1980). The log-likelihood can

be written as

l(θ; y) = − log τ −
(

1

ξ
+ 1

)
log

{
1 + ξ

(
y − µ
τ

)}
−
{

1 + ξ

(
y − µ
τ

)}−1/ξ

.

The Fisher information matrix is defined as the variances of the score functions,

the exact form of which can be found in Appendix S1. To apply Lemma 1, we

need to calculate the determinant of the Fisher information matrix.

Proposition 1. One can verify that

|I(θ)| = 1

τ4ξ4

[
π2

6
{p− Γ2(ξ + 2)} − {q − sΓ(ξ + 2)}2

]
, (2.2)
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where p = (1 + ξ)2Γ(2ξ + 1), ξq = ξ(1 + ξ)Γ′(ξ + 1) + (1 + ξ)2Γ(1 + ξ), s =

1− γ + (1/ξ), and γ is the Euler–Mascheroni constant.

2.3. Calculate the reference priors

Zhang and Shaby (2021) established V −1(θ) = H(θ) = I(θ), as needed in

Lemma 1. We now calculate the reference priors under all orderings of θ =

(τ, µ, ξ).

Proposition 2. Let P0 be the class of all continuous priors with support Θ =

(0,∞) × R × (−1/2,∞). Denote the upper j × j submatrix of I−1(θ) by Vj,

Hj = V −1
j , and hjj(θ) is the lower-right element of Hj.

(A) Under the ordered parametrizations (ξ, τ, µ) and (ξ, µ, τ),

π(ξ, τ, µ | P0) ∝ 1

τ
h

1/2
11 (ξ) =

1

τ |ξ|

[
π2

6
− {q − sΓ(ξ + 2)}2

p− Γ2(ξ + 2)

]1/2

. (2.3)

When ξ → 0, h11(ξ) = 11π4/360 − 6ζ(3)/π2 + o(1) ≈ 2.098 + o(1), where

ζ(3) is Apéry’s constant.

When ξ →∞, h11(ξ) = π2/(6ξ2) + o(1/ξ3).

When ξ → −1/2, h11(ξ) = 2π2/3 +O(2ξ + 1).

(B) Under the ordered parametrizations (µ, τ, ξ) and (τ, µ, ξ),

π(µ, τ, ξ | P0) ∝ 1

τ
h

1/2
33 (ξ) =

1

τ |ξ|

[
π2

6
+ s2 − 2q

ξ
+

p

ξ2

]1/2

. (2.4)

When ξ → 0, h33(ξ) = Γ(2)(1) + Γ(3)(1) + Γ(4)(1)/4 + o(1) ≈ 2.424 + o(1).

When ξ →∞, h33(ξ) = {Γ(2ξ+ 1)− 2Γ(ξ+ 1)ψ(ξ+ 1)}/ξ2 + o(1), where ψ

denotes the digamma function.

When ξ → −1/2, h33(ξ) = 4/(2ξ + 1) +O(1).

(C) Under the the ordered parametrization (µ, ξ, τ),

π(µ, ξ, τ | P0) (2.5)

∝ 1

τ
h

1/2
22 (ξ) =

1

τ |ξ|

[
π2

6
+ (1− γ)2 − {Γ(ξ + 2)/ξ − q + 1− γ}2

1 + p− 2Γ(ξ + 2)

]1/2

.

When ξ → 0, h22(ξ) ≈ 2.363 + o(1).

When ξ →∞, h22(ξ) = {π2/6 + (1− γ)2}/ξ2 + o(1/ξ2).

When ξ → −1/2, h22(ξ) = 2π2/3 + 4(1− γ)2 +O(2ξ + 1).
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(D) Under the ordered parametrization (τ, ξ, µ),

π(τ, ξ, µ | P0) ∝ 1

τ
h

1/2
22 (ξ) =

1

τ |ξ|

[
π2

6
+ s2 − q2

p

]1/2

. (2.6)

When ξ → 0, h22(ξ) ≈ π2(1 − γ)2/6 + 2(γ − 1)ζ(3) + 11π4/360 + o(1) ≈
2.254 + o(1).

When ξ →∞, h22(ξ) = {π2/6 + (1− γ)2}/ξ2 + o(1/ξ2).

When ξ → −1/2, h22(ξ) = 2π2/3 + 4(1 + γ)2 +O(2ξ + 1).

Proof. The proof of Proposition 2 is given in Appendix S1. The asymptotic

behavior of hjj when ξ approaches 0, 1, or −1/2 is used later to establish the

propriety/impropriety of the posterior distributions, formally verifying the con-

jectures formulated therein.

Proposition 2(A) applies when the shape parameter ξ is considered the most

important for an inference. This is probably the most common use case under

the standard parametrization, because the shape parameter plays the critical role

of controlling the thickness of the right tail. Understanding the value of ξ for a

data-generating process being analyzed is therefore an inferential task with clear

and important ramifications.

Proposition 2(B) applies to orderings in which the shape parameter ξ is of

least importance. These include the ordering that corresponds to the conventional

notation θ = (µ, τ, ξ), which makes it tempting to consider this ordering as

somehow canonical. However, this convention is arbitrary with respect to the

inferential importance of the parameters, and it is difficult to come up with a

clear scenario in which either ordering referred to in Proposition 2(B) would be

preferred. Similarly, the orderings to which Propositions 2(C) and 2(D) apply,

those which consider the shape parameter to be of middle importance, may not

be commonly applicable in practice.

In all orderings, we see that the three parameters are independent of each

other in the reference prior. Furthermore, the prior for the location parameter

µ is flat, and the prior for the scale parameter τ is proportional to 1/τ . This is

typically the case for reference priors for location-scale families, and differs from

the Jeffreys prior, which usually has a scale parameter proportional to 1/τ2.

The left panel of Figure 1 shows the prior function for ξ under the orderings

(ξ, τ, µ) and (ξ, µ, τ). We can see that it decreases at the rate 1/ξ, which means

the prior is improper, and that it converges to its limiting form in its right tail

fairly quickly. The right panel of Figure 1 shows the prior function for ξ under the

orderings (µ, τ, ξ) and (τ, µ, ξ). Its behavior is qualitatively different, increasing
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Figure 1. Left. h
1/2
11 (ξ) from −1/2 to 10 under parametrization (ξ, τ, µ) or (ξ, µ, τ).

When ξ → 0, h
1/2
11 (ξ) →

√
2.098. When ξ → −1/2, h

1/2
11 (ξ) →

√
2π2/3. For ξ ∈ (4, 10),

h
1/2
11 (ξ) and π/(

√
6ξ) (dashed curve) are already getting very close, which verifies (A).

Right. h
1/2
33 (ξ) from −1/2 to 3 under parametrization (µ, τ, ξ) or (τ, µ, ξ). When ξ → 0,

h
1/2
33 (ξ) ≈

√
2.424. For ξ → −1/2, we compare h

1/2
33 (ξ) with 2/

√
2ξ + 1 (dashed curve).

very quickly in ξ, suggesting that it may not yield a proper posterior. Here again,

we see good correspondence between the limiting form and the exact function,

this time in the left limit as ξ → −1/2.

When the importance of ξ is in the middle, the reference priors (2.5) and

(2.6) behave similarly to (2.3) under the ordering (ξ, µ, τ), and have finite limits

when ξ → −1/2. Though appearing to be different on the left, they possess the

same tail
√
π2/6 + (1− γ)2/ξ; see Figure 2. To differentiate between the h22(ξ)

appearing in (2.5) and (2.6), we henceforth designate h22,1(ξ) for the ordered

parametrization (µ, ξ, τ), and h22,2(ξ) for (τ, ξ, µ).

2.4. Parametrization under a return level

Most often, the quantity of interest in a GEV analysis is a high quantile,

usually referred to in this context as a return level. The GEV is the limiting

distribution of re-normalized maxima. However in practice, observations must

always be divided into blocks of finite size, after which the collection of max-

imum values of each block is analyzed. Then, the GEV is fitted to the block

maxima under the approximation that the limiting distribution is a good repre-

sentation of the maxima over finite blocks. The return level, which we denote

here as µT , is the value that is exceeded, on average, in one block out of every T

blocks. For example, a natural blocking scheme for environmental data is often

to take yearly maxima, so that µT is the T -year return level, which is exceeded,
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Figure 2. Left. h
1/2
22 (ξ) from −1/2 to 10 under parametrization (µ, ξ, τ). When ξ → 0,

h
1/2
22 (ξ) ≈

√
2.363. When ξ → −1/2, h

1/2
22 (ξ) →

√
2π2/3 + 4(1− γ)2. Right. h

1/2
22 (ξ)

from −1/2 to 10 under parametrization (τ, ξ, µ). When ξ → 0, h
1/2
22 (ξ) ≈

√
2.254. When

ξ → −1/2, h
1/2
22 (ξ) →

√
2π2/3 + 4(1− γ)2. For ξ → ∞, we compare h

1/2
22 (ξ) with√

π2/6 + (1− γ)2/ξ under both parametrizations (dashed curves).

on average, once every T years. The return level (for better or worse) is the stan-

dard language by which the magnitudes of events of a specified “rareness” are

communicated. Consequently, the return level is also often the basis for practices

such as government regulations and engineering standards.

Because estimating a return level is overwhelmingly the most common goal

of a GEV analysis, here, we derive reference priors corresponding to the case that

explicitly prioritizes an inference on the return level. To do this, we simply change

from the θ = (µ, τ, ξ) parametrization to the φ = (µT , τ, ξ) parametrization,

which simply requires the transformation

µ = µ(φ) = µT −
τ

ξ

{
log−ξ

(
T

T − 1

)
− 1

}
.

We use the fact that reference priors are coherent under monotone transforma-

tions of each parameter in the sense that πφ(φ) = πθ[θ(φ)]|J(φ)|, where J(φ) is

the Jacobian of the inverse transformation θ = θ(φ) (Bernardo (2005)). Under

the transformation from (µT , τ, ξ) to (µ, τ, ξ), |J(φ)| = 1, and thus the reference

priors under various ordered parametrizations are

π(ξ, τ, µT | P0) =
1

τ
h

1/2
11 (ξ), π(µT , τ, ξ | P0) =

1

τ
h

1/2
33 (ξ),

π(µT , ξ, τ | P0) =
1

τ
h

1/2
22,1(ξ), π(τ, ξ, µT | P0) =

1

τ
h

1/2
22,2(ξ),

(2.7)
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which indicates that φ = (µT , τ, ξ) behaves, for the purpose of a reference anal-

ysis, identically to the standard location parametrization. Hence, the reference

priors under the common scenario in which the return level has the most impor-

tant inferential priority are those described by (2.4) and (2.5).

2.5. The propriety of the posterior

Reference priors generated using the procedure in Lemma 1 are not guaran-

teed to be permissible, in the sense that they result in proper posteriors. There-

fore, we now examine whether the reference priors π(θ) = π(θ | P0), associated

with all ordered parametrizations of θ, are permissible.

Theorem 1. Let the data consist of i.i.d. observations of size n, yn = {y1, . . . , yn},
from GEV(θ0), where θ0 = (ξ0, τ0, µ0). For reference prior function (2.3) and

sample size n ≥ 4, the normalizing constant for the posterior Cn =
∫
Θn

p(yn |θ)

π(θ)dθ < ∞, in which p(yn |θ) =
∏n
i=1 p(yi |θ), Θn = {θ : 1 + ξ ((yi − µ)/τ) >

0, i = 1, . . . , n}.
Moreover, for any n ≥ 4,

Cn ≤
6(n− 1)−n+2

(n− 2)
∏n
j=2 δj

+
3Γ(n)Γ(n− 1)e

(n− 1)(n− 3)δn−1
n

, (2.8)

where δj = δj(n) = y(j) − y(1) and y(1) < · · · < y(n) are the order statistics.

Corollary 1. Because the reference priors under the ordered parametrizations

(µ, ξ, τ) and (τ, ξ, µ) have the same tail properties as (2.3), the posterior obtained

from (2.5) or (2.6) is ensured to be proper when the sample size n ≥ 4.

Furthermore, for both (2.5) and (2.6),

Cn ≤
6(n− 1)−n+2

(n− 2)
∏n
j=2 δj

+
5Γ(n)Γ(n− 1)e

(n− 1)(n− 3)δn−1
n

,

for any n ≥ 4, δj = δj(n) = y(j) − y(1).

Theorem 2. Under the same assumptions as Theorem 1, for reference prior

(2.4) under the order that ξ is least preferred, there is no sample size n > 0 for

which the corresponding posterior is proper.

The proof of these results can be found Appendix S2. They tell us that as long

as the data consist of more than four block maxima, the reference priors based

on the orderings in which the shape parameter is either the most important or

the second most important for inference will yield proper posteriors. In contrast,

the reference priors based on the orderings in which the shape parameter is the
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least important for inference will always fail to yield a proper posterior. Hence,

this prior should never be used, and will not be considered further. By (2.7),

similar posterior propriety statements for different orderings can be made under

the parameterization with the return level µT .

3. Simulations

To assess the performance of the reference priors derived above, we con-

duct a small simulation study that mimics applied settings that are frequently

encountered in analyses of environmental extremes. We compare the reference

priors with the MDI prior, a competing rule-based prior recently suggested for

the GEV, and with a beta prior recommended in the applied literature. We do

not consider the Jeffreys rule prior (1.1), because it fails to yield a proper pos-

terior; see Appendix S2. We perform comparisons across a range of performance

metrics.

To simulate the data, we fix µ = 0 and τ = 1, and consider ξ = 0.15 (typical

of annual rainfall maxima) and ξ = −0.2 (typical of annual temperature maxima).

We also simulate data from a GEV with ξ = 1, which is very heavy-tailed, and

not typically seen in environmental data, but might be of interest for applied

work in other domains. For each parameter setting, we simulate 1,000 data sets,

each of which has a sample size n = 50. For each data set, we obtain draws from

posterior densities based on reference priors under the ordered parametrizations

(ξ, µ, τ), (µ, ξ, τ), and (τ, ξ, µ), a Beta(6, 9) prior that appears in Martins and

Stedinger (2000) as a recommendation for hydrological data (except in the case

ξ = 1, because ξ = 1 is not in the support of the beta prior), and the MDI prior,

which uses the negative entropy of p(y |θ) (Zellner (1971)):

πMDI(θ) ∝ exp

{∫
Y
p(y |θ) log p(y |θ)dy

}
=

1

τ
e−γ(1+ξ)−1,

which has a much lighter tail of ξ compared with those of the three reference

priors under consideration.

To directly sample from the posterior densities of the GEV parameters, one

can use the revdbayes package (Northrop (2020)) in R, which permits user-

specified priors. Alternatively, one can easily obtain the posterior samples using

the random walk Metropolis (RWM) algorithm, as we do here. In the subsequent

analyses, we run the MCMC chain for each replicate, and each chain has 10,000

iterations. We discard a burn-in period of 5,000 iterations, and then thin the

results by a factor of 10. Using posterior means as estimators, the averaged bias,
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Table 1. Bias and RMSE of the posterior means under five different priors.

Posterior
estimators

Bias RMSE

Beta(6, 9) h
1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI Beta(6, 9) h

1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI

ξ = −0.2

ξ 0.0398 -0.0015 -0.0025 -0.0083 -0.0032 0.0686 0.0990 0.1001 0.0999 0.0983

µ50 0.1937 0.1378 0.1322 0.1173 0.1512 0.3856 0.4432 0.4472 0.4301 0.4496

µ100 0.2728 0.1952 0.1885 0.1655 0.2148 0.4833 0.5878 0.5931 0.5674 0.5981

ξ = 0.15

ξ -0.1051 0.0055 0.0045 0.0036 0.0075 0.1256 0.1223 0.1221 0.1256 0.1228

µ50 -0.6402 0.7561 0.7399 0.7454 0.7725 1.0613 1.8915 1.8983 1.9513 1.9448

µ100 -0.9955 1.3050 1.2780 1.2903 1.3310 1.4862 3.0631 3.0769 3.1990 3.1828

ξ = 1

ξ - 0.0204 0.0196 0.0236 0.0149 - 0.1912 0.1924 0.1925 0.1893

µ50 - 45.854 45.689 46.920 42.545 - 95.564 96.198 99.675 90.013

µ100 - 156.33 155.43 160.07 144.55 - 336.71 339.35 367.08 318.24

root mean squared error (RMSE) of the shape parameter ξ, and 50-year and

100-year return levels are calculated and shown in Table 1.

The reference prior under the ordering (ξ, µ, τ) and the MDI prior perform

similarly. The two reference priors with ξ being the second highest priority have

outcomes that are indistinguishable from each other, and are slightly worse than

the MDI and the reference prior that prioritizes ξ. For ξ = −0.2 and ξ = 0.15, the

beta prior yields a smaller RMSE for the point estimates of almost all parameters

and return levels. In general, the beta prior trades a bit of bias for greatly reduced

variance, as is typical for a generally well-designed informative prior.

We also investigate the calibration characteristics of the posteriors generated

from the various priors. A Bayesian calibration, in its simplest form, states

that credible intervals are accurate reflections of uncertainty when they cover

the true parameter at their nominal rates (e.g., Box (1980)); essentially, they

should behave like confidence intervals. Table 2 shows the empirical coverage

rates of the 95% and 99% credible intervals obtained under each prior and data-

generating scenario. The results show that the rule-based priors produce almost

perfectly calibrated intervals, whereas the beta prior produces intervals that are

well calibrated in the ξ = −0.2 case, but are too small in the ξ = 0.15 case, giving

an unrealistically confident posterior distribution.

We also apply two proper scoring rules (Gneiting and Raftery (2007)), namely,

interval scores and quantile scores, to assess the quality of the posterior distri-

butions under five different priors, which we obtained for each replicate using an

MCMC. For both scores, higher scores indicate better performance. The interval

score considers both the coverage and the width of the (1− α)× 100% posterior

credible interval for a given parameter θ:
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Table 2. Empirical coverage rates of (1− α)× 100% credible intervals.

Coverage
rates (%)

α = 0.05 α = 0.01

Beta(6, 9) h
1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI Beta(6, 9) h

1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI

ξ = −0.2

ξ 97.1 95.2 95.6 95.9 95.9 99.5 99.0 99.0 98.8 99.1

µ50 95.9 94.3 94.4 94.5 94.9 99.4 99.0 99.0 99.0 99.0

µ100 95.3 93.9 93.7 94.2 94.1 99.3 98.9 98.8 98.9 99.0

ξ = 0.15

ξ 81.3 94.9 94.6 94.6 94.6 95.1 98.6 98.6 98.5 98.8

µ50 86.9 94.7 94.4 94.1 94.5 96.5 99.0 99.2 98.8 98.9

µ100 85.5 94.2 94.5 94.3 94.6 95.9 98.9 98.9 98.9 99.0

ξ = 1

ξ - 95.6 95.7 95.5 95.6 - 98.8 98.6 98.8 98.8

µ50 - 95.6 95.3 95.3 95.4 - 99.1 99.0 99.1 99.1

µ100 - 95.3 95.2 95.3 95.4 - 99.1 99.2 99.0 99.1

Sint(l, u; θ0) = −(u− l)− 2

α
(l − θ0)I{θ0 < l} − 2

α
(θ0 − u)I{θ0 > u},

where [l, u] are the lower and upper bounds that are the posterior quantiles at

levels α/2 and 1− α/2, and θ0 is the true value of θ that generates the samples.

The quantile score adopts a scoring rule that is similar to the check function

proposed by Koenker and Bassett (1978):

S(r;x) = (x− r)(I{x ≤ r} − p),

where x is the true pth quantile, and r is the pth posterior quantile. It is specifi-

cally designed to evaluate quantile estimates, so it is more appropriate than the

RMSE for assessing the quality of return level analyses. In our analyses, we calcu-

late the quantile scores for 50-year and 100-year return levels, which correspond

to the 0.02th and 0.01th quantiles. Figure 3 summarizes both scores for 1,000

replicates using box plots.

The reference priors and the MDI prior yield comparable scores across all

scenarios. Owing to the larger widths of the credible intervals produced by the

noninformative priors, the beta prior displays an obvious lead in interval scores,

but there are many outlier scores beneath the whiskers that spread the interquar-

tile ranges for the other priors. In addition, this performance advantage of the

beta prior becomes less pronounced for the quantile scores. For ξ = −0.2, the

beta prior may be slightly worse than the noninformative priors at estimating the

return levels. This particular beta prior is specifically designed with hydrologi-

cal data in mind, so it is not surprising that it performs better when the shape

parameter is slightly positive, rather than slightly negative.
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(a) Case ξ = −0.2

(b) Case ξ = 0.15

(c) Case ξ = 1

Figure 3. Comparisons of the interval scores (α = 0.05) for the posterior credible inter-
vals for ξ and the quantile scores (50-year and 100-year return levels) among different
posterior distributions under five priors. Each score is calculated 1,000 times, once for
each replicate consisting of n = 50 samples. Higher values indicate better predictive
quality in all panels.
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Figure 3 also shows that the scores systematically decrease as the true ξ

increases. To better understand how different values of ξ and the sample size n

affect the outcomes from each prior, we perform additional simulations, varying ξ

from -0.4 to 0.4 (with n = 50), and varying the sample size from 15 to 155 (with

ξ = 0.2). For each parameter setting, we generate 1,000 replicates and run the

MCMC chain for 10,000 iterations in the same way as before. The bias, RMSE,

and averaged interval scores of the 50-year and 100-year return level estimators

are compared in Figures 4 and 5. The MDI prior and the reference priors performs

almost identically.

Because a larger ξ is associated with more extreme quantiles, and thus a

more unstable estimation, the bias and RMSE in Figure 4 increase with ξ for all

priors. Interestingly, the noninformative priors tend to overestimate the return

levels, whereas the beta prior tends to underestimate the return levels. When

−0.3 < ξ < 0.3, the beta prior produces a smaller RMSE and higher interval

scores, demonstrating the advantage of prior knowledge. However, when |ξ| > 0.3,

the noninformative priors overtake the beta prior in terms of the interval scores,

indicating better coverage of the credible intervals. When the shape parameter

is very small (ξ < −0.3), the beta prior yields a higher RMSE than those of the

noninformative priors.

By definition, the reference prior technique assumes weak initial knowledge

and maximizes the missing information that the data provides; however, perfect

knowledge is only attained asymptotically when n→∞. Figure 5 demonstrates

that as n becomes larger, all metrics improve and then stabilize, and the informa-

tion from the data outweighs the prior knowledge. For this combination of beta

prior and data-generating model, it requires a fairly large sample size (n ≥ 120)

for the reference and MDI priors to achieve similar performance with respect to

the RMSE and interval scores. With large sample sizes, the bias is considerably

greater for the beta prior.

4. Data Analysis

Dry and warm weather conditions continue to pose a high risk of devastating

wildfires in California, with dried up and dead vegetation from the 2011–2017

drought further increasing the risk by acting as kindling. To study the tail be-

havior the fire risk, we consider the yearly maximum of the Fosberg Fire Weather

Index (FFWI) for the period 1973 to 2018 at four monitoring stations (Dunn et al.

(2012)). These stations were the closest to four deadly wildfires that occurred

in 2018–2019; see Figure 6 for the locations of the wildfires and the monitor-
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Figure 4. Bias, RMSE, and averaged interval scores of the 50-year return level (top row)
and 100-year return level (bottom row) estimators under different true ξ values, where
the sample size n = 50 and the number of simulations N = 1000.

Figure 5. Bias, RMSE, and averaged interval scores of the 50-year return level under
different sample sizes, in which the true ξ = 0.2 and the number of simulations N = 1000.
The same plots for the 100-year return level behave similarly, and thus are omitted.

ing stations. The FFWI quantifies a potential wildfire threat by calculating a

single number summary from temperature, wind speed, and relative humidity;

here, larger index value reflects a greater risk of rapid drying and high flame

lengths (Fosberg (1978)). The FFWI does not account for human activities and

fuel sources, such as changes in land management practices and the incursion of
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Figure 6. The locations of four notable wildfires in California that happened in 2018–
2019. The black dots are the closest available monitoring fire stations to each wildfire.

invasive species that may provide additional fuel. Studying the tail behavior of

the FFWI will provide useful measures on the potential effects of weather on the

threat of fire.

First, we analyze the 46 annual maxima of the FFWI at each fire station, and

run one MCMC chain for 10,000 iterations using each prior listed in Section 3.

To obtain starting values for the MCMC, we conduct a rough grid search to

find the parameters that approximately maximize the un-normalized posterior

p(x | θ)π(θ), when π(θ) is the prior of choice. For each MCMC chain, we discard a

burn-in period of 5,000 iterations and thin the chain by 10 steps. Figure 7 reports

the posterior means and 95% posterior credible intervals for all three parameters.

We can see that the credible intervals obtained using different priors are similar

for µ and τ across all stations, and the posterior means are almost identical.

As expected, the beta prior generates slightly narrower credible intervals for the

shape parameter ξ, the value of which is confined between −0.25 and 0.15 for

Mendocino, Getty, and Camp. However, there is an evident disparity among

the estimates of ξ for Kincade, which suggests values higher than 0.7 from the

MDI and the reference priors. This estimate could be suspicious, because the fire

station near Mendocino is less than 140 km away, and has much lower ξ values

than those of the station near Kincade, although their weather patterns may still

differ in potentially important respects, despite their close proximity.

In the above analysis, we have assumed there is no trend in the distribution

of the annual maximum FFWI values. To examine whether this assumption
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Figure 7. Posterior means and 95% credible intervals from the posterior distributions for
µ, τ , and ξ, where each row shows the results from one monitoring station. For better
comparison, the scale limits for the y-axis are set to be the same for each parameter
across the rows.
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is plausible, we look for time trends in the 50-year return levels. We collect

the annual maxima in backward 20-year sliding windows from 1992–2018, and

perform similar Bayesian analyses to those described previously, for each 20-

year window, and for each station. Because the noninformative priors perform

similarly, we use only the beta prior and the reference prior under the ordering

(µ, ξ, τ), which corresponds to the reference prior that prioritizes an inference on

the return level. Figure 8 shows the posterior mean and 95% credible intervals

of the 50-year return levels, calculated using the parameters of each MCMC

iteration. For Kincade and Mendocino, the return levels are much higher for the

20-year windows that stop in 1991–1998 when using the reference prior, but the

estimates from the two methods coincide well after around 2000. We observe a

possible slight increase in the return levels for Getty and Camp. Aside from that,

there is no obvious trend in the return levels, suggesting that our assumption of

constant GEV parameters is adequate. It may also suggest that the recent surge

in the scale and frequency of wildfires in California has more to do with fuel

availability, human activity, and land use than it does with changes in weather

factors.

5. Discussion

We have used the procedure in Bernardo (2005) to derive reference priors for

the family of GEV distributions. We found that when the primary inferential task

is to estimate a return level, the most common use case of the GEV, the reference

priors are identical to those under the standard parametrization. Furthermore,

for different orderings of the parameters, we completed the specification of these

priors by filling the limits at discontinuity points and deriving tail approximations.

To answer the question of posterior propriety, we have provided upper bounds

for the posterior normalizing constants under the orderings that give permissible

reference priors, finding that the posterior is improper under reference priors that

treat ξ as the least important of the three parameters. This is a surprising result,

because examples of reference priors that are not permissible are very rare in the

literature.

We performed a series of simulations to compare the performance of the

reference priors with that of other priors suggested in the literature, under varying

values of the shape parameter ξ and the sample size n. For ξ within a reasonable

range, the beta prior seems to perform best; when |ξ| < 0.3, it has the best RMSE

and interval scores for the estimation of ξ and the return levels, even though its

bias is consistently worse than that of the noninformative priors we tested, owing
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Figure 8. Posterior means and 95% credible intervals for the 50-year return levels cal-
culated from the posterior distributions of every MCMC iteration. For each station, the
MCMC analyses were performed using annual maxima in a 20-year sliding window.

to its reduced variance. Nonetheless, the superiority of the informative beta prior

is less obvious as n grows. When n ≥ 120, it may be better to use the MDI prior

or one of the reference priors, because the bias is lower, and the RMSE and

interval scores are comparable to those of the beta prior. When |ξ| > 0.3, using

this particular beta prior is not advised, especially when the goal is to accurately

estimate a return level.

When outside information about the shape parameter ξ is available, we con-

clude, unsurprisingly, that using a well-designed informative prior can improve

results by stabilizing the estimation of the shape parameter ξ, especially when

the number of observations is small. This is feasible for well-studied variables,

such as precipitation and temperature, but it is somewhat dangerous for less

common variables, such as the FFWI, because it is much less clear how to design

reasonable informative priors, and the estimation performance might suffer as a
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result of poor choices.

In contrast, an advantage of using rule-based noninformative priors is that

they have stable and reliable performance, without requiring prior knowledge

of the data-generating process. The rule-based priors we investigated here per-

formed indistinguishably. Without clear empirical guidance based on perfor-

mance characteristics, we suggest choosing from among the noninformative pri-

ors based on the underlying principles from which they are derived. If the MDI

principle is appealing, then that is a fine choice. If the missing information idea is

more attractive, then one of the reference priors might be preferable. If the goal

of the analysis is to estimate a return level, then the reference prior corresponding

to the parameter ordering (µT , ξ, σ) seems the natural one to choose.

Supplementary Material

The online Supplementary Material provides details on the construction of

the reference priors for the family of GEV distributions. It also contains the proof

for the posterior propriety of the reference priors, and some diagnostics for the

MCMC algorithm used in the data analysis.
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