
Statistica Sinica 19 (2009), 1203-1221

SEMIPARAMETRIC INFERENTIAL PROCEDURES

FOR COMPARING MULTIVARIATE ROC CURVES

WITH INTERACTION TERMS

Liansheng Tang1 and Xiao-Hua Zhou2,3

1George Mason University, 2VA Puget Sound Health Care System
and 3University of Washington

Abstract: Multivariate ROC curve models that include an interaction term between

biomarker type and false positive rate are important in comparative biomarker stud-

ies, because such interaction allows ROC curves of different biomarkers to cross each

other. However, there has been limited work in drawing inference for comparing

multivariate ROC curves, especially when interaction terms are present. In this ar-

ticle we derive the asymptotic covariance of three estimators for multivariate ROC

models. These covariance estimates have not been readily available in the liter-

ature, and bootstrap methods have been used to obtain them. With the readily

available variance estimates, we can easily perform hypothesis testing among ROC

curves, while bootstrap tests are not so easily performed. The asymptotic results

are applied to compare ROC curves and their areas under ROC curves. Moreover,

we derive simultaneous confidence bands for multivariate ROC curves. We evaluate

and compare the finite sample performance of our asymptotic covariance estima-

tors. We also discuss the advantage of using our asymptotic results over bootstrap

procedures. Finally, we illustrate our approach through a well-known pancreatic

cancer study.
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1. Introduction

Research in early cancer detection involves developing diagnostic tools, such
as a biomarker, to distinguish diseased patients from non-diseased patients.
Biomarkers often yield continuous measurements. A popular tool to evaluate
and compare the accuracy of biomarkers is a receiver operating characteristic
(ROC) curve (Zhou, McClish and Obuchowski (2002)), which is a plot of true
positive rates vs false positive rates across all thresholds. Estimating a single
binormal ROC curve of a continuous-scale biomarker has been well studied in
the literature (Metz, Herman and Shen (1998) and Cai and Moskowitz (2004)).
However, inferential procedures for comparing multivariate ROC curve models
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Figure 1. Empirical ROC curves for CA 19−9 and CA 125: solid line, CA
19−9; dashed line, CA 125.

with interaction terms between biomarker type and false positive rates (FPRs)
have not been well studied, mainly because it is sometimes difficult to draw in-
ferences the presence of these interaction terms. However, such interactions are
important because they allow ROC curves to cross each other. For example,
Wieand, Gail, James and James (1989) studied pancreatic cancer biomarkers,
CA 19−9 and CA 125, which were measured on 51 pancreatitis patients and
90 pancreatic cancer patients. The empirical ROC curves were generated from
this data set and their plots are shown in Figure 1. It is clear that two ROC
curves cross each other when FPR gets close to 1. This shows the existence of
interaction terms between biomarker type and FPRs.

Metz, Wang and Kronman (1984) proposed a maximum likelihood estima-
tor (MLE) for estimating bivariate binormal models from ordinal data, but their
method requires estimating correlation parameters, besides the location and scale
parameters in marginal normal distributions. It would be difficult to extend
their MLE method to more than two ROC curves when many more correla-
tion parameters are to be estimated. As the number of biomarkers gets large,
the MLE method becomes inapplicable. For multiple independent ROC curves,
Zhang (2004) and Zhang and Pepe (2005) proposed an intuitive least squares
(LS) method, and Pepe (2000) presented an elegant generalized linear model
(GLM) approach. Since it is complicated to derive asymptotic results, the au-
thors did not consider large sample inference for the LS and GLM estimators with
clustered d ata. Cai and Pepe (2002) considered an interesting semiparametric
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generalized estimating equation (GEE) method to allow an unknown baseline
function when estimating ROC curves from correlated biomarker data. They
derived asymptotic results for their estimators, but they did not consider how to
compare multiple ROC curves from clustered data with the presence of interac-
tions between biomarker type and FPRs.

In this article we consider the LS method for clustered ROC curve data with
the presence of interactions between biomarker type and FPRs. We derive ex-
plicit covariance structures between empirical ROC curves and use our results to
derive the asymptotic covariances of the LS estimator. We also adapt the GLM
and GEE methods to this type of biomarker data and derive their asymptotic
sandwich covariance estimators. These covariances have not been readily avail-
able in the literature, and bootstrap methods have been used to obtain them.
With readily available variance estimates we can easily perform hypothesis test-
ing among ROC curves, while bootstrap tests are not so easily performed. For
example, if we want to test whether two ROC curves vary by a certain amount
δ at a specified FPR u0, i.e., H0 : ROC1(u0) − ROC2(u0) = δ, it is not clear
how to bootstrap from the null distribution, while it is straightforward to per-
form such hypothesis tests using our asymptotic results and the delta method
that is introduced in Section 4. We derive inferential procedures for comparing
multivariate ROC curves that include interaction terms, which have multivariate
binormal ROC curves as a special case. In particular, we develop methods for
comparing ROC curves and the areas under these ROC curves. We derive asymp-
totic simultaneous confidence bands for ROC curves. Such asymptotic results of
simultaneous confidence bands of ROC curves are rarely studied. Instead, com-
puter intensive methods are often employed to construct confidence bands (Cai
and Pepe (2002)). Our confidence bands provide an easy-to-use tool to illustrate
the sampling variability of the ROC curve estimates. In addition, we develop a
method for comparing multiple ROC curves at some specified FPR.

This article is organized as follows. In Section 2 we consider LS, GEE and
GLM methods for multivariate ROC curves. In Section 3 we derive the asymp-
totic results for the LS method when estimating multivariate ROC models; the
asymptotic results are also derived for GLM and GEE methods. In Section 4 we
apply the results to compare ROC curves and the areas under them. In addi-
tion, asymptotic simultaneous confidence bands are derived for multivariate ROC
curves. We carry out large scale simulation studies to evaluate and compare the
finite sample performance of our covariance estimators from the LS, GLM and
GEE methods. We also carry out simulation studies to evaluate the advantages of
using asymptotic results over using bootstrap procedures. The simulation results
are summarized in Section 5. A comparative pancreatic cancer diagnostic trial
serves as an illustrative example in Section 6, and some discussion is presented
in Section 7.
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2. Three Estimators of Multivariate ROC Curves

In this section, we adapt the LS and GLM methods to clustered ROC data
and give a simplified version of the GEE method for estimating multivariate ROC
curves. Let X` = (X`,1, . . . , X`,m) denote measurements of the `th biomarker on
m diseased subjects, and Y˜̀ = (Y˜̀,1, . . . , Y˜̀,n) denote measurements of the ˜̀th
biomarker on n healthy subjects, where `, ˜̀ = 1, . . . ,K. For the `th and ˜̀th
different biomarkers measured on the ith diseased subject, i = 1, . . . ,m, the
measurements X`,i and X˜̀,i follow a bivariate survival function F̄`,˜̀ with the
marginal distributions F̄` and F̄˜̀, respectively, and the measurements of the
jth healthy subject, Y`,j and Y˜̀,j with j = 1, . . . , n, follow a bivariate survival
function Ḡ`,˜̀ with the marginal distributions Ḡ` and Ḡ˜̀, respectively. The ROC
curve of the `th biomarker is then given by Q`(u) = F̄`(Ḡ−1

` (u)), and its empirical

form is Q̃`(u) = ̂̄F `( ̂̄G−1

` (u)), where ̂̄F ` and ̂̄G` are empirical functions of F̄` and
Ḡ`, respectively.

Let Zk be a dummy variable for the kth biomarker, k = 2, . . . ,K. The
multivariate ROC curves are given by

Q1(u) = g{θ10 + θ11h(u)},

and Qk(u) = g

[
θ10 + θ11h(u) +

K∑
k=2

{θk0Zk + θk1Zkh(u)}
]
, (2.1)

for 0 < a ≤ u ≤ b < 1, where g is some specified link function and h is some
specified baseline function. In the regression ROC modeling, θ10 + θ11h(u) is the
baseline function, usually denoted as h0(u). In this article we take this baseline
function to be a known function, up to two unknown parameters θ10 and θ10,
as in Pepe (2000), Zhang (2004) and Zhang and Pepe (2005). The important
components of the model (2.1) are the θk1Zkh(u), which are the interaction
terms between FPRs and dummy variables indicating biomarker types. Such
interaction terms play an important role in estimating ROC curves, especially
when estimating the multivariate binormal ROC curves. With these terms, the
(2.1) includes the multivariate binormal ROC model as the special case that is
commonly seen in the literature (Metz, Wang and Kronman (1984)). Specifically,
let g be Φ, let h be Φ−1, and let Zk be an indicator variable for the kth biomarker,
so (2.1) can be written as

Q1(u) = Φ{θ10 + θ11Φ−1(u)}
and Qk(u) = Φ{θ10 + θ11Φ−1(u) + θk0 + θk1Φ−1(u)}, (2.2)

for k = 2, . . . ,K. When there is only one biomarker, (2.2) reduces to the com-
monly used binormal model (Zhou, McClish and Obuchowski (2002)).
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Let u` = (u`,1, . . . , u`,P`
)T be some fixed partition points in [a, b] on the `th

empirical ROC curve. Here P` is arbitrarily chosen for the `th ROC curve where
0 < a = u`,1 < · · · < u`,P`

= b < 1. For example, if we choose 50 jump points for
the 1st ROC curve, we can choose u1 = (1/51, . . . , 50/51). Also, for simplicity,
we write L(u`) = (L(u`,1), . . . , L(u`,P`

))T , where ` = 1, . . . ,K, for any process or
function L.

Zhang (2004) and Zhang and Pepe (2005) proposed a least squares (LS) ap-
proach to estimate multiple ROC curves. They let Zk be the indicator variables
for the kth biomarker. In the LS estimating procedure, the ROC curve corre-
sponding to a reference biomarker is chosen as the reference ROC curve. For
the `th empirical ROC curve, the partition points, u` = (u`,1, · · · , u`,P`

)T , are
chosen within interval boundaries [a, b]. When we are interested in the entire
ROC curve, a and b can be chosen to be close to 0 and 1, respectively. If a
partial ROC curve is of interest, a and b can be chosen accordingly. By plug-

ging in the empirical functions ̂̄F ` and ̂̄G−1

` , the `th empirical ROC curve is

Q̃`(u`) = ̂̄F `( ̂̄G−1

` (u`)). Let Ỹ` = g−1(Q̃`(u`)). We combine Ỹ1, . . . , ỸK to get the
linear regression equation

Ỹ = Mθ + ε, (2.3)

where Ỹ = (Ỹ T
1 , . . . , Ỹ T

K )T is a (
∑

` P`)×1 vector with elements Ỹ` = g−1(Q̃`(u`)).
The (

∑
` P`)×(2K) design matrix M is

M =



M1 0 0 · · · 0

M2 M∗
2 0 · · · 0

M3 0 M∗
3 · · · 0

...
...

...
. . .

...

MK 0 0 · · · M∗
K


,

with its P` × 2 submatrices

M` =

(
1 · · · 1

h(u`,1) · · · h(u`,P`
)

)T

, and M∗
k =

(
Zk · · · Zk

Zkh(u`,1) · · · Zkh(u`,P`
)

)T

.

Also, the error term ε has a multivariate normal distribution given by ε ∼
N(0, Σε). The detailed proof of its multivariate normality is given in the online
version of the paper at http://www.stat.sinica.edu.tw/statistica. Based
on the regression equations in (2.3), the LS estimator θ̂LS of θ is given by
θ̂LS = (MT M)−1MT Ỹ .

There are several other estimating equation methods for estimating ROC
parameters. Pepe (2000) observed that the expected value of indicator variables

http://www.stat.sinica.edu.tw/statistica
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I{X`,i ≥ ̂̄G−1

` (u`,p)} converges to the true ROC curve of the `th biomarker and
proposed a GLM method to estimate the ROC curve model (2.1). If partial ROC
curves on [a, b] are of interest, the u`,p are chosen within this range. The GLM
approach estimates parameters in the model (2.1) by the estimating equations

K∑
`=1

P∑̀
p=1

m∑
i=1

g′(M̃T
`,pθ)

g(M̃T
`,pθ)(1 − g(M̃T

`,pθ))
M̃`,p

{
I
{

X`,i ≥ ̂̄G−1

` (u`,p)
}
− g(M̃T

`,pθ)
}

= 0,

or
K∑

`=1

P∑̀
p=1

w`(u`,p)M̃`,p

{
Q̃`(u`,p) − g(M̃T

`,pθ)} = 0,

for ` = 1, . . . ,K and p = 1, . . . , P`, with θ = (θ10, θ11, θ20, θ21, . . . , θK0, θK1)T and
a weight function w`(u`,p) = {g′(M̃T

`,pθ)}/{g(M̃T
`,pθ)(1− g(M̃T

`,pθ))}. Here M̃1,p is
a 1 × 2K vector with the first two elements being 1 and h(u1,p), respectively,
and the rest of the elements zero. The M̃k,p have the first two elements being 1
and h(uk,p), respectively, the (2k + 1)th and (2k + 2)th elements being Zk and
Zkh(uk,p), respectively, and the rest of the elements being zero. The asymptotic
results of the parameter estimator not provided in Pepe (2000) are given in
Section 3.

The GEE method of Cai and Pepe (2002) also used the indicator variables

I{X`,i ≥ ̂̄G−1

` (u`,p)}, and relied on the fact that points on ROC curves can be
interpreted as conditional expectations of these indicator variables. Their method
is flexible enough to allow an unknown baseline function h0 in the model (2.1).
When the baseline function has the form of h0(u) = θ10 + θ11h(u), the GEE
method is similar to the GLM method. Specifically, the GEE method solves the
estimating equations

K∑
`=1

P∑̀
p=1

M̃`,p

{
Q̃`(u`,p) − g(M̃T

`,pθ))
}

= 0.

It is observed that if the baseline function has a known form, the GLM method
differs from the GEE method by including the weight function w`.

3. Large Sample Theory of ROC Estimators

We derive the asymptotic covariance structure of multiple empirical ROC
curves for clustered data. The result is then applied to derive asymptotic co-
variances of the LS estimator. We also derive asymptotic sandwich covariances
of GLM and GEE estimators. Asymptotic results of the LS and GLM estima-
tors for clustered data have not been provided in the literature (Pepe (2000),
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Zhang (2004) and Zhang and Pepe (2005)). Although Cai and Pepe (2002)
have studied the large sample theory of the GEE estimator, their covariance
estimator has a complicated form. For the multivariate ROC models we con-
sider here, the covariance estimator of resulting estimator has a simplified co-
variance estimator that is easy to apply. These covariance results are essential
for drawing inference on comparing ROC curves and constructing simultaneous
confidence ROC bands, as discussed in Section 4. We derive the covariance
structure between empirical ROC curves, and summarize the results in Theo-
rem 1. The proof of Theorem 1 is given in the online version of the paper at
http://www.stat.sinica.edu.tw/statistica. Theorem 1 provides a basis for
deriving asymptotic covariances of the LS estimator.

Theorem 1. If 1) F̄` and Ḡ` have continuous densities F̄ ′
` and Ḡ′

`, respectively,
and 2) the first derivative Q′

` of Q` is bounded in (a, b), when m/n → λ as
m,n → ∞, cov[

√
m{Q̃`(s)−Q`(s)},

√
m{Q̃˜̀(t)−Q˜̀(t)}] converges in distribution

to[
F̄`,˜̀

{
Ḡ−1

` (s), Ḡ−1
˜̀ (t)

}
−Q`(s)Q˜̀(t)

]
+λ

[
Q′

`(s)Q
′
˜̀(t)

{
Ḡ`,˜̀{Ḡ

−1
` (s), Ḡ−1

˜̀ (t)}−st
}]

,

for s, t in (a, b).

3.1. Asymptotic covariance of the LS estimator

Let θ̃`1 = θ11 when ` = 1, and θ̃`1 = θ11 + θ`1 when ` ≥ 2. Consider the
2K × 2K square matrix

J =


KD Z2D · · · ZKD

Z2D Z2
2D · · · O

...
...

. . .
...

ZKD O · · · Z2
KD


−1 

I2 I2 · · · I2

O I2 · · · O

. . .

O O · · · I2

 ,

where

D =

(
b − a

∫ b
a h(u)du,∫ b

a h(u)du
∫ b
a h2(u)du

)
for 0 < a < b < 1, and I2 is a 2 × 2 identity matrix. Let

V`(s, t) =
Q`(s ∧ t) − Q`(s)Q`(t)

g′(g−1(Q`(s)))g′(g−1(Q`(t)))
+ λθ̃2

`1h
′(s)h′(t)(s ∧ t − st),

where ` = 1, . . . ,K, and

Ṽ`,˜̀(s, t) =
F̄`,˜̀(Ḡ

−1
` (s), Ḡ−1

˜̀ (t)) − Q`(s)Q˜̀(t)

g′[g−1{Q`(s)}])g′(g−1(Q˜̀(t)))

http://www.stat.sinica.edu.tw/statistica
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+λθ̃`1θ̃˜̀1h
′(s)h′(t){Ḡ`,˜̀(Ḡ

−1
` (s), Ḡ−1

˜̀ (t)) − st},

for `, ˜̀= 1, . . . ,K, and ` 6= ˜̀, where λ = limm,n→∞ m/n. Theorem 2 gives results
for the LS estimator. The proof of Theorem 2 is given in the online version of
the paper at http://www.stat.sinica.edu.tw/statistica.

Theorem 2. Under the regularity conditions of Theorem 1, when m/n → λ as
m,n → ∞, and P` → ∞, the regression parameter estimator θ̂LS satisfies

√
m(θ̂LS − θ) D−→ N(0, ΣLS = JΣyJT ).

Here Σy is the matrix

Σy =


Σy

11 Σy
12 · · · Σy

1K

Σy
21 Σy

22 · · · Σy
2K

. . .

Σy
K1 Σy

K2 · · · Σy
KK


whose 2 × 2 diagonal symmetric submatrices, Σy

`` have elements

σ
(1,1)
`` =

∫ b

a

∫ b

a
V`(s, t)dsdt, σ

(2,2)
`` =

∫ b

a

∫ b

a
h(s)h(t)V`(s, t)dsdt,

σ
(1,2)
`` = σ

(2,1)
`` =

∫ b

a

∫ b

a
h(s)V`(s, t)dsdt,

and whose 2 × 2 off-diagonal symmetric submatrices, Σy

`,˜̀
, have elements

σ
(1,1)

`,˜̀
=

∫ b

a

∫ b

a
Ṽ`,˜̀(s, t)dsdt, σ

(2,2)

`,˜̀
=

∫ b

a

∫ b

a
h(s)h(t)Ṽ`,˜̀(s, t)dsdt

σ
(1,2)

`,˜̀
= σ

(2,1)

`,˜̀
=

∫ b

a

∫ b

a
h(s)Ṽ`,˜̀(s, t)dsdt.

In practice, F̄`,˜̀, Ḡ`,˜̀, F̄`, and Ḡ` are unknown, and are estimated by their
respective empirical functions. If the ROC data are unclustered, the off-diagonal
submatrices, Σy

`,˜̀
’s, are zero matrices. If we further let h = g−1 and Zk be

indicator variables in the model (1), we get the same asymptotic result as in
Zhang (2004).

3.2. Asymptotic covariances of the GLM and GEE estimators

The GLM estimator, θ̂L, is obtained by solving the estimating equations

U(θ) =
K∑

`=1

P∑̀
p=1

w`(u`,p)M̃`,p

{
Q̃`(u`,p) − g(M̃T

`,pθ)
}

= 0,

http://www.stat.sinica.edu.tw/statistica


SEMIPARAMETRIC INFERENTIAL ROC PROCEDURES 1211

where M̃`,p is defined in Section 2.1. To solve these equations for θ̂L, we need
the Newton-Raphson method. Then

cov(θ̂L) =
(
− ∂U(θ)

∂θ

)−1

var

( K∑
`=1

P∑
p=1

w`(u`,p)M̃`,p{Q̃`(u`,p) − g(M̃T
`,pθ)}

)

×
(
− ∂U(θ)

∂θ

)−1

,

where ∂U(θ)/∂θ is the partial derivative of U(θ) with regard to θ. Let

U1i =
K∑

`=1

P∑̀
p=1

w`(u`,p)M̃`,p

{
I(X`i ≥ Ḡ−1

` (u`,p)) − g(M̃T
`,pθ)

}
,

and U2j =
K∑

`=1

P∑
p=1

w`(u`,p)M̃`,pQ
′
`(u`,p)

{
I(Y`j ≥ Ḡ−1

` (u`,p)) − u`,p

}
.

The result of Theorem 1 gives us that, under mild regularity conditions, when
m/n → λ as m,n → ∞, the GLM estimator θ̂L satisfies

√
m(θ̂L − θ) D−→ N(0, ΣL),

where

ΣL =
( K∑

`=1

P∑̀
p=1

w`(u`,p)M̃`,pg
′(M̃T

`,pθ)
)−1

lim
m,n→∞

{ m∑
i=1

U1iU
T
1i + λ

n∑
v=1

U2jU
T
2j

}

×
( K∑

`=1

P∑̀
p=1

w`(u`,p)M̃`,pg
′(M̃T

`,pθ)
)−1

.

The asymptotic property of the modified GEE estimator, θ̂E , can be similarly
derived. Let

U∗
1i =

K∑
`=1

P∑̀
p=1

M̃`,p

{
I(Y`i ≥ Ḡ−1

` (u`,p)) − g(M̃T
`,pθ)

}
,

and U∗
2j =

K∑
`=1

P∑̀
p=1

M̃`,pQ
′
`(u`,p)

{
I(Y`j ≥ Ḡ−1

` (u`,p)) − u`,p

}
.

When m/n → λ as m,n → ∞, the GEE estimator θ̂E satisfies

√
m(θ̂E − θ) D−→ N(0, ΣE),
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where

ΣE =
( K∑

`=1

P∑̀
p=1

M̃`,pg
′(M̃T

`,pθ)
)−1

lim
m,n→∞

{ m∑
r=1

U∗
1iU

∗T
1i + λ

n∑
v=1

U∗
2jU

∗T
2j

}

×
( K∑

`=1

P∑̀
p=1

M̃`,pg
′(M̃T

`,pθ)
)−1

.

These covariance estimators are sandwich estimators. We will evaluate their
finite sample performance in our simulation studies.

4. Multivariate ROC Analysis

Estimated ROC curves, denoted by Q̂`, are obtained by replacing θ with the
estimator θ̂ in the model (2.1). θ̂ is estimated via either of three aforementioned
methods. Here θ̂ is a general notation and can be found via other methods as well.
But, since asymptotic results are derived for the three methods, it is convenient
to utilize these results. Our asymptotic results give the corresponding covariance
matrix estimator Σ̂ of Σ for θ̂. For further notational convenience, let Σ`,˜̀ be the
2 × 2 submatrices of

Σ =


Σ11 Σ12 · · · Σ1K

Σ21 Σ22 · · · Σ2K

. . .

ΣK1 ΣK2 · · · ΣKK


2K×2K

.

The estimator Σ̂`,˜̀ of Σ`,˜̀ is the corresponding submatrix of Σ̂. In this section we
derive methods for pairwise comparison of ROC curves. We also develop meth-
ods for comparing more than two areas under ROC curves under multivariate
binormal assumptions. In addition, we derive inferential procedures for simulta-
neous confidence ROC bands, and for comparing multiple ROC curves at some
specified FPR.

4.1. Pairwise comparison of ROC curves

It is often of interest to compare ROC curves to investigate the accuracy of
biomarkers. The reference ROC curve, Q1(u), and the kth ROC curve, Qk(u),
in [a, b] only differ by a parameter vector θk = (θk0, θk1)T . Consequently, testing
the equality of these two ROC curves is equivalent to testing H0 : θk = (0, 0)T .
It follows from Section 3 that the asymptotic distribution of the test statistic,
κk = (θ̂k − θk)T Σ−1

kk (θ̂k − θk) is χ2
2. Similarly, testing the equality of two ROC

curves of the ωth and νth different biomarkers in [a, b], ω, ν = 2, . . . ,K, also
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reduces to a χ2 test. The null hypothesis becomes H0 : (θω0−θν0, θω1−θν1) = 0.
Let θω,ν = (θω0, θω1, θν0, θν1)T . The resulting chi-square statistic is

κω,ν =

(
(θ̂ω0−θ̂ν0) − (θω0−θν0)

(θ̂ω1−θ̂ν1) − (θω1−θν1)

)T

(AΣω,νA
T )−1

(
(θ̂ω0−θ̂ν0) − (θω0−θν0)

(θ̂ω1−θ̂ν1) − (θω1−θν1)

)
,

where A = (I2,−I2) with 2 × 2 identity matrix I2, and Σω,ν is the covariance
matrix of θω,ν .

4.2. Comparing the areas under multivariate binormal ROC curves

Our asymptotic results in Section 3 can be used to compare areas under
multivariate ROC curves, especially multivariate binormal ROC curves. Let
A = (A1, . . . , AK), where A` is the area under the `th ROC curve. It is well
known that under the binormal assumption,

A1(θ10, θ11) = Φ

{
θ10√

1 + θ2
11

}
,

and Ak(θ10, θ11, θk0, θk1) = Φ

{
θ10 + θk0√

1 + (θ11 + θk1)2

}
. (4.1)

Let q be a second-order differentiable and real-valued function of A. It follows
that when m/n → λ as m,n → ∞,

√
m{q(Â) − q(A)} D−→ N(0, σ2

q ),

where

σ2
q = lim

m,n→∞
m

{
∂q

∂A1

∂q

∂A1
var(A1) + 2

K∑
k=2

∂q

∂A1

∂q

∂Ak
cov(A1, Ak)

+
K∑

k=2

K∑
k̃=2

∂q

∂Ak

∂q

∂Ak̃

cov(Ak, Ak̃)

}
.

By Taylor expansions on A` and our asymptotic results, we find

var(A1) = BT
1 Σ11B1,

cov(A1, Ak) = BT
1 (Σ11 + Σk1)Bk,

and cov(Ak, Ak̃) = BT
k (Σ11 + Σkk̃)Bk̃,

where

B1 =

{
φ

(
θ10√

1 + θ2
11

)
1√

1 + θ2
11

,−φ

(
θ10√

1 + θ2
11

)
θ11

(
√

1 + θ2
11)3/2

}T

,
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Bk =

[
φ

{
θ10 + θk0√

1 + (θ11 + θk1)2

}
1√

1 + (θ11 + θk1)2
,

−φ

{
θ10 + θk0√

1 + (θ11 + θk1)2

}
θ11 + θk1

{
√

1 + (θ11 + θk1)2}3/2

]T

,

and Σ`˜̀, for `, ˜̀ = 1, . . . ,K, is estimated from asymptotic results. DeLong,
DeLong and Clarke-Pearson (1988) gave a similar formula for comparing the
areas under nonparametric ROC curves. Although their approach is robust,
semiparametric approaches may be more appealing for deriving smooth ROC
curves for continuous biomarker data. If q is some linear function, the theoretical
result is simplified to a similar formula in their paper. A simple example has E as
a vector with the `th element 1, ˜̀th element −1 and other elements zero. Then
q(Â) = EÂ corresponds to Â` − Â˜̀, whose variance estimator follows from the
variance result. Inference is then easily drawn for testing H0 : A` = A˜̀, and for
constructing a confidence interval.

4.3. Simulataneous confidence ROC bands

The variance of estimated ROC curves at each FPR can be derived from the
parameter estimator θ̂ and its covariance matrix estimator Σ̂. Let H = (1, h(u)),
H̃ = (H,H).

Corollary 2. The variance of estimated ROC curves at u are

σ2
1(u) = g′[g−1{Q1(u)}]2HΣ11H

T

and σ2
k(u) = g′[g−1{Qk(u)}]2H̃

(
Σ11 Σ1k

Σk1 Σkk

)
H̃T ,

respectively, for k = 2, . . . ,K.

The (1 − α)100% pointwise confidence interval of Q`(u) is then given by

Q̂`(u) ± zα/2σ̂`(u), 0 ≤ u ≤ 1.

In Theorem 3 below, we give explicit expressions for simultaneous bands for
multivariate ROC curves. The proof of Theorem 3 is given in the online version
of the paper at http://www.stat.sinica.edu.tw/statistica.

Theorem 3. Under the regularity conditions of Theorem 1, the (1 − α)100%
simultaneous confidence bands for multivariate ROC curves in [a, b] are

g
{

Hθ̂1 ±
√

χ2
2,αHΣ11HT

}
,

http://www.stat.sinica.edu.tw/statistica
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and

g

{
H̃(θ̂T

1 , θ̂T
k )T ±

√√√√χ2
4,αH̃

(
Σ11 Σ1k

Σk1 Σkk

)
H̃T

}
,

respectively, for k = 2, . . . ,K.

Note the reason why simultaneous confidence bands for ROC curves have
such simple expressions is that we assume that g and h are known. The estimated
ROC curves are fully determined by two parameters for the reference biomarker
and four parameters for other biomarkers. Therefore, χ2

2 and χ2
4 distributions

arise, and the derivation of simultaneous bands is naturally simplified.

4.4. Comparing multiple ROC curves at some specified FPR

Let Q̂(u) = (Q̂1(u), . . . , Q̂K(u))T . Similar to Section 4.2, suppose that q is
a real-valued and second-order differentiable function of the vector Q̂. We have
that q(Q̂(u0)), at a specified FPR u0, converges to a normal distribution with
mean zero and variance

σ̃2
q (u0) = lim

m,n→∞
m

[
∂q

∂Q1

∂q

∂Q1
var{Q1(u0)} + 2

K∑
k=2

∂q

∂Q1

∂q

∂Qk
cov{Q1(u0), Qk(u0)}

+
K∑

k=2

K∑
k̃=2

∂q

∂Qk

∂q

∂Qk̃

cov{Qk(u0), Qk̃(u0)}

]
.

Here we have var{Q1(u0)} = C1(u0)T Σ11C1(u0), cov{Q1(u0), Qk(u0)} = C1(u0)T

(Σ11 + Σk1)Ck(u0), cov{Qk(u0), Qk̃(u0)} = Ck(u0)T (Σ11 + Σkk̃)Ck(u0), where
C1(u) = (g′{θ10 + θ11h(u)}, θ11g

′{θ10 + θ11h(u)})T , Ck(u) = [g′{θ10 + θ11h(u) +
θk0 + θk1h(u)}, (θ11 + θk1)g′{θ10 + θ11h(u) + θk0 + θk1h(u)}]T . If q is a linear
function, the result can be greatly simplified.

5. Simulation Studies

5.1. Finite sample performance of hypothesis testing

We ran a large set of simulation studies to evaluate and compare the finite
sample performance of our asymptotic covariance estimators for the LS, GLM
and GEE methods. The bivariate normal data were N((1, 1), Σ0) for the diseased
and N((0, 0), Σ0) for the healthy, where Σ0 has the variances 1 and 2 with a
correlation parameter ρ. True ROC curves of tests 1 and 2 have the same form
given by Q1(u) = Q2(u) = Φ{1/

√
2 + 1/

√
2Φ−1(u)}, for 0 ≤ u ≤ 1. Thus, the

true value of the parameter vector is θ = (1/
√

2, 1/
√

2, 0, 0). We fit a bivariate
binormal model to the data; that is, we let K = 2 in the model (2.2). The
null hypothesis of equal ROC curves, H0 : (θ20, θ21) = (0, 0), can be tested
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by the χ2 test statistic κ = (θ̂20, θ̂21)Σ̂−1
22 (θ̂20, θ̂21)T with 2 degrees of freedom,

where (θ̂20, θ̂21)’s covariance matrix estimate, Σ̂22, is calculated using asymptotic
results in Theorem 2. We simulated 1,000 data sets under the null hypothesis
with m = (50, 100, 200) and n = (50, 100, 200) under ρ = (0, 0.25, 0.5, 0.75).
The nominal rejection rate was set at 5%. In the simulation, the variances of LS
estimators were estimated using asymptotic results developed in Theorem 2. The
variances of GLM and GEE’s estimators were obtained using asymptotic results
in Section 3. For a small sample size such as 50, the GEE method sometimes
did not converge and we had to run more than 1,000 simulations in order to
obtain 1,000 valid estimates. Since the LS method does not require iterations,
the computation time is greatly reduced compared to that of GLM or GEE.
Under the same circumstances, the computing time of LS is less than half that of
GLM or GEE. In particular, we conducted our simulation study on the same Unix
machine. It took 30 seconds for LS to estimate parameters from 1,000 simulated
data sets when m = n = 200, while the computational times of GLM and GEE
were 870 and 348 seconds, respectively. When m = n = 50, the computation time
of LS was 24 seconds, while times of GLM and GEE were 210 and 98 seconds,
respectively.

Table 1 presents rejection rates from the three approaches. As shown in
Table 1, the asymptotic results for LS work well for all combinations of sample
sizes as the rejection rates are close to the nominal level of 5%. Even for a small
sample size 50 for both diseased and healthy groups, rejection rates do vary much
from the nominal level. Moreover, rejection rates of LS are not affected by values
of the correlation parameter ρ. From Table 1, GEE and GLM have much in
common. Both have over-rejection rates when sample sizes are small. This is
mainly due to the variability of their sandwich variance estimators. Readers are
referred to Kauermann and Carroll (2001) for more details. It is also noticeable in
Table 1 that as sample sizes for the healthy get larger, rejection rates of GEE and
GLM get closer to the nominal level even when sample sizes for the diseased are
small. However, rejection rates for the diseased, given small sample sizes for the
healthy, are not improved with large sample sizes. We tried bootstrap methods
in these situations. The bootstrap method performed similarly to the LS method
on the rejection rates regardless of sample sizes. The bootstrap performed better
than GLM and GEE when sample sizes were small, and similarly to GLM and
GEE when sample sizes were large.

5.2. Finite sample performance of point and interval estimates

We used the same setting as in the previous section to evaluate and compare
estimation precision of the methods in the simulation study. We again simulated
1,000 data sets under sample sizes m = n = (50, 200, 400) with ρ = 0.5. The
nominal coverage probability of confidence intervals was 95%. We applied LS,
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Table 1. Rejection rates (in %) with the nominal level α = 0.05, from
asymptotic results.

LS GEE GLM

m n ρ = 0 0.25 0.5 0.75 ρ = 0 0.25 0.5 0.75 ρ = 0 0.25 0.5 0.75

50 50 3.7 6.0 3.6 6.9 13.1 11.8 14.2 11.8 15.2 16.2 14.9 10.3

50 100 4.8 4.5 3.6 7.2 6.9 7.8 7.7 6.9 9.3 8.8 10.0 8.3

50 200 4.1 6.5 4.9 5.8 5.6 5.1 5.6 4.5 5.4 5.9 4.5 5.8

100 50 5.3 5.3 5.0 6.7 16.0 14.7 12.9 13.6 15.3 14.1 11.9 11.3

100 100 5.7 5.2 6.4 6.8 8.2 8.3 9.1 8.8 11.2 9.8 10.1 9.5

100 200 4.9 5.5 4.6 5.2 4.4 4.3 4.2 5.0 4.7 5.0 5.6 5.6

200 50 5.1 6.2 4.7 4.7 16.8 14.5 16.3 13.6 18.6 15.7 14.4 13.2

200 100 4.7 5.2 4.9 5.4 9.2 9.4 8.1 10.5 11.0 11.9 9.8 11.4

200 200 4.7 4.7 5.3 5.6 5.5 4.9 4.5 4.6 5.5 4.8 5.1 6.0

The rejection rate with 1,000 realizations of normal model. The 95% prediction interval

of the rejection rate is (5.0% ± 1.4%).

GEE and GLM to get estimates of the ROC parameter vector (θ10, θ11, θ20, θ21).
Confidence intervals for the parameters were calculated based on asymptotic re-
sults. We then compared these methods based on bias, square root of MSE
(RMSE), and the coverage probabilities of confidence intervals. The results are
shown in Table 2. All three methods have good accuracy for estimating the pa-
rameters, while coverage probabilities differ among them. Our simulation results
show that LS has the nice finite sample property that the coverage probabilities
of all parameters are close to the nominal level for small sample sizes. When
sample sizes are small, confidence intervals computed from sandwich covariance
estimators for GLM and GEE cover the intercept parameters properly, but these
confidence intervals over-cover slope parameters. As sample sizes approach 400,
the coverages of GLM and GEE estimators get closer to the nominal level for
slope parameters.

5.3. The advantage of our asymptotic results over bootstrap proce-
dures

Many authors have applied bootstrap methods to estimate covariance matri-
ces for the LS and GLM estimators when the asymptotic results were not avail-
able (Pepe (2000) and Zhang and Pepe (2005)). However, it can take much more
computation time to do bootstrapping than to use the asymptotic results. In
this simulation study, we compared coverage percentages of bootstrap covariance
estimates with those of asymptotic covariance estimates for the LS approach. We
used the same setting in Section 5.1 with m = n = (50, 200, 400). Under each
combination of sample sizes, we simulated 1,000 data sets with ρ = 0.5. For each
data set we applied bootstrap procedures to get covariance estimates of the LS
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Table 2. Bias, RMSE, coverage probability (CP) of parameter estimators.

LS GEE GLM

m Bias RMSE CP BT Bias RMSE CP Bias RMSE CP

(n) (in %) (in %) (in %) (in %) (in %) (in %) (in %)

50 θ10 -2.36 0.19 94.8 95.2 0.66 0.19 97.2 0.60 0.19 98.7

θ11 0.80 0.12 95.2 95.0 -7.88 0.15 99.9 -8.71 0.15 100.0

θ20 -0.55 0.20 93.8 95.7 -0.92 0.20 99.4 -0.69 0.21 99.1

θ21 0.28 0.16 96.2 95.8 0.49 0.16 100.0 0.24 0.15 99.9

200 θ10 0.07 0.09 95.2 94.2 0.02 0.10 94.7 0.81 0.10 94.4

θ11 0.52 0.06 94.6 94.5 -1.76 0.07 99.6 -1.63 0.06 99.7

θ20 -0.28 0.10 93.9 93.9 -0.09 0.10 94.3 -0.21 0.10 95.0

θ21 0.01 0.08 94.7 95.2 0.19 0.08 99.0 -0.08 0.08 99.6

400 θ10 -0.03 0.07 95.4 94.4 -0.07 0.07 94.7 0.02 0.06 96.5

θ11 0.37 0.04 94.8 95.0 -0.72 0.04 96.4 -0.86 0.04 97.1

θ20 -0.42 0.07 95.9 94.9 0.02 0.07 95.0 0.06 0.07 96.0

θ21 -0.08 0.05 95.3 95.9 -0.08 0.05 97.7 0.01 0.05 97.6

CP is the coverage percentage for 95% confidence intervals using asymptotic standard errors

with a normal quantile. BT is the coverage percentage for 95% confidence intervals using the

bootstrap. Results are based on 1,000 realizations of the bivariate normal model.

approach. The number of bootstrap was 1,000. We then used covariance esti-
mates to get confidence intervals and their coverage percentages. The coverage
percentages of bootstrap methods were shown in Table 2. As can be seen there,
our asymptotic results were as good as bootstrap results in that coverage per-
centages were very close. More importantly, computation time was much shorter.
For example, when using the LS method with m = n = 400, it took 30 seconds
to obtain a bootstrap covariance estimate for one data set on a PC, it took only
5 seconds to obtain an asymptotic covariance estimate for the same data set on
the same PC.

6. Application to Pancreatic Cancer Biomarkers

The main interest in the aforementioned biomarker example is to determine
whether ROC curves generated by two biomarkers are equal. If not, one would
wish to say which biomarker can better distinguish the diseased from the healthy.
We applied the LS estimation procedure to this data set. With the probit link,
g = Φ, and h = Φ−1, ROC curves of these biomarkers have the same structure
as those in (2.2) when K = 2. We got the estimate of the parameter vector
as (θ̂LS

10 , θ̂LS
11 , θ̂LS

20 , θ̂LS
21 ) = (1.18, 0.47,−0.49, 0.55). Its covariance matrix estimate

was calculated based on the asymptotic result in Theorem 2. The GLM and
GEE parameter estimates were very close to the LS estimate, and thus were not
listed. The χ2 was then calculated to be 18.16 with the p-value 0.0001, indicat-
ing significant difference in diagnostic accuracy between two biomarkers. We also
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Figure 2. Estimated ROC curves and their 95% confidence bands for CA
19-9 and CA 125: dashed lines, empirical ROC; solid lines, estimated ROC;
shaded regions, 95% confidence band; dotted lines, confidence band bound-
ries.

Figure 3. Overlapping 95% confidence bands for CA 19−9 and CA 125:
solid lines, estimated ROC; shaded regions, 95% confidence band; dotted
lines, confidence band boundries.

calculated the difference between the two areas under estimated ROC curves us-
ing the procedure in Section 4.2, and found a significant difference between them,
p-value 0.02. To visualize the sampling variability of estimated ROC curves, si-
multaneous ROC bands were constructed using the result in Theorem 3. Figure
2 shows the estimated ROC curves and their simultaneous bands. These ROC
curves were very close to the empirical curves. Although our results on ROC
curves and their areas show that the two biomarkers are different, it is clear in
Figure 3 that two ROC curves intersect. The simultaneous bands can help us de-
termine the region of FPRs where two ROC curves are different; Figure 3 shows
overlapping confidence bands. It is obvious that the ROC curve for CA 19−9 is
significantly better than that for CA 125 when the false positive rate is less than
around 0.17, and that the two ROC curves do not differ much elsewhere.
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7. Discussion

The interaction terms in our multivariate ROC model are completely differ-
ent from the interactions of the K diagnostic tests on the measurement level. In
fact, the interactions we refer to are between test types and FPRs. Multivariate
ROC models such as the multivariate binormal play an important role in ROC
analysis of clustered biomarkers. This article derived asymptotic covariances of
the LS, GLM and GEE estimators for the multivariate ROC models with the
presence of interaction terms between biomarker type and FPRs. To our knowl-
edge, such asymptotic properties with correlated data have not been addressed
in empirical process theory.

Our new contributions include procedures to compare AUCs and ROC
curves, especially when the interaction terms between FPR’s and biomarker type
are present. We drew inference for pairwise comparison between ROC curves,
multiple comparisons of areas under ROC curves under binormal assumptions.
The inferential procedures in Section 4 for comparing ROC curves are very gen-
eral for multivariate ROC models. Besides the three estimators discussed, if
other estimators and their covariances were available, they can also be used in
these procedures.
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