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Abstract: We study a semiparametric pseudo-likelihood inference for nonhomoge-

neous Gamma process with random effects for degradation data. The setting for

degradation data is one in which n independent subjects, each with a nonhomoge-

neous Gamma process, are observed at possible different times. The random effects

are used to represent heterogeneity of degradation paths. To obtain the maximum

pseudo-likelihood estimator, we use the Pool Adjacent Violators Algorithm. We

study the asymptotic properties for this estimator. A simulation study is conducted

to validate the method and its application is illustrated by using degradation data

of a civil engineering structure to estimate its reliability.

Key words and phrases: Degradation data, empirical process, greatest convex mi-

norant, pseudo-likelihood, profile likelihood, Gamma process.

1. Introduction

Suppose {Y (t) : t ≥ 0} is a univariate nonhomogeneous Gamma process and

Λ is a nondecreasing function. The nonhomogeneous Gamma process Y has the

following properties: the increments ∆Y (t) = Y (t+ ∆t)−Y (t) are independent;

∆Y (t) has a Gamma(θ,∆Λ) distribution with mean θ∆Λ(t) = θ(Λ(t+∆t)−Λ(t))

and variance θ2∆Λ(t). The nonhomogeneous Gamma process model has been

found useful in the analysis of degradation data (e.g., Bagdonavicius and Nikulin

(2001) and Lawless and Crowder (2004)). In some studies, subjects are put on

test at time 0 and degrade over time; when the amount of degradation reaches a

pre-specified critical level d, failure occurs. In practice, each subject has degra-

dation measurements taken over time; the number of observation times and ob-

servation times themselves are allowed to vary across subjects. These data are

referred to as regular degradation data. Examples are given by Davies (1998) and

Meeker and Escobar (1998, Chaps. 14 and 21, and references therein). Degrada-

tion data are a rich source of reliability information and offer many advantages

over time-to-failure data. Degradation data have applications in many fields,

such as industrial reliability and HIV study; see Doksum (1991), Singpurwalla

(1995), Meeker and Escobar (1998) and Wang (2007).
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Component-to-component variability can be incorporated into the model to

represent the heterogeneity in the degradation paths of different units. One such

model can be specified by using a random scale parameter θ. We adopt the same

model as Lawless and Crowder (2004), in which ω = 1/θ, and

ω ∼ Gamma(γ−1, δ), Y (t)|ω ∼ Gamma Process(ω−1,Λ(t)). (1.1)

Then the marginal density of Y (t) is given by

f(y) =
Γ(Λ(t) + δ)

Γ(Λ(t))Γ(δ)

γδyΛ(t)−1

(y + γ)Λ(t)+δ
. (1.2)

Suppose we observe Y at times t1, . . . , tm, yielding observations y1, . . . , ym. Based

on the conditional independence of the increments given the random effect ω, the

joint density of y1, . . . , ym is

f(y1, . . . , ym) =
γδΓ(δ +

∑m
j=1 ∆Λj)

Γ(δ)
∏m
j=1 Γ(∆Λj)

∏m
j=1(∆yj)

∆Λj−1

(γ +
∑m

j=1 ∆yj)
δ+

Pm
j=1 ∆Λj

, (1.3)

where ∆yj = yj − yj−1 and ∆Λj = Λ(tj) − Λ(tj−1). An extreme case of the

model occurs when there is no random effect; this case can be realized by letting

γ → ∞ with δ/γ = 1/θ fixed.

Let T denote the failure time, T = inf{t : Y (t) ≥ d}. Noting from (1.2) that

δY (t)/(γΛ(t)) has an F distribution F2Λ(t),2δ , the time-to-failure distribution is

P (T < t) = P (Y (t) > d) = 1 − F (
δd

γΛ(t)
), (1.4)

where F (·) is the distribution function of F2Λ(t),2δ . With different choices of Λ,

(1.4) defines a wide class of failure time distribution functions.

The objective of this paper is to extend the parametric inference of this

model by Lawless and Crowder (2004) to the semiparametric case. We would

like to obtain a nonparametric estimate of Λ and an estimate of (γ, δ). It is

natural to consider the maximum likelihood estimator of (Λ, γ, δ); however, we

need to maximize the likelihood function under the monotonicity constraints of

Λ and this cannot be done in a direct manner due to the complicated form (1.3),

especially when the number and locations of observation times for each subject

are different.

In this paper, we propose a pseudo-likelihood method to estimate the un-

known parameters. The pseudo-likelihood estimator ignores the dependence be-

tween the degradation measurements at successive observation times, treating

them as if they were independent random variables to form a pseudo-likelihood.

When the nonhomogeneous Gamma process for each unit is observed at just
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one time (e.g., destructive degradation data), the pseudo-likelihood function be-

comes the regular likelihood function. We show that the maximum pseudo-

likelihood estimator (MPLE) is consistent, and we also derive the convergence

rate and asymptotic distribution of the MPLE. Simulation results suggest that

this method works well, and we apply it to the degradation data of a civil engi-

neering structure to estimate its reliability.

The rest of the paper is organized as follows. In Section 2, we introduce

the algorithm to compute the MPLE. In Section 3, we establish the asymptotic

results, including consistency, convergence rate, and asymptotic distribution of

the MPLE. In Section 4, a simulation study is conducted to validate the method.

In Section 5, we apply our method to degradation data of a civil engineering

structure. The paper ends with discussion. The proofs of theorems are given in

the Appendix.

2. Pseudo-Likelihood Estimation

Suppose we observe the degradation process Y at a random number K of

random times 0 = TK,0 < TK,1 < · · · < TK,K. Write TK = (TK,1, . . . , TK,K) and

Y K = (YK,1, . . . , YK,K), where YK,j = Y (TK,j). Assume (K,TK) is independent

of Y . Let X = (Y K , TK ,K) take value x = (y
k
, tk, k). Suppose we observe n

i.i.d. copies of X, X1, . . . ,Xn, where Xi = (Y
(i)
Ki
, T

(i)
Ki
,Ki) for i = 1, . . . , n. Our

goal is to estimate (Λ(t), γ, δ).

By ignoring the dependence of the data within each unit, from (1.2), we can

form the log pseudo-likelihood function for (Λ(t), γ, δ), up to a constant, as

ln(Λ, γ, δ) =

n
∑

i=1

Ki
∑

j=1

[

Hδ(Λ(T
(i)
Ki,j

)) + Λ(T
(i)
Ki,j

) log
Y

(i)
Ki,j

Y
(i)
Ki,j

+ γ

+δ log
γ

Y
(i)
Ki,j

+ γ
− log Γ(δ)

]

, (2.1)

whereHδ(t) = log Γ(t+δ)−log Γ(t). Note that hδ(t) = ∂Hδ/∂t = ψ0(t+δ)−ψ0(t)

is a positive decreasing function of t, where ψ0 = Γ′/Γ is the digamma function.

Let (Λ̃n, γ̃n, δ̃n) be the MPLE, so (Λ̃n, γ̃n, δ̃n) = arg maxF×R×R ln(Λ, γ, δ), where

R ⊂ (0,∞) is a compact set, and

F = {Λ : [0,∞) → [0,∞)|Λ is a nondecreasing function with Λ(0) = 0}.

The algorithm to obtain the MPLE is carried out in two steps. First we solve

for Λ while holding γ and δ fixed, then we construct a profile pseudo-likelihood

function of γ and δ to get the estimator of (γ, δ). Let t1 < · · · < tm be the
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distinct observation time points in the set of all observation times {T (i)
Ki,j

, j =

1, . . . ,Ki, i = 1, . . . , n}. For l = 1, . . . ,m, let

ωl =
n

∑

i=1

Ki
∑

j=1

1
{T

(i)
Ki,j=tl}

, ul =
1

ωl

n
∑

i=1

Ki
∑

j=1

(log
Y

(i)
Ki,j

Y
(i)
Ki,j

+ γ
)1

{T
(i)
Ki,j=tl}

.

Given (γ, δ), up to a constant which does not depend on Λ, the pseudo-likelihood

function (2.1) becomes

ln(Λ) =

m
∑

l=1

ωl
[

Hδ(Λl) + Λlul
]

. (2.2)

The MPLE Λ̃n can only be identified at ti’s and Λ̃n(·; γ, δ) can be taken as

a nondecreasing piecewise linear function with possible knots at t1, . . . , tm. The

choice of making Λ̃n a piecewise linear function is arbitrary and other conventions

are possible.

If we follow the same characterization procedure described in Groeneboom

and Wellner (1992, p.35-40), the maximum of (2.2) can be written explicitly as

Λ̃n(tl; γ, δ) = h−1
δ (−zl), l = 1, . . . ,m, (2.3)

where

zl = max
r≤l

min
s≥l

ωrur + · · ·ωsus
ωr + · · · + ωs

.

The computation of zl is obtained using the well-known Pool Adjacent Viola-

tors Algorithm (PAVA) (see e.g., Robertson, Wright and Dykstra (1988)). The

profile pseudo-likelihood of (γ, δ) is given by ln(Λ̃n(·; γ, δ), γ, δ) and (γ̃n, δ̃n) =

arg maxR×R ln(Λ̃n(·; γ, δ), γ, δ), hence we have a nonlinear optimization problem

that can be solved by standard Newton-Raphson methods.

3. Asymptotic Results

In this section, we show the consistency, convergence rate and asymptotic

distribution of the MPLE. Let B denote the collection of Borel sets in R, and let

B[0,T ] = {B ∩ [0, T ] : B ∈ B} for some fixed constant T . On ([0, T ],B[0,T ]), for

B ∈ B[0,T ], we define

µ(B) =
∞
∑

k=1

k
∑

j=1

P (TK,j ∈ B|K = k) = EK,TK

[

K
∑

j=1

1B(TK,j)
]

.

Based on µ, for any (Λ1, γ1, δ1) and (Λ2, γ2, δ2) we define the L2 metric

d2((Λ1, γ1, δ1), (Λ2, γ2, δ2)) = (γ1 − γ2)
2 + (δ1 − δ2)

2 +

∫

(Λ1(t) − Λ2(t))
2dµ(t).
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To establish the consistency of MPLE, assume the following regularity con-

ditions.

A1. The true parameter θ0 = (γ0, δ0) is in the interior of compact set R×R.

A2. The observation times TK,j, j = 1, . . . ,K are random and take values in

[0, T ] with T <∞.

A3. E(K) <∞.

A4. The true mean function at T , Λ0(T ) is finite.

The above conditions usually hold in practice.

Theorem 1. (Consistency) Suppose that A1−A4 hold. Then for every t < T and

µ([t, T ]) > 0, d((Λ̃n1[0,t], γ̃n, δ̃n), (Λ01[0,t], γ0, δ0)) → 0, almost surely as n → ∞.

If µ({T}) > 0, we also have d((Λ̃n, γ̃n, δ̃n), (Λ0, γ0, δ0)) → 0 almost surely as

n→ ∞.

To obtain the convergence rate and asymptotic distribution of MPLE, we

assume the following conditions.

B1. For some interval [Tl, Tu] with Tl > 0 and Λ0(Tl) > 0, P (∩Kj=1TK,j ∈
[Tl, Tu]) = 1.

B2. P (K < k0) = 1 for some k0 <∞.

B3. Let Gk,j(t) = P (TK,j < t|K = k). For a fixed t0 ∈ [Tl, Tu], there is

a neighborhood of t0 such that Gk,j is differentiable, and G′
k,j is con-

tinuous in this neighborhood, is positive and uniformly bounded for all

j = 1, . . . , k, k = 1, 2, . . . .

B4. The first derivative Λ′ is positive and has finite lower and upper bounds in

the observation interval.

Condition B1 assumes TK,j is bounded away from zero, and B2 assumes K is

finite almost surely. If G(t) = µ([0, t]) is the distribution function corresponding

the measure µ, we can write G(t) =
∑∞

k=1 P (K = k)
∑k

j=1Gk,j(t). Condition

B3 assures that G′(t) exists. Condition B4 assumes that there is no flat part in

Λ, that its derivative is bounded away from zero and infinity.

Theorem 2.(Convergence rate) Suppose the conditions A1−A4 and B1−B2 hold.

Then n1/3d((Λ̃n, γ̃n, δ̃n), (Λ0, γ0, δ0)) = Op(1).

Although the overall convergence rate for Λ̃n, γ̃n and δ̃n is of order n−1/3,

the rate of of convergence for γ̃n and δ̃n is still n−1/2.

Let A = −(A1 −A2), where

A1 = EK,TK





−∑K
j=1

δ0Λ0(TK,j)

γ2
0 (Λ0(TK,j)+δ0+1)

∑K
j=1

Λ0(TK,j)
γ0(Λ0(TK,j)+δ0)

∑K
j=1

Λ0(TK,j)
γ0(Λ0(TK,j)+δ0)

∑K
j=1[ψ1(Λ0(TK,j) + δ0) − ψ1(δ0)]



 ,



1158 XIAO WANG

A2 = EK,TK





∑K
j=1

δ20
γ2
0 (Λ(TK,j )+δ0)2aj

−∑K
j=1

δ0ψ1(Λ0(TK,j)+δ0)
γ0(Λ0(TK,j)+δ0)bj

−∑K
j=1

δ0ψ1(Λ0(TK,j )+δ0)
γ0(Λ0(TK,j )+δ0)bj

∑K
j=1

ψ2
1(Λ0(TK,j)+δ0)

[ψ1(Λ0(TK,j)+δ0)−ψ1(δ0)]



 ,

and aj = ψ1(Λ0(TK,j) + δ0)−ψ1(Λ0(TK,j)), bj = ψ1(Λ0(TK,j) + δ0)−ψ1(δ0). Let

B = EK,TK
(B1B

′
1), where

B1 =













∑K
j=1

[

δ0
γ0

− Λ0(TK,j)+δ0
YK,j+δ0

− (ψ0(Λ0(TK,j) + δ0)−
ψ0(Λ0(TK,j)) + log

YK,j

YK,j+γ0
)h∗1j

]

∑K
j=1

[

ψ0(Λ(TK,j) + δ0) − ψ0(Λ0(TK,j)) + log γ0
YK,j+γ0

−
(ψ0(Λ(TK,j) + δ0) − ψ0(Λ0(TK,j)) + log

YK,j

YK,j+γ0
)h∗2j

]













,

h∗1j = − δ0
γ0(Λ0(TK,j) + δ0)(ψ1(Λ0(TK,j) + δ0) − ψ1(Λ0(TK,j)))

,

h∗2j =
ψ1(Λ0(TK,j) + δ0)

ψ1(Λ0(TK,j) + δ0) − ψ1(Λ0(TK,j))
,

and σ(t0)
2 = var[log(Y (t0)/(Y (t0) + γ0))], with ψ1 = ψ′

0. Take Z to denote a

two-sided Brownian motion process, starting from zero.

Theorem 3.(Asymptotic Distributions) Under the conditions of Theorem 2, if

θ̃n = (γ̃n, δ̃n)
′ and θ0 = (γ0, δ0)

′ we have

√
n(θ̃n − θ0)

D→N
[

0, A−1B(A−1)′
]

. (3.1)

If, moreover B3 and B4 hold, we have

n
1
3 (Λ̃n(t0) − Λ0(t0))

D→
[ σ(t0)

2

2G′(t0)[ψ1(Λ0(t0)) − ψ1(Λ0(t0) + δ0)]2
] 1

3 2 arg max
h

{Z(h) − h2}. (3.2)

The proofs of the theorems are established similarly by following the ar-

guments in Wellner and Zhang (2000, 2007, and references therein). For more

details of the proofs, see Supplemental Materials.

It is immediate that Theorem 3 provides a way to construct large sample

confidence intervals for (γ, δ), and pointwise confidence band for Λ. The distri-

bution arg maxh{Z(h)−h2} is known as Chernoff’s distribution and its quantiles

are listed in Groeneboom and Wellner (2001).

4. Simulations

A Monte Carlo study is used to validate the method. Let {Y Ki
, TKi

,Ki},
i = 1, . . . , n, be a random sample. We choose Ki ∈ {9, 10, 11, 12} and P (Ki = k)
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Figure 3.1. The MPLE of the Λ(t) when the true function is 10t, 10t2, 10t3/4,

respectively. The solid line is the estimate from sample size n = 40; the dash-

dotted lines are 95% pointwise confidence bands; the dashed lines are the

true functions.

Table 4.1. Results of Monte Carlo study for γ and δ estimates based

on 1, 000 repeated samples for data generated from Gamma process with

random effects.

MPLE of γ MPLE of δ

n = 40 n = 80 n = 40 n = 80

Λ(t) = 10t BIAS 0.2577 0.1474 0.6338 0.4146

SD 1.1810 0.9598 2.1028 1.7719

Λ(t) = 10t2 BIAS 0.1359 0.0651 0.4262 0.3288
SD 0.9482 0.6500 1.8975 1.5028

Λ(t) = 10t3/4 BIAS 0.3441 0.1318 0.7580 0.4078
SD 1.3066 0.9116 2.0591 1.6135

= 1/4 for k = 9, . . . , 12. Then the TKi
are chosen as the order statistics of Ki

random observations from uniform(0, 1). The time points are rounded to the

first decimal point to make the observation times possibly tied. The degradation

measurements Y Ki
are generated from a Gamma process with random effects,

that is, ω ∼ Gamma(δ, γ−1) and YKi,j − YKi,j−1|ω ∼ Gamma(ω−1,Λ(TKi,j) −
Λ(TKi,j−1)), where γ = 1, δ = 8, and Λ(t) is chosen as one of the functions

10t, 10t2, 10t3/4. The number of subjects is n = 40 and 80. We carry out a

Monte Carlo study by repeating the simulation 1, 000 times. Figure 3.1 displays

the MPLE of Λ, along with 95% pointwise confidence bands when n = 40. The

bias, standard error and mean squared error for the MPLE of γ and δ are given

in Table 4.1. The table has the sample bias and standard error for both γ̃n and δ̃n
within reasonable ranges, and that such bias and standard deviation have small

effect on the degradation paths and the resulting first passage time distribution.
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Figure 4.2. The relative efficiency of MLE vs. MPLE. The solid line is the
estimated relative efficiency for δ and the dashed line is for γ.

The ratio of the standard error for the two sample sizes is close to
√

2, which

suggests that the convergence rate of (γ̃n, δ̃n) is
√
n.

Although the MPLE is consistent and its implementation is easier and re-

quires less computing time than the MLE, it should be noted that the MLE is

apparently more efficient than the MPLE. The complete algorithm to compute

the MLE is currently under investigation. Here, a simple Monte Carlo simula-

tion based on 1, 000 runs for n = 80 is studied to evaluate the efficiency loss of

estimating γ and δ when Λ(t) = 10t. The left panel of Figure 4.2 displays the

estimated relative efficiency of the MLE with respect to the MPLE when γ0 = 1

and δ0 = 8, 9, . . . , 18; the right panel of Figure 4.2 displays the case when δ0 = 8

and γ0 = 0.1, 0.2, . . . , 1; the solid line is the estimated relative efficiency for δ,

the dashed line is for γ. As can be seen from Figure 4.2, the estimated relative

efficiency is about 70%. We expect more efficiency loss when Λ is unknown and

needs to be estimated.

5. Application: Bridge Beams Data

We apply our method to the bridge beams data given by Elsayed and Liao

(2004). This dataset includes the degradation of bridge beams due to chloride

ion ingression for a sample of size 20. The field data considered are bivariate

(tj, yi,j), in which yi,j is the measurement of loss of strength of the component

i at time tj, i = 1, . . . , 20, j = 1, . . . , 40. The left panel of Figure 5.3 shows the

bridge beams’ strength loss from 10 to 40 years. Assume failure occurs when the

loss of strength exceeds 400pst. Based on the random effects nonhomogeneous

Gamma process model, γ̃n = 0.1580, δ̃n = 9.3184, and the estimated Λ̃n is the

solid line given in the right panel of Figure 5.3. The estimated time-to-failure

distribution function of bridge beams is shown in the left panel of Figure 5.4 by
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Figure 5.3. The left panel is the bridge beams’ strength loss over time.

The right panel is the estimated Λ̃n, where the solid line is the maximum
pseudo-likelihood estimator and the dashed line is the parametric estimator.

the solid line, along with the Kaplan-Meier estimate, computed from follow-up of

each unit until it crosses the failure threshold. We then evaluated the reliability

function under three additional threshold levels: d = 600, d = 800, d = 1, 000;

see the solid lines in the right panel of Figure 5.4. This illustrates the sensitivity

of reliability to the threshold levels.

For well-understood failure mechanisms, one may have a parametric form for

Λ based on a physical/chemical theory that describes the underlying degradation

process. Without such information, the nonparametric estimate of Λ can be used

to suggest a parametric form for Λ(t). If we assume Λ has a power function

form, Λ(t; a, b) = a(t− 10)b, the estimated unknown parameters are â = 1.5976,

b̂ = 1.0183, γ̂ = 0.1810 and δ̂ = 9.6687. These estimated values of γ and δ are

close to those obtained from the pseudo-likelihood method. The right panel of

Figure 5.3 shows the parametric estimate of Λ and its proximity to the pseudo-

likelihood estimator. The parametric estimate of the reliability functions under

different values of the threshold, shown in Figure 5.4, almost coincide with the

pseudo-likelihood estimators.

6. Discussion

An interesting extension of the current model allows covariate information.

For example, in an accelerated degradation experiment, temperature might be a

covariate. Bagdonavicius and Nikulin (2001) incorporated covariates by replac-

ing Λ(t) with Λ(tex
T β), where x is the covariate vector. Lawless and Crowder

(2004) treated the scale parameter θ as a function of x to accommodate the co-

variate. Similar to the Cox model, one can study the proportional mean model,
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Figure 5.4. The left panel is the estimated time-to-failure distribution func-

tion of bridge beams for d = 400. The right panel is the reliability estimation

for bridge beam at four different threshold levels, d = 400, 600, 800, 1000.

The solid lines are maximum pseudo-likelihood estimators and the dashed

lines are the parametric estimators.

replacing Λ(t) by Λ(t)ex
T β to incorporate the covariate information. For all these

models, we can study the pseudo-likelihood inference in a similar way.
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