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Abstract: When choosing a parametric statistical model two important consider-

ations are mathematical soundness and substantive relevance. In this paper, we

illustrate and exemplify that a number of issues arise from these considerations,

even in relatively simple settings, such as ordinal regression, linear mixed models,

models for cross-classified data and generalized linear mixed models. Many of our

points are illustrated with data.
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1. Introduction

Choosing a parametric statistical model is a common task in statistical prac-
tice. When choosing a model, it is important to reflect on whether the model
is sound from a theoretical point of view and whether it is adequate in terms of
the scientific research question of interest. While some authors have approached
aspects of this problem from a fundamental, theoretical perspective (McCullagh
(2002) and references therein) it is fair to say that the problem receives less at-
tention in everyday practice than it should. We consider a number of simple but
key settings in order to make a number of general and specific points about this
topic. Many of these points are illustrated using a few simple settings (Section 2).

First, we consider the linear mixed-effects model, that has become a standard
tool for analyzing repeated continuous, normally distributed outcomes. While it
looks like a relatively straightforward extension of linear regression it is sur-
rounded with a number of problems, some of them arising due to the fact that
one can adopt either a hierarchical or a marginal point of view which, while
having connections, are different. The implications of this fact for variance com-
ponent testing ought not to be overlooked (Section 4). Second, when switching
from normally distributed to discrete repeated measures (Section 5), one should
realize that, even though there are links to the simpler linear mixed model, the
situation is dramatically more complicated. In particular, one can choose be-
tween a number of relevant but non-equivalent modelling families. Within each
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family (marginal, conditional, mixed-effects models), specific issues have to be
addressed. Quite a bit of confusion stems from real or apparent connections
between the families.

2. Examples

In this section, two examples, used to illustrate various points, are intro-
duced.

2.1. Toenail data

The data come from a randomized, double-blind, parallel group, multicenter
study for the comparison of two oral treatments for toenail dermatophyte ony-
chomycosis. Patients with a clinical diagnosis of toe onychomycosis, confirmed
by a positive direct microscopy and a positive culture for dermatophytes at a
central laboratory, were randomly assigned to treatment A or treatment B. After
a twelve week treatment period, there was a follow-up period of 36 weeks. Pa-
tients returned to the hospital at months 0 (baseline), 1, 2, 3, 6, 9 and 12. More
details can be found in De Backer, De Vroey, Lesaffre, Scheys and De Keyser
(1998). One of the outcomes measured at each occasion was the severity of the
infection, coded as 0 (not severe) or 1 (severe). The question of interest was
whether the rate of severe infections decreased over time, and whether that evo-
lution was different for the two treatment groups. Although 189 patients were
initially included in each group, only 118 patients from group A and 108 patients
from group B completed the study. However, we ignore this dropout problem for
now, and refer to Verbeke and Molenberghs (2000) for an extensive discussion
on dropout, and on missing data in general.

2.2. Fluvoxamine study

These data come from a multicenter study involving 315 patients that were
treated by fluvoxamine for psychiatric symptoms described as possibly resulting
from a dysregulation of serotonine in the brain. Patients with one or more of the
following diagnoses were included: depression, obsessive, compulsive disorder and
panic disorder. Several covariates were recorded, such as sex and initial severity.
After recruitment of the patient in the study, he or she was investigated at
three visits. On the basis of about twenty psychiatric symptoms, the therapeutic
effect and the side-effects were scored at each visit in an ordinal manner. Side
effect is coded as (1) = no; (2) = not interfering with functionality of patient;
(3) = interfering significantly with functionality of patient; (4) = the side-effect
surpasses the therapeutic effect. Similarly, the effect of therapy is recorded on
a four point ordinal scale: (1) no improvement over baseline or worsening; (2)
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minimal improvement (not changing functionality); (3) moderate improvement
(partial disappearance of symptoms) and (4) important improvement (almost
disappearance of symptoms). Thus a side effect results if new symptoms occur,
while there is therapeutic effect if old symptoms disappear. These data were
used, among others, by Molenberghs and Lesaffre (1994) and Lapp, Molenberghs
and Lesaffre (1998).

3. Hierarchical and Marginal Views on the Linear Mixed Models

The linear mixed-effects model (Laird and Ware (1982) and Verbeke and
Molenberghs (2000)) is a commonly used tool for, among others, variance com-
ponent models and for longitudinal data. The model and some of its implications
for interpretational meaningfulness will be discussed in this and the next section.

Let Yi denote the ni-dimensional vector of measurements available for sub-
ject i = 1, . . . , N . A general linear mixed model then assumes that Yi satisfies

Yi = Xiβ + Zibi + εi, (1)

in which β is a vector of population-average regression coefficients called fixed
effects, and where bi is a vector of subject-specific regression coefficients. The bi

describe how the evolution of the ith subject deviates from the average evolution
in the population. The matrices Xi and Zi are (ni × p) and (ni × q) matrices
of known covariates. The random effects bi and residual components εi are as-
sumed to be independent with distributions N(0,D), and N(0,Σi), respectively.
Inference for linear mixed models is usually based on maximum likelihood or
restricted maximum likelihood estimation under the marginal model for Yi, i.e.,
the multivariate normal model with mean Xiβ, and covariance Vi = ZiDZ

′
i + Σi

(Laird and Ware (1982), Verbeke and Molenberghs (2000)). Thus, we can adopt
two different views on the linear mixed model. The fully hierarchical model is
specified by

Yi|bi ∼ Nni(Xiβ + Zibi,Σi), bi ∼ N(0,D), (2)

while the marginal model is given by

Yi ∼ Nni(Xiβ, ZiDZ
′
i + Σi). (3)

In practice, one can be interested in the fully hierarchical model (e.g., to use the
random effects for individual-level predictions) or in the marginal model only. In
the latter case, a hierarchical model formulation might be used as a convenient
tool to derive a (parsimonious) covariance structure. However, even though they
are often treated as equivalent, there are important differences between the hier-
archical and marginal views of the model. Obviously, (2) requires the covariance
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matrices Σi and D to be positive definite, while in (3) it is sufficient for the
resulting matrix Vi to be positive definite.

Different hierarchical models can produce the same marginal model. To see
this, consider the case where every subject is measured twice (ni = 2). First,
assume that the random-effects structure is confined to a random intercept (bi

is scalar) and residual error structure Σi = Σ = diag(σ2
1 , σ

2
2) (Model I):

V =

(
1
1

)
(d) (1 1) +

(
σ2

1 0
0 σ2

2

)
=

(
d+ σ2

1 d

d d+ σ2
2

)
. (4)

Second, consider the random effects to consist of a random intercept and a ran-
dom slope, bi = (b0i, b1i)′, mutually uncorrelated, with residual error structure
Σi = Σ = σ2I2 (Model II):

V =

(
1 0
1 1

)(
d1 0
0 d2

)(
1 1
0 1

)
+

(
σ2 0
0 σ2

)
=

(
d1+σ2 d1

d1 d1+d2+σ2

)
.

(5)
Obviously, (4) and (5) are equivalent: d1 = d, d2 = σ2

2 − σ2
1 and σ2 = σ2

1 . Thus
different hierarchical models can produce the same marginal model, illustrating
that a good fit of the marginal model cannot be seen as equally strong evidence
for any hierarchical model. Arguably, a satisfactory treatment of the hierarchi-
cal model is only possible within a Bayesian context. There is another subtle
difference between Models I and II. Model I is a proper hierarchical model if d,
σ2

1 and σ2
2 are nonnegative. However, this is not sufficient for Model II, since, if

σ2
2 < σ2

1 , d2 is negative and hence it is then impossible for the resulting D matrix
to be positive definite. In the reverse case, both Models I and II are consistent
with the marginal model.

Further, there exist marginal models that are not implied by a hierarchical
model. The simplest example is found by restricting the random effects in (1) to
a random intercept and choosing Σi = σ2Ini . The resulting marginal model is
given by

Y i ∼ N(Xiβ, τ
2Jni + σ2Ini), (6)

where Jni equals the ni×ni matrix containing only ones. Regarding the variance
component τ2 in the above model, one can take two views. In the first view, where
the focus is entirely on the resulting marginal model (6), negative values for τ2

are perfectly acceptable (Nelder (1954), Verbeke and Molenberghs (2000, Section
5.6.2)), since this merely corresponds to the occurrence of negative within-cluster
correlation ρ = τ2/(τ2 + σ2). This might occur, for example, in a context of
competition such as when littermates compete for the same food resources. In
the second view, when the link between the marginal model (6) and its generating
hierarchical model (2) is preserved, thereby including the concept of random
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effects bi and perhaps even requiring inference for them, it is imperative to restrict
τ2 to nonnegative values. In other words, a model with negative τ2 cannot be
derived from a hierarchical model.

4. Nonstandard Testing Problems in a Hierarchical View

While both the marginal and hierarchical views are possible, there are impor-
tant differences regarding statistical inference for variance components. The first
situation, which we term the unconstrained case, is standard regarding inference
for the variance component τ2. Under the unconstrained parameterization, i.e.,
the model under which negative values for τ2 are allowed, classical inferential
tools are available for testing the general two-sided hypothesis H0 : τ2 = 0 versus
HA2 : τ2 �= 0. Wald, likelihood ratio and score tests are then asymptotically
equivalent, and the asymptotic null distribution is well known to be χ2

1 (Cox
and Hinkley (1990)). Under the constrained model, i.e., the model where τ2 is
restricted to the non-negative real numbers, the one-sided hypothesis (7) is the
only meaningful one.

In the second situation (the constrained case), however, one typically needs
one-sided tests of the null-hypothesis

H0 : τ2 = 0 versus HA1 : τ2 > 0. (7)

As the null-hypothesis is now on the boundary of the parameter space, classical
inference no longer holds, and appropriately tailored test statistics need to be
developed along with their corresponding (asymptotic) null distributions.

Suppressing dependence on the other parameters, let �(τ2) denote the log-
likelihood as a function of the random-intercepts variance τ2. Further, let τ̂2

denote the maximum likelihood estimate of τ2 under the unconstrained param-
eterization. We first consider the likelihood ratio test statistic:

TLR = 2 ln

[
maxH1A

�(τ2)
maxH0 �(τ2)

]
.

Two cases, graphically represented in Figure 1, can now be distinguished. Under
Case A, τ̂2 is positive, and the likelihood ratio test statistic is identical to the
one that would be obtained under the unconstrained parameter space for τ2.
Hence conditionally on τ̂2 ≥ 0, TLR has asymptotic null distribution equal to
the classical χ2

1. Under Case B however, we have that, under H1A as well as
under H0, �(τ2) is maximized at τ2 = 0 yielding TLR = 0. Under H0, both cases
occur with 50% probability. Hence the asymptotic null distribution of TLR is
easily seen to follow a 0.5P (χ2

1 > c) + 0.5P (χ2
0 > c) null distribution, where χ2

0

denotes the distribution with all probability mass at 0. Hence the asymptotic
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null distribution of the one-sided likelihood ratio test statistic is a mixture of
two chi-squared distributions, with degrees of freedom 0 and 1, and with equal
mixing proportions 1/2. This was one of Stram and Lee’s (1994, 1995) special
cases. Note that, whenever τ̂2 ≥ 0, the observed likelihood ratio test statistic is
equal to the one under the unconstrained model, but the p-value is half the size
of the one obtained from the classical χ2

1 approximation to the null distribution.

Figure 1. Graphical representation of two different situations, when develop-
ing one-sided tests for the variance τ2 of the random intercepts bi in model.

Similar to the random-intercepts model, the general marginal model does
not require D to be positive definite, while a hierarchical interpretation of the
model does. As before, inference under the unconstrained model for the variance
components in D can be based on the classical chi-squared approximation to
the null distribution for the likelihood ratio test statistic. Under the constrained
model, Stram and Lee (1994, 1995) have shown that the asymptotic null distri-
bution for the likelihood ratio test statistic for testing a null hypothesis which
allows for k correlated random effects versus an alternative of k + 1 correlated
random effects (with positive semi-definite covariance matrix Dk+1), is a mixture
of a χ2

k and a χ2
k+1, with equal probability 1/2. For more general settings, e.g.,

comparing models with k and k + k′ (k′ > 1) random effects, the null distribu-
tion is a mixture of χ2 random variables (Shapiro (1988) and Raubertas, Lee
and Nordheim (1986)), the weights of which can only be calculated analytically
in special cases. Shapiro’s (1988) results provide a few important special cases
not studied by Stram and Lee (1994). For example, if the null hypothesis allows
for k uncorrelated random effects (with a diagonal covariance matrix Dk) versus
the alternative of k + k′ uncorrelated random effects (with diagonal covariance
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matrix Dk+k′), the null distribution is a mixture of the form

k′∑
m=0

2−k
′
(
k′

m

)
χ2
m.

Verbeke and Molenberghs (2003), using results by Silvapulle and Silvapulle
(1995), have shown that similar results are obtained when a score test is used
instead of a likelihood ratio test. To provide insight, we again consider the
random-intercepts model and then sketch the general result. The usual form of
the test statistic in the scalar case is

TS =
[∂�(τ2)
∂τ2

∣∣∣
τ2=0

]2[− ∂2�(τ2)
∂τ2∂τ2

∣∣∣
τ2=0

]−1
. (8)

Nuisance parameters are suppressed and replaced by their MLE’s. The classical
score test (8) implicitly assumes a two-sided alternative. Hence, the test statis-
tic itself needs to be redefined appropriately in order to be able to discriminate
between positive and negative alternative values for τ2. The same two cases as
for the likelihood ratio test can be considered (see Figure 1). Under Case A, τ̂2

is positive, and the positive score ∂�(τ2)/∂τ2 at zero is evidence against H0 in
favor of the one-sided alternative HA1. Hence (8) can be used as test statistic,
provided that τ̂2 ≥ 0. This implies that, conditionally on τ̂2 ≥ 0 and under
H0, our test statistic asymptotically follows the classical χ2

1 distribution. Un-
der Case B, however, the score at τ2 = 0 is negative, and therefore cannot be
used as evidence against H0 in favor of HA1. Hence, whenever τ̂2 is negative,
(8) is no longer meaningful as test statistic. Considering that a negative score
at zero supports the null hypothesis, a meaningful modified test statistic is ob-
tained from restricting (8) to the case where τ̂2 ≥ 0 and setting it to zero in
case τ2 < 0. It is easily seen that the asymptotic null distribution is, again,
0.5P (χ2

1 > c) + 0.5P (χ2
0 > c). This heuristic but insightful argument can be for-

malized and generalized to vector valued settings. The above heuristic arguments
have suggested that employment of score tests for testing variance components
under the constrained parameterization requires replacing the classical score test
statistic by an appropriate one-sided version. This is where the general theory
of Silvapulle and Silvapulle (1995) on one-sided score tests proves very useful.
They consider models parameterized through a vector θ = (λ′,ψ′)′, where test-
ing a general hypothesis of the form H0 : ψ = 0 versus HA : ψ ∈ C is of interest.
In our context, the alternative parameter space C equals the nonnegative real
numbers (e.g., when testing (7), or the set of positive semi-definite covariance
matrices D). In general, Silvapulle and Silvapulle (1995) allow C to be a closed
and convex cone in Euclidean space, with vertex at the origin. The advantage
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of such a general definition is that one-sided, two-sided, and combinations of
one-sided and two-sided hypotheses are included.

Adopt the following notation. Let SN (θ) and H(θ) be the score vector
and Hessian matrix of the log-likelihood function. Further, decompose SN as
SN = (S′

Nλ,S
′
Nψ)′, let Hλλ(θ), Hλψ(θ) and Hψψ(θ) be the corresponding blocks

in H(θ), and define θH = (λ′,0′)′. θH can be estimated by θ̂H = (λ̂
′
,0′)′, in

which λ̂ is the maximum likelihood estimate of λ under H0. Finally, let ZN be
equal to ZN = N−1/2SNψ(θ̂H). A one-sided modified score statistic can now be
defined as

TS := Z ′
NH

−1
ψψ(θ̂H)ZN − inf

{
(ZN − b)′H−1

ψψ(θ̂H)(ZN − b)|b ∈ C
}
. (9)

Note that the modified score statistic, heuristically defined in the case of the
random-intercepts model, is a special case of (9). Indeed when τ̂2 is positive the
score at zero is positive, and therefore in C, such that the infimum in (9) becomes
zero. For τ̂2 negative, the score at zero is negative as well and the infimum in
(9) is attained for b = 0, resulting in TS = 0.

It follows from Silvapulle and Silvapulle (1995) that, under suitable regular-
ity conditions, as N → ∞, the modified likelihood ratio and score test statistics
satisfy TLR = TS + op(1). This indicates that the equivalence of the score and
likelihood ratio tests not only holds in the classical two-sided but also in the
modified one-sided cases. Moreover, what is known about the null distribution
in the case of the likelihood ratio test immediately carries over to the score test
case. This result corrects the common belief that, even when variance compo-
nents are on the boundary of the parameter space, the score test deserved no
special treatment. Verbeke and Molenberghs (2003) provide an empirical illus-
tration. In practice, calculation of (9) requires some extra programming work
and, even though it is not insurmountable, one may therefore be inclined to resort
to likelihood ratio testing.

5. Discrete Repeated Measures

In the previous section we discussed a number of issues arising from the use
of the linear mixed effects model. In particular, we focused on complexities stem-
ming from the difference between a marginal and a hierarchical (random-effects)
interpretation of such a model. Marginal and random-effects models are two
important sub-families of models for repeated measures. Several authors, such
as Diggle, Heagerty, Liang and Zeger (2002) and Aerts, Geys, Molenberghs and
Ryan (2002) distinguish between three such families. Still focusing on continuous
outcomes, a marginal model is characterized by the specification of a marginal
mean function

E(Yij |xij) = x′
ijβ, (10)
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whereas a random-effects model focuses on the expectation, conditional upon the
random-effects vector

E(Yij |bi,xij ,zij) = x′
ijβ + z′ijbi. (11)

Finally, a third family of models conditions a particular outcome on the other
responses or a subset thereof. In particular, a simple first-order stationary tran-
sition model focuses on expectations of the form

E(Yij |Yi,j−1, . . . , Yi1,xij) = x′
ijβ + αYi,j−1. (12)

The fixed-effects (random-effects) covariate vector xij (zij) groups all covariates
that are used in the model for the measure at occasion j. In line with the linear
mixed model sections, we often group the outcomes Yij into a vector Y i. In such
cases the covariates, when explicitly usesd, are grouped into matrices Xi and Zi.

As seen before, random-effects models imply a simple marginal model in the
linear mixed model case. This is due to the elegant properties of the multivariate
normal distribution. In particular, the expectation (10) follows from (11) by
either (a) marginalizing over the random effects or (b) by conditioning upon
the random-effects vector bi = 0. Hence, the fixed-effects parameters β have
both a marginal as well as a hierarchical model interpretation. Finally, when a
conditional model is expressed in terms of residuals rather than outcomes directly,
it also leads to particular forms of the general linear mixed effects model.

Such a close connection between the model families does not exist when
outcomes are non-Gaussian. We consider each of the model families in turn,
then point to some particular issues arising within them or when comparisons
are made between them. We first review some general concepts from univariate
generalized linear models, with emphasis on logistic regression.

5.1. Generalized linear models, exponential family, and logistic regres-
sion

For the analysis of binary response variables, one of the most commonly
used tools is logistic regression (Agresti (1990)). There are at least three obvious
reasons for this. First, it is considered an extension of linear regression. Second,
it fits within the theory of generalized linear models. Third, especially in a
biometrical context, the interpretation of its parameters in terms of odds ratios is
considered convenient. When the latter is less of a concern, such as in econometric
applications, one frequently encounters probit regression.

Consider a response variable Yi, measured on subjects i = 1, . . . , N , together
with covariates xi. A generalized linear model minimally specifies the mean
E(Yi) = µi and links it to a linear predictor in the covariates η(µi) = xTi β,
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where η(.) is the so-called link function. Further, the variance of Yi is then linked
to the mean model by the mean-variance link Var(Yi) = φv(µi), where v(.) is a
known variance function and φ is a scale or overdispersion parameter. Such a
specification is sufficient to implement moment-based estimation methods, e.g.,
iteratively reweighted least squares or quasi likelihood (McCullagh and Nelder
(1989)). In case full likelihood is envisaged, the above framework can be seen to
be derived from the general exponential family definition

f(y|θi, φ) = exp
{
φ−1[yθi − ψ(θi)] + c(y, φ)

}
(13)

with θi the natural parameter and ψ(.) a function satisfying µi = ψ′(θi) and
v(µi) = ψ

′′
(θi).

In the case of a binary outcome Yi, the model can be written as

f(yi|θi, φ) = µyi
i (1 − µi)1−yi = exp

{
yi ln

(
µi

1 − µi

)
+ ln(1 − µi)

}
,

and hence the Bernoulli model and, by extension logistic regression, fits within
this framework. In particular,

θi = logit(µi) = µi/(1 − µi) = logit[P (Yi = 1|xi)], (14)

µ = eθ/(1 + eθ) and v(µ) = µ(1 − µ). In case one opts for a probit link, the
logit in (14) is replaced by the inverse of the standard normal distribution Φ−1,
i.e., the probit function. This model cannot be put within the exponential family
context. Hence, the choice for logistic regression is often based on the mathe-
matical convenience entailed by the exponential family framework. Now, it has
been repeatedly shown (Agresti (1990)) that the logit and probit link functions
behave very similarly, in the sense that for probabilities other than extreme ones
(say, outside the interval [0.2; 0.8]) both forms of binary regression provide ap-
proximately the same parameter estimates, up to a scaling factor equal to π/

√
3,

the ratio of the standard deviations of a logistic and a standard normal variable.
The beauty and elegance of the exponential family framework should not

disguise that there are fundamental differences with linear regression. First, the
normal densities, explicitly or implicitly underlying linear regression, exhibit a
separation between mean and variance; this is radically different in most com-
monly used generalized linear models. Second, the link function introduces a
form of non-linearity that is absent in linear regression, complicating, for exam-
ple, model selection.

In spite of these remarks, logistic regression has found its way into everyday
statistical practice. Perhaps due to this familiarity, the model has been extended
to a number of different settings, including longitudinal data. We show such
extensions are less straightforward in the non-Gaussian case than when the linear
mixed model is used.
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5.2. Marginal models

In marginal models, the parameters characterize the marginal probabilities
of a subset of the outcomes, without conditioning on the others. Advantages
and disadvantages of conditional and marginal modeling have been discussed
in Diggle, Heagerty, Liang and Zeger (2002), and Fahrmeir and Tutz (2001).
The specific context of clustered binary data has received treatment in Aerts,
Geys, Molenberghs and Ryan (2002). Apart from full likelihood approaches, non-
likelihood methods, such as generalized estimating equations (Liang and Zeger
(1986)) or pseudo-likelihood (le Cessie and van Houwelingen (1994) and Geys,
Molenberghs and Lipsitz (1998)) have been considered.

Bahadur (1961) proposed a marginal model, accounting for the association
via marginal correlations. Ekholm (1991) proposed a so-called success probabil-
ities approach. George and Bowman (1995) proposed a model for the particular
case of exchangeable binary data. Ashford and Sowden (1970) considered the
multivariate probit model, for repeated ordinal data, thereby extending univari-
ate probit regression. Molenberghs and Lesaffre (1994) and Lang and Agresti
(1994) have proposed models which parameterize the association in terms of
marginal odds ratios. Dale (1986) defined the bivariate global odds ratio model,
based on a bivariate Plackett distribution (Plackett (1965)). Molenberghs and
Lesaffre (1994, 1999) extended this model to multivariate ordinal outcomes.
Their 1994 method involves solving polynomials of high degree, while in 1999
generalized linear models theory is exploited, together with an adaptation of
the iterative proportional fitting algorithm. Lang and Agresti (1994) exploit the
equivalence between direct modeling and imposing restrictions on the multino-
mial probabilities, using undetermined Lagrange multipliers. Alternatively, the
cell probabilities can be fitted using a Newton iteration scheme, as suggested by
Glonek and McCullagh (1995). We consider some of these models in turn.

5.3. Some marginal models for repeated binary data

Let the binary response Yij indicate outcome j for individual i. Let

εij =
Yij − µij√
µij(1 − µij)

and eij =
yij − µij√
µij(1 − µij)

,

where yij is an actual value of the binary response variable Yij. Further, let ρijk =
E(εijεik), ρijk� = E(εijεikεi�), . . . , ρi12...ni = E(εi1εi2 . . . εini). The parameters
ρijk are classical Pearson type correlation coefficients. The general Bahadur
model can be represented by the expression f(yi) = f1(yi)c(yi), where

f1(yi) =
ni∏
j=1

π
yij

ij (1 − πij)1−yij ,
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c(yi) = 1 +
∑
j<k

ρijkeijeik +
∑
j<k<�

ρijk�eijeikei� + . . .+ ρi12...niei1ei2 . . . eini .

Thus, the probability mass function is the product of the independence model
f1(yi) (combining ni logistic regressions) and the correction factor c(yi). The
factor c(yi) can be viewed as a model for overdispersion. The Bahadur model
has a very tractable form, a clear advantage over other, more implicitly defined,
models. However, a practical drawback is the fact that the correlation between
two responses is highly constrained when the higher order correlations are re-
moved. Such a decision is often made to keep the computations, as well as the
modeling exercise, within reasonable limits. Even when higher order parame-
ters are included, the parameter space of marginal parameters and correlations
is known to be of a very peculiar shape. For detailed studies, see Kupper and
Haseman (1978), Prentice (1988) and Declerck, Aerts and Molenberghs (1998).
In conclusion, this model is very appealing at first sight, since it combines lo-
gistic regression for the univariate marginal distributions with seemingly very
interpretable correlation coefficients. However our intuition about correlation
coefficients largely comes from the normal distribution, where there is a total
separation between the mean parameters and the dependence parameters. In
the present case, they are heavily constrained, not only by themselves but also
by the marginal parameters. This makes computations and interpretation dif-
ficult. Thus, while the correlation is undoubtedly a meaningful parameter in
the case of normally distributed outcomes, it can be highly questionable in the
context of binary outcomes.

Ekholm (1991), using µijk = P [Yij = 1, Yik = 1|xi], considered ηijk =
logit(µijk) = ln(µijk) − ln(1 − µijk), with similar definition for higher orders.
While such an approach seems symmetric and therefore appealing, this is only
seemingly so. For example, while both P (Yij = 1|xi) and P (Yij = 0|xi) are linear
in the covariates on the logit scale, this is not true for P [Yij = 0, Yik = 1|xi],
P [Yij = 1, Yik = 0|xi], or P [Yij = 0, Yik = 0|xi], in spite of P [Yij = 1, Yik =
1|xi] being modeled linearly on the logit scale. Moreover, the range of µijk is
restricted by the values for the univariate probabilities, the so-called Fréchet
bounds: max(0, µij + µik − 1) ≤ µijk ≤ min(µij , µik), implying complicated
restrictions on the parameters. Even when valid probabilities are obtained, in-
terpretation of such coefficients is problematic. This is another instance of a
model that seems appealing but engenders a lot of practical and interpretational
difficulties.

5.4. Some marginal models for repeated ordinal data

While we already encountered problems with marginal models for repeated
binary data, issues are magnified with ordinal outcomes. We introduce a mod-
eling formalism in this section, then introduce conditional models in the next,
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after which we will be in a position to discuss the meaningfulness of one relative
to the other.

The outcome for cluster i is a series of measurements Yij (j = 1, . . . , ni). As-
sume that Yij can take on cj distinct ordered values kj = 1, . . . , cj . It is convenient
to define so-called cumulative multi-indicator functions: zi(k) = zi(k1, . . . , kni) =
I(yi ≤ k), the multi-indicator being one if every component of the vector-valued
inequality is satisfied and zero otherwise. The corresponding probability is de-
noted by µi(k). The choice to use cumulative indicators is in agreement with
the ordinal nature of the outcomes. Setting one or more of the indices kj equal
to their maximal value cj has the effect of marginalizing over the corresponding
outcome. Doing this for all but one index results in the univariate indicators
zijk = I(yij ≤ k) and their corresponding marginal probability µijk. The order-
ing needed to stack the multi-indexed counts and probabilities into a vector will
be done by dimensionality.

We can now complete the model by choosing appropriate link functions. For
the vector of links ηi we consider a function mapping the Ci-vector µi (Ci =
c1 · c2 · . . . · cTi) to

ηi = ηi(µi), (15)

a C
′
i-vector. Often, Ci = C

′
i , and ηi and µi have the same ordering. A coun-

terexample is provided by the probit model, where the number of link functions
is smaller than the number of mean components, as soon as ni > 2.

We consider particular choices of link functions. The univariate logit link
becomes ηijk = ln(µijk) − ln(1 − µijk) = logit(µijk). The probit link is ηijk =
Φ−1

1 (µijk), with Φ1 the univariate standard normal distribution. Next, full spec-
ification of the association requires addressing the form of pairwise and higher-
order probabilities. First we consider pairwise associations. Let us denote the
bivariate probabilities pertaining to the j1th and j2th outcomes by µi,j1j2,k1k2 =
µi(c1, . . . , cj1−1, k1, cj1+1, . . . , cj2−1, k2, cj2+1, . . . , cni). The Dale model is based
on the marginal global odds ratio defined by

ψi,j1j2,k1k2 =
(µi,j1j2,k1k2)(1 − µij1k1 − µij2k2 + µi,j1j2,k1k2)

(µij2k2 − µi,j1j2,k1k2)(µij1k1 − µi,j1j2,k1k2)
, (16)

and is usefully modeled on the log scale. Higher order global odds ratios are
defined similarly.

The multivariate probit model also fits within the class defined by (15).
For three categorical outcome variables, the inverse link is specified by µijk =
Φ1(ηijk), µi,j1j2,k1k2 = Φ2(ηij1k1, ηij1k2 , ηi,j1j2,k1k2) and µi,123,k1k2k3 = Φ3(ηi1k1 ,
ηi2k3 , ηi3k3 , ηi,12,k1k2, ηi,13,k1k3, ηi,23,k2k3). The association links ηi,ts,k� represent
any transform (e.g., Fisher’s z-transform) of the polychoric correlation coefficient.
It is common practice to keep each correlation constant throughout a table, rather
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than having it depend on the categories: ηi,j1j2,k1k2 ≡ ηi,j1j2. Relaxing this
requirement may still give a valid set of probabilities, but the correspondence
between the categorical variables and a latent multivariate normal variable is
lost. A choice may be driven by whether one wants a good description of the
cell probabilities or inference in terms of the underlying latent variables (e.g.,
to quantify association structures). Finally, observe that univariate links and
bivariate links (representing correlations) fully determine the joint distribution.

We return to these models in Section 5.7, after introducing conditional mod-
els. However, we would like to assert that both the global odds ratio model,
building upon univariate logits, and the multivariate probit model often provide
meaningful models where a choice of one versus the other, even though there are
differences, is less pronounced. This will be rather different in the context of
random-effects models (Section 5.9).

5.5. Conditional models

In a conditional model the parameters describe a feature (probability, odds,
logit,. . .) of (a set of) outcomes, given values for the other outcomes (Cox (1972)).
The best known example is undoubtedly the log-linear model. Rosner (1984) de-
scribed a conditional logistic model. Due to the popularity of marginal (especially
generalized estimating equations) and random-effects models for correlated bi-
nary data, conditional models have received relatively little attention. Diggle,
Heagerty, Liang and Zeger (2002, pp.142-143) criticized the conditional approach
because the interpretation of the covariate effect on the probability of one out-
come is conditional on the responses of other outcomes for the same individual,
outcomes of other individuals and the cluster size.

We consider the model proposed by Cox (1972). The probability mass func-
tion is given by

fY i(yi;Θi) = exp
{ ni∑
j=1

θijyij +
∑
j<j′

ωijj′yijyij′ + · · ·+ ωi1···niyi1 · · · yini −A(Θi)
}
.

(17)
The θ parameters can be thought of as “main effects”, whereas the ω parameters
are association parameters. Models that do not include all interactions are de-
rived by replacing the vector of ω parameters by one of its subvectors. A useful
special case is found by setting all three and higher order parameters equal to
zero. This is a member of the quadratic exponential family discussed by Zhao and
Prentice (1990). Thélot (1985) studied the case where ni = n = 2. If ni = n = 1,
the model reduces to ordinary logistic regression. The parameters ωijj′ can be
interpreted as conditional odds ratios, i.e., the odds ratio between outcomes at
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occasions j and j′, conditional upon all other outcomes being zero. Given the
exponential family nature of the model, parameter estimation is particularly easy.

Model (17) is usually not meaningful when the cluster sizes ni are un-
equal. Indeed, when ni = 1 then θi1 = logit[P (Yij = 1] while, when ni = 2,
θi1 = logit[P (Yij = 1|Yij = 0]. Thus, the same parameter would change its inter-
pretation depending on the cluster size. When ni = n for all i, and the design
is balanced (i.e., measurement occasions are common to all clusters), then the
model is mathematically principled. The question then is whether the investi-
gator is interested in a response to a conditional question rather than to, for
example, a marginal one. A marginal question might be whether the probabil-
ity of side effects in the fluvoxamine study increases or decreases with time; a
conditional question might consider the probability of side effects at the second
occasion, given there were none at the first occasion.

5.6. Generalized estimating equations

The main issue with full likelihood approaches is the computational com-
plexity they entail. When we are mainly interested in first-order marginal mean
parameters and pairwise interactions, a full likelihood procedure can be replaced
by quasi-likelihood methods (McCullagh and Nelder (1989)), solely expressing
the mean response as a function of covariates and writing the variance as a func-
tion of the mean, up to possibly unknown scale parameters. Wedderburn (1974)
first noted that likelihood and quasi-likelihood theories coincide for exponential
families and that the quasi-likelihood “estimating equations” provide consistent
estimates of the regression parameters β in any generalized linear model, even
for choices of link and variance functions that do not correspond to exponential
families.

For correlated data, Liang and Zeger (1986) proposed generalized estimating
equations (GEE or GEE1), requiring only the correct specification of the univari-
ate marginal distributions provided one is willing to adopt “working” assumptions
about the association structure. The method combines estimating equations for
the regression parameters β with moment-based estimation of the correlation
parameters entering the working assumptions. Prentice (1988) extended their re-
sults to allow joint estimation of probabilities and pairwise correlations. Lipsitz,
Laird and Harrington (1991) modified the latter estimating equations, replacing
correlations by odds ratios. When adopting GEE1 one does not use information
of the association structure to estimate the main effect parameters. As a result,
it can be shown that GEE1 yields consistent main effect estimators, even when
the association structure is misspecified. However, severe misspecification may
seriously affect the efficiency of the GEE1 estimators. In addition, GEE1 should
be avoided when some scientific interest is placed on the association parameters.
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Liang, Zeger and Qaqish (1992) proposed a second-order extension (GEE2), fully
specifying the association model.

5.7. Marginal versus conditional models and global odds ratios

Having introduced marginal and conditional models, we are now in a po-
sition to discuss points of meaningfulness of one relative to the other. It will
be clear from the briefest comparison, that fitting a marginal model is typically
more involved than fitting the conditional model of the previous section. Most
marginal models have constrained parameter spaces. This is often cited as an
interpretational disadvantage. However, the same is true for the multivariate
normal model since the covariance matrix has to be positive definite. Exactly
the same constraint applies to the multivariate probit model and similar but less
tractable constraints apply to the Dale model. In contrast, the parameters of (17)
can take on any value in the Euclidean space whilst still producing valid proba-
bilities. Also, marginal models differ one from the other in terms of the severity
of the restrictions. While in the Bahadur model the association parameter is
restricted, even when ni = n = 2, this is not the case in the Dale model where
the odds ratio can range over the entire parameter space [0,+∞]. Restrictions
in the higher dimensional case exist but are rather weak.

One of the main interpretational advantages of marginal models is their
upward compatibility or reproducibility (Liang, Zeger and Qaqish (1992)). This
means that when a marginal model (e.g., the Dale, probit, or Bahadur model)
is used to model a response vector, the appropriate sub-model applies to any
subvector of the response vector. Such a sub-vector still follows a model of
the same structure, with as parameter vector the corresponding sub-vector. In
particular, the univariate margins of the marginal models discussed above are
typically of the logistic type, the probit model the obvious exception.

Marginal models should be chosen whenever there are marginal research
questions, e.g., pertaining to one or a few occasions, or the evolution between
them (e.g., the time evolution of the response in the toenail data). They are also
useful when not only the strength of association between occasions, but also a
quantification of this association is of interest. Of course, when the number of
measurement occasions within a subject grows, such models become intractable
from a likelihood perspective. One can then resort to alternative approaches,
such as generalized estimating equations or pseudo-likelihood.

We view the odds ratio as a meaningful measure of association between
repeated categorical outcomes. It can be defined in several ways. Model (17) is
based on conditional odds ratios, whereas the multivariate Dale model is based
on marginal odds ratios. Apart from a marginal-conditional dimension, there is
also a local-global dimension to the discussion. The odds ratios are local in the
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log-linear model and global in the Dale model. Lapp, Molenberghs and Lesaffre
(1998) provide some support for the use of global odds ratios rather than local
ones for cross-classified ordinal data. They do so based on a comparison of the
Dale model with Goodman’s (1981) association models. Consider a single J ×K
contingency table (no covariates). Log local cross-ratios are given by

ln θ∗jk = ln
(

pr(Y1 = j, Y2 = k)pr(Y1 = j + 1, Y2 = k + 1)
pr(Y1 = j, Y2 = k + 1)pr(Y1 = j + 1, Y2 = k)

)
= ln

µ∗jkµ
∗
j+1,k+1

µ∗j,k+1µ
∗
j+1,k

,

with j = 1, . . . , J − 1 and k = 1, . . . ,K − 1. Then for

µ∗jk = αjβke
φλjνk , (18)

j = 1, . . . , J ; k = 1, . . . ,K, αj and βk are main effect parameters while λj,
νk and φ describe the association structure. Indeed, the local cross-ratios are
ln θ∗jk = φ(λj − λj+1)(νk − νk+1). Identifiability constraints have to be imposed
on the parameters in (18). This model is also called the row-column model (RC
model). The predictor function can be represented as η = lnµ∗ = g(ξ), with
g(ξ) defined by

gij(ξ) = lnαj + lnβk + φλjνk. (19)

Predictor function (19) is non-linear and a combination of main effects and as-
sociation parameters. An alternative association parameterization is additive in
the log cross-ratios: ln θ∗jk = δ1j + δ2k and induced by

µ∗jk = αjβkγ
k
1jγ

j
2k. (20)

For this parameterization, (19) changes to gjk(ξ) = lnαj+lnβk+k ln γ1j+j ln γ2k.
Note that this predictor is linear in the parameters.

Goodman (1981) generalizes (18) to

µ∗jk = αjβk exp

(
4∑
�=1

φ�λ�jiν�k

)
, (21)

where λ1j and λ3j are linear functions of the index j and ν1k and ν2k are linear
in k. The others are allowed to be non-linear. He shows that the log cross-ratios
can be written as

ln θ∗jk = η + ηJj + ηKk + ζJj ζ
K
k . (22)

This so-called R+C+RC model allows the inclusion of additive effects on the
association.

Although the above models provide an elegant description of the association
in contingency tables, a disadvantage of the RC family is their cumbersome
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forms for the marginal models, especially when there are substantive marginal
questions.

To contrast it with the above model, let us return to the Dale model for
the specific case of bivariate ordinal data. The model is defined in terms of
marginal cumulative logits and global cross-ratios. The cumulative logits η1j

and η2k (j = 1, . . . , J −1; k = 1, . . . ,K−1), together with the global cross-ratios

lnψjk=ln
(

pr(Y1≤j, Y2≤k)pr(Y1>j, Y2>k)
pr(Y1≤ i, Y2>k)pr(Y1>j, Y2≤k)

)
=ln

µjk(1−µJk−µjK + µjk)
(µjK−µjk)(µJk−µjk) ,

(23)
define the joint probabilities. Should it be thought reasonable, then local cross-
ratios:

lnψ∗
jk = ln

µ∗jk(1 − µ∗j+1,k − µ∗j,k+1 + µ∗jk)
(µ∗j,k+1 − µ∗jk)(µ

∗
j+1,k − µ∗jk)

(24)

can be used instead, meaningful for nominal data, but less so for ordinal data
since the property of collapsibility is lost (pooling adjacent categories without
remaining parameters changing their meaning).

At (23), we pay particular attention to

lnψjk = φ+ ρ1j + ρ2k + σ1jσ2k, (25)

including row and column effects, and interactions between rows and columns.
This model is identified, e.g., by imposing ρ1J = ρ2K = σ1J = σ2K = 0 and
σ11 = 1.

The Goodman and Dale models differ in two important respects. First, the
association in the RC model is in terms of local cross-ratios, while the Dale model
is based on global cross-ratios. Second, and more importantly, the marginal
probabilities of the RC model are complicated functions of the model parameters,
whereas the Dale model is expressed directly in terms of the marginal logits,
facilitating completely general models. For example, a genuine marginal model
can be constructed, with an association function of the RC type. Depending
on the data problem, one can opt for local or for global cross-ratios. Lapp,
Molenberghs and Lesaffre (1998) have shown that this choice is supported by a
very good fit for this kind of model to a range of applications. The global cross-
ratio can lead to interesting interpretations of the association structure itself, an
often neglected feature, illustrated in the next section.

In spite of the close connection between an RC model and an underlying
normal density (Lapp, Molenberghs and Lesaffre (1998)) and the absence of this
connection with a fully marginal model, the latter category provides a versatile
way of exploring the association structure of cross-classified data, whether of
nominal or of ordinal type. We infer from the examples that they often yield
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parsimonious descriptions of the association structure. Further, marginal as-
sociation models are easily extended to marginal regression models to include
covariate effects. Both families extend to multi-way tables as well.

Table 1. Fluvoxamine Data. Cross-classification of (a) initial severity and
side effects at the second occasion; (b) therapeutic effect at second and third
occasions; (c) side effects at the second and third occasions; (d) side effects
and therapeutic effect at the second occasion.

Severity 1 2 3 4
1 1 0 1 0
2 21 28 5 5
3 62 62 15 7
4 41 31 6 2
5 1 5 0 1

Ther. 2 1 2 3 4
1 13 2 0 0
2 37 40 8 4
3 13 58 18 4
4 1 13 36 21

(a) Side 2 (b) Therapeutic 3

Side 2 1 2 3 4
1 105 14 0 0
2 34 80 7 1
3 2 7 10 2
4 3 1 0 2

Side 2 1 2 3 4
1 8 40 40 40
2 7 45 51 25
3 2 9 8 9
4 2 1 3 9

(c) Side 3 (d) Therapeutic 2

5.8. Illustration: fluvoxamine data

We illustrate the points of view developed in the previous section using cross-
classifications from the fluvoxamine study (Table 1). A summary of model fits is
given in Table 2.

Table 1(a) shows a complete lack of association and hence the independence
model is accepted for both the Dale and the RC model. Of course, the deviance
for the independence model in both families is equal. Initial severity measures
symptoms present at baseline, whereas side effects measures symptoms induced
by the therapy. Thus the independence model implies that incidence and intensity
of side effects do not depend on initial conditions. Since the R+C+RC model
is overparameterized, and thus coincides with the saturated model, it is not
included in Table 2.

For Table 1(b) we find a strong association main effect with the Dale model.
The constant global cross-ratio is high: ψ̂ = ψ̂ij = exp(2.52) = 12.43. The fit
improves by 7.68 on 2 degrees of freedom if we add a row effect. This model
deserves our preference. For the RC family, there is certainly a strong constant
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association effect, but the fit is not yet acceptable. A fully satisfactory fit is
provided by the row and column association model.

Table 2. Fluvoxamine Data. Deviance χ2 Goodness-Of-Fit statistics for
Dale and RC Models, fitted to the data in Table 1. The models with an
acceptable fit are indicated by an asterisk.

Table 2 Table 3 Table 4 Table 5
Description df χ2 df χ2 df χ2 df χ2

Dale Models
Independence 12 ∗14.20 9 141.95 9 158.15 9 17.12
Constant Association 11 ∗11.71 8 ∗11.48 8 18.27 8 17.12
Row Effects Only 8 ∗8.34 6 ∗3.80 6 14.49 6 ∗9.78
Column Effects Only 9 ∗11.37 6 ∗10.26 6 ∗12.29 6 16.74
Row and Column Effects 6 ∗8.03 4 ∗1.29 4 ∗2.05 4 ∗9.31
Row, Column, Interactions 2 ∗0.22 1 ∗0.31 1 ∗0.35 1 ∗0.94
Saturated Model 0 0.00 0 0.00 0 0.00 0 0.00

RC Models
Independence 12 ∗14.20 9 141.95 9 158.15 9 17.12
Constant Association 11 ∗12.04 8 19.46 8 48.66 8 16.71
Row Effects Only 8 ∗8.21 6 12.90 6 18.84 6 ∗11.69
Column Effects Only 9 ∗11.88 6 14.35 6 45.12 6 15.14
Row and Column Effects 6 ∗2.22 4 ∗5.16 4 10.48 4 ∗1.44
Saturated Model 0 0.00 0 0.00 0 0.00 0 0.00

There is also a clear global association main effect in Table 1(c), having a
dramatic effect on model fit, which is further improved by adding row and column
effects. Associations are shown in Table 3(c). Some of the observed cross-ratios
are infinite, due to observed zero cells. But for one, all associations are very high.
High associations in the upper right corner are due to high correlation between
side-effects assessments over time; also, they tend to go down. It is remarkable
that no RC model fits the data well (Table 2). In conclusion, a marginal model
such as the Dale model fits the data better than a model from the RC family.
Should one choose to remain within the RC family, then a model of a more
elaborate nature might be needed. Related model (20) yields an acceptable fit:
χ2 = 6.33 on 4 degrees of freedom (P = 0.1760).

Both Tables 1(b) and 1(c) are cross-classifications of an ordinal variable,
recorded at two subsequent measurement times. In both cases, a parsimonious
global association model explains the data well. It seems to be much harder to
fit these data with local association models.

For Table 1(d), the row effects model is the most parsimonious one that pro-
vides an acceptable fit, although caution might dictate keeping column effects
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and interactions in the model. Fitted frequencies for both models are shown in
Table 1(d). Table 3(c) shows the global cross-ratios for the data of Table 1(d), to-
gether with the predicted values under both models. We observe two patterns in
Table 3(c). First, the association increases along the main diagonal. This means
that the association between the variables I(SIDE2 ≤ 1) and I(THER2 ≤ 1) is
smaller than the association between the variables I(SIDE2 ≤ 3) and I(THER2 ≤
3). Also, the association becomes “negative” (i.e., smaller than 1 on the cross-
ratio scale) for pairs such as I(SIDE2 ≤ 3) and I(THER2 ≤ 1). The best RC
model is the row and column model. The fitted model is also presented in Ta-
ble 1(d). All RC models are based on model (18).

Table 3. Fluvoxamine Data. Global cross ratios fitted to the data in Ta-
bles 1(c) and 1(d).

Side 2 1 2 3
Observed

1 21.15 +∞ +∞
2 6.00 31.37 41.74
3 1.17 6.05 43.17

Row and Column Effects
1 21.07 116.88 760.06
2 5.70 31.65 205.37
3 1.20 6.67 43.26

(c) Side 3

Side 2 1 2 3
Observed

1 0.97 0.95 0.74
2 0.61 1.33 2.12
3 0.41 2.57 4.26

Column Effects Only
1 0.86 0.86 0.86
2 1.77 1.77 1.77
3 3.24 3.24 3.24

Row, Column, Interaction
1 0.92 0.86 0.80
2 0.55 1.55 1.92
3 0.37 2.17 4.00

(d) Therapeutic 2

5.9. Random-effects models

Unlike for correlated Gaussian outcomes, the parameters of the random ef-
fects and marginal models for correlated non-Gaussian data describe different
types of effects of the covariates on the response probabilities (Neuhaus (1992)).
The choice between marginal and random effects strategies should depend heav-
ily on the scientific goals. Marginal models evaluate the overall risk as a function
of covariates. With a subject-specific approach, the response rates are mod-
eled as a function of covariates and parameters, specific to a subject, rendering
interpretation of fixed-effect parameters conditional on a constant level of the
random-effects parameter. Marginal comparisons make no use of within-subject
comparisons for within-subject varying covariates and are therefore not useful to
assess within-subject effects (Neuhaus, Kalbfleisch and Hauck (1991)).
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Whereas the linear mixed model is the most popular choice in the case
of Gaussian response variables, there are more options in general. Stiratelli,
Laird and Ware (1984) assume the parameter vector to be normally distributed.
This idea has been carried further in the work on so-called generalized linear
mixed models (Breslow and Clayton (1993)). Skellam (1948) introduced the
beta-binomial model, in which the response probability of any response of a par-
ticular subject comes from a beta distribution. Hence, this model can also be
viewed as a random effects model. We consider these in turn.

5.10. The beta-binomial model

Skellam (1948) and Kleinman (1973) assume the success probability Pi of a
response within cluster (subject) i to come from a beta distribution with param-
eters αi and βi:

pαi−1(1 − p)βi−1

B(αi, βi)
, 0 ≤ p ≤ 1,

where B(., .) denotes the beta function. Conditional on Pi, the number of suc-
cesses Zi in the ith cluster follows a binomial distribution with mean µi =
niπi = niαi/(αi + βi) and variance σ2

i = niπi(1 − πi)[(1 + niθi)/(1 + θi)] with
θi = 1/(αi + βi). It can be shown that the intra-cluster correlation is ρi =
(αi + βi + 1)−1.

Generalized linear model ideas can be applied to model the mean parameter
πi (e.g., using a logit link) and the correlation parameter ρi (e.g., using Fisher’s
z transform).

The beta-binomial is, just as the linear mixed model, an example of a model
that can be given a hierarchical as well as a marginal intepretation. In particular,
the hierarchical view can be adopted to conveniently arrive at a marginal model.

5.11. Generalized linear mixed models

Perhaps the most commonly encountered subject-specific model is the gen-
eralized linear mixed model. Assume the data setting is the same as in Section 3.
A general framework for mixed-effects models for longitudinal data can be ex-
pressed as follows. Assume that Yi (possibly appropriately transformed) satisfies

Yi|bi ∼ Fi(θ, bi), (26)

i.e., conditional on bi, Yi follows a pre-specified distribution Fi, possibly depend-
ing on covariate matrices Xi and Zi (suppressed from notation), and parameter-
ized through a vector θ of unknown parameters, common to all subjects. Further,
bi is a q-dimensional vector of subject-specific parameters, called random effects,
assumed to follow a so-called mixing distribution G which may depend on a vec-
tor ψ of unknown parameters, i.e., bi ∼ G(ψ). The bi reflect the between-unit
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heterogeneity in the population with respect to the distribution of Yi. In the
presence of random effects, conditional independence (upon bi) is often assumed.

In general, unless a fully Bayesian approach is followed, inference is based
on the marginal model for Yi which is obtained from integrating out the random
effects over their distribution G(ψ) (Fahrmeir and Tutz (2001)). If fi(yi|bi) and
g(bi) denote the density functions corresponding to the distributions Fi and G,
respectively, we have the marginal density function of Yi as

fi(yi) =
∫
fi(yi|bi)g(bi)dbi, (27)

which depends on the unknown parameters θ and ψ. Assuming independence
of the units, estimates of θ̂ and ψ̂ can be obtained from maximizing the likeli-
hood function built from (27), and inferences immediately follow from classical
maximum likelihood theory.

It is important to realize that the random-effects distribution G is crucial in
the calculation of the marginal model (27). One approach is to leave G unspeci-
fied and to use non-parametric maximum likelihood (NPML, McLachlan and Peel
(2000)) estimation, which maximizes the likelihood over all possible distributions
G. The resulting estimate Ĝ is discrete with finite support. Depending on the
context, this may or may not be a realistic reflection of the true heterogeneity
between units. One therefore often assumes G to be of a parametric form, such as
a (multivariate) normal. Depending on Fi and G, the integration in (27) may or
may not be analytically possible. Proposed solutions are based on Taylor series
expansions of fi(yi|bi), or on numerical approximations of the integral, such as
(adaptive) Gaussian quadrature (Pinheiro and Bates (1995)).

Although one is usually primarily interested in estimating the parameters in
the marginal model, it is often necessary to calculate estimates for the random
effects bi as well, e.g., for predictive purposes or to detect special profiles, outlying
individuals, or groups of individuals evolving differently in time. Inference for
the random effects is often based on their posterior distribution fi(bi|yi), given
by

fi(bi|yi) =
fi(yi|bi) g(bi)∫
fi(yi|bi) g(bi) dbi

, (28)

in which the unknown parameters θ and ψ are replaced by estimates obtained
from maximizing the marginal likelihood. The mean or mode corresponding
to (28) can be used as point estimates for bi, yielding empirical Bayes (EB)
estimates.

There are two major differences with the linear mixed model. First, the
marginal distribution of Yi can no longer be calculated analytically, complicating
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the computation of the MLE for β, D, and the parameters in all Σi. As a result,
the marginal covariance structure does not immediately follow, such that it is not
always clear in practice what assumptions a specific model implies with respect
to the underlying variance function and the underlying correlation structure in
the data.

A second difference is related to the interpretation of the fixed effects β. Un-
der the linear model (1), that the fixed effects have a subject-specific as well as a
marginal interpretation: the elements in β reflect the effect of specific covariates,
conditionally on bi, as well as marginalized over these random effects. Under
non-linear mixed models, this does not generally hold. The fixed effects now
only reflect the conditional effect of covariates and the marginal effect is not eas-
ily obtained anymore, as E(Yi) is given by E(Yi) =

∫
yi
∫
fi(yi|bi)g(bi)dbidyi,

which, in general, is not of the form h(Xi, Zi,β,0).
Only for very particular models, can (some of) the fixed effects still be in-

terpreted as marginal covariate effects. For example, consider the model where,
apart from an exponential link function, the mean is linear in the covariates,
and the only random effects in the model are intercepts. More specifically, this
corresponds to the model with h(Xi, Zi,β, bi) = exp(Xiβ+Zibi), in which Zi is
a vector containing only ones. The expectation of Yi is now given by

E(Yi) = E [exp(Xiβ + Zibi)] = exp(Xiβ) E [exp(Zibi)] , (29)

which shows that, except for the intercept, all parameters in β have a marginal
interpretation.

The generalized linear mixed model (GLMM, Breslow and Clayton (1993)
and Wolfinger and O’Connell (1993)) is the most frequently used random-effects
model for discrete outcomes. A general formulation is as follows. Conditionally
on random effects bi, it assumes that Yij are independent, with density function of
the form (13) with mean E(Yij |bi) = a′(ηij) = µij(bi) and variance Var(Yij |bi) =
φa′′(ηij), and with linear predictor h(µi(bi)) = Xiβ + Zibi. The linear mixed
model is a special case with identity link function. The random effects bi are
assumed to be sampled from a (multivariate) normal distribution with mean 0
and covariance matrix D. When the link function is chosen to be of the logit
form and the random effects are assumed to be normally distributed, the familiar
logistic-linear GLMM follows.

The non-linear nature of the model again implies that the marginal distribu-
tion of yi is, in general, not easily obtained. An exception to this occurs when the
probit link is used. Further, as was also the case for non-linear mixed models, the
parameters β have no marginal interpretation, except for some very particular
models such as count data with log link (Liang, Zeger and Qaqish (1992)).
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As an important example, consider the binomial model for binary data with
the logit canonical link function, and where the only random effects are intercepts
bi. It can be shown that the marginal mean µi = E(Yij) satisfies h(µi) ≈ Xiβ

∗

with β∗ = [c2Var(bi)+1]−1/2β, in which c equals 16
√

3/15π (Wang, Lin, Gutier-
rez and Carroll (1998)). Hence, although the parameters β in the generalized
linear mixed model have no marginal interpretation, they do show a strong rela-
tion to their marginal counterparts. As a consequence, larger covariate effects are
obtained under the random-effects model in comparison to the marginal model.

5.12. Marginal versus random-effects models

Fitting several marginal models often produces similar parameter estimates
and standard errors. This is totally different when models across model families
are considered. This has led to a lot of confusion, including discussions as to
the nature of this bias. Such a discussion is ill-founded, since the parameters
underlying marginal, random-effects, and conditional models, are different at
the population level. Only in some cases (e.g., the linear mixed model) are there
easy connections between them. Thus, intuition borrowed from linear mixed
models can be misleading.

To see this, consider a binary outcome variable and assume a random-
intercept logistic model with linear predictor logit[P (Yij = 1|tij , bi] = β0 + bi +
β1tij , where tij is the time covariate. The conditional means E(Yij |bi), as func-
tions of tij, are given by

E(Yij |bi) =
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)
, (30)

whereas the marginal average evolution is obtained from averaging over the ran-
dom effects:

E(Yij) = E[E(Yij |bi)] = E

[
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)

]
�= exp(β0 + β1tij)

1 + exp(β0 + β1tij)
.

(31)
A graphical representation of both (30) and (31) is given in Figure 2. This
implies the interpretation of the parameters in both types of model is completely
different. A schematic display is given in Figure 3. Depending on the model
family (marginal or random-effects), one is led to either marginal or hierarchical
inference. In general, the parameter βM in a marginal model is different from
the parameter βRE even when the latter is estimated using marginal inference.
Some of the confusion results from the equality of these parameters in the linear
mixed model. When a random-effects model is considered, the marginal mean
profile can be derived, but it will generally not produce a simple parametric form.
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In Figure 3 this is indicated by putting the corresponding parameter between
quotes. While this issue arises in the logistic random-effects model, it does not
in the probit version since then the marginal model is of closed form and again
of probit type (Renard, Molenberghs and Geys (2004)).

Figure 2. Graphical representation of a random-intercept logistic curve,
across a range of levels of the random intercept, together with the corre-
sponding marginal curve.

model family
↙ ↘

marginal random-effects
model model

↓ ↓
inference inference
↙ ↘ ↙ ↘

likelihood GEE marginal hierarchical
↓ ↓ ↓ ↓
βM βM βRE (β mboxRE , bi)

↓ ↓
“βM” “βM”

Figure 3. Representation of model families and corresponding inference. A
superscript ‘M’ stands for marginal, ‘RE’ for random effects. A parameter
between quotes indicates that marginal functions but no direct marginal
parameters are obtained.
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This discussion points to the need to carefully reflect on the choice of the
model for the responses and the distribution of the random effects. The choice
for logistic-normal random-effects models is based on the combination of the
familiar logistic model with linear mixed model ideas. However, some of the
nice properties of the logistic model do not carry over to the random-effects
setting. For the logistic case with random intercepts, the following approximate
relationship holds between the marginal and random-effects parameters:

β̂
RE

β̂
M

=
√
c2σ2 + 1 > 1, (32)

where σ2 is the variance of the random intercepts and c2 = 16
√

3/15π.

5.13. Illustration: toenail data

Table 4 displays parameter estimates (standard errors) for a marginal model
(GEE with unstructured working assumptions) and a random-effects model
(GLMM). The logit function, conditional upon the random intercept, takes the
form:

logit[P (Yij = 1|Ti, tij , bi)] = β0 + bi + β1Ti + β2tij + β3Titij (33)

with tij the time of measurement j on subject i, Ti = 0 in Group A and Ti =
1 otherwise. The random intercepts bi are assumed normal with mean 0 and
variance σ2. There is a huge difference between the parameter estimates. Of
course, (32) equals 2.56, well in line with Table 4.

Table 4. Toenail Data. Parameter estimates (standard errors) for a general-
ized linear mixed model (GLMM) and a marginal model (GEE), as well as
the ratio between both sets of parameters.

GLMM GEE
Parameter Estimate (s.e.) Estimate (s.e.) Ratio
Intercept group A −1.63 (0.44) −0.72 (0.17) 2.26
Intercept group B −1.75 (0.45) −0.65 (0.17) 2.69
Slope group A −0.40 (0.05) −0.14 (0.03) 2.87
Slope group B −0.57 (0.06) −0.25 (0.04) 2.22

Random int. var. 4.02

In Figure 4, the marginal evolutions obtained with GEE, are very similar
to those obtained from marginalizing a GLMM. In contrast, within a GLMM,
the marginal evolutions differ sharply from the evolutions conditional upon the
random effect being equal to bi = 0. These observations are in agreement with
(31) and the difference between the βM and βRE parameters in Figure 3.
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Figure 4. Toenail Data. Treatment-arm specific evolutions. (a) Marginal
evolutions as obtained from a marginal (GEE) model, (b) marginal evolu-
tions as obtained from integrating out a GLMM, and (c) evolutions for an
“average” subject from a GLMM, i.e., with bi = 0.

6. Concluding Remarks

Through a number of simple yet commonly used settings, we have illustrated
that one needs to reflect very carefully on the mathematical and substantive
meaning behind a parametric model of choice.

In a repeated measures setting with normally distributed outcomes, the lin-
ear mixed model is the most commonly used tool. Nevertheless, the model is not
free from issues. First, one has to reflect carefully on the differences between a
hierarchical and a marginal point of view. This choice is important, not only for
parameter interpretation, but also for inferences on variance components. When
outcomes are non-normal, one has to reflect very carefully upon the differences
between the marginal, conditional, and random-effects families. In each of the
families, a number of models have been formulated, many of which reduce to
logistic regression in the case of independence. Nevertheless, there are dramatic
differences between them and ideally the substantive question to be answered
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should drive the choice of model family and ultimately the particular model cho-
sen within such a family. Among the marginal models, the Bahadur model, the
success-probability model, and the George-Bowman folded logistic model suffer
from serious drawbacks. The multivariate probit and odds-ratio models have
some promise; they provide flexible ways of modelling both the individual out-
comes as well as the association between them. Unfortunately, they become
computationally intractable for large clusters, but generalized estimating equa-
tions and pseudo-likelihood methods come to the rescue. Conditional models are
easier from a computational point of view but we have illustrated they suffer
from serious problems in terms of meaningfulness, especially but not only when
cluster sizes are unequal.

Within the random-effects family, the generalized linear mixed model for
binary data with logit link has become very popular. Nevertheless, the com-
bination of a logit link with normally distributed random effects poses unique
computational and interpretational challenges. Indeed, it is important to under-
stand the main differences between the linear mixed model and the generalized
linear mixed model, particularly if of logistic-linear type. In the first case, all
properties of the normal distribution can be invoked, while in the second case
one typically resorts to the exponential family. In the normal distribution, there
is no mean-variance link, while such a link plays a prominent place in most ex-
ponential family models. In addition, the link function is linear in the first case
and usually non-linear in the second case. In the linear mixed model case, the
sources of variability all enter the same linear predictor as additive terms. How-
ever, there is no additive relationship between them in other settings. To see
this, consider the logistic-linear model. An outcome can be written, with obvi-
ous notation, as Yij = µij + εij. Thus, while the measurement error is linked
linearly to the outcome, the random-effects variability enters non-linearly since
the linear predictor is coupled to the mean µij via the link function. Thus, not
only model fitting is more involved in the generalized linear mixed model case,
also a number of interpretational differences follow, including a different mean-
ing for the regression parameters in both types of models. Whether marginal
or hierarchical inference is chosen in the GLMM case, the resulting parameters
refer to non-marginal population quantities. Marginalization is possible, but will
generally provide functions of an intractable form, the use of which is primar-
ily graphical. Some of these issues are alleviated when the beta-binomial model
or the probit random-effects model is chosen. In the first case, the parameters
have, at the same time, a marginal and a random-effects interpretation, while in
the second case the link between both sets of parameters exists in closed form.
When outcomes are of the count type, the Poisson-normal model enjoys a simple
relationship between the random-effects model and the induced marginal model.
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