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ON FISHER’S BOUND FOR STABLE ESTIMATORS
WITH EXTENSION TO THE CASE OF HILBERT
PARAMETER SPACE

Zhongguo Zheng and Kai-Tai Fang
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Abstract: Fisher’s bound for asymptotic variances has been shown to hold almost
everywhere for several classes of estimators in LeCam (1953), Bahadur (1964) and
Wong (1992). Wong’s result applies to estimators with arbitrary asymptotic distribu-
tions, provided a certain continuity condition is satisfied. In this paper we improve
on Wong’s result by removing the continuity condition. We also generalize the result
to the case where the parameter space is separable Hilbert.
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1. Introduction

Fisher (1925) supposed that the maximum likelihood estimator (MLE) f,, of
a real parameter 6 is asymptotically optimal among a large class of estimators.
The conjectured result can be formulated as following. Let Y3,...,Y, be a sample
of size n from a distribution family fs(y) with the parameter § € © C R'.

(1) The MLE 6.(y1,...,Yn) is asymptotically normal, i.e.

Vil - 95N o, }—(16—)) (1.1)

where I(6) is the Fisher’s information of the observation Y.

(2) If T,, is an asymptotically normal estimator, i.e., v/n(T;, — 0)—5N (0, vg),
then
vg > I1(6)7". (1.2)

However, Hodges, J. L. (see LeCam (1953)) by a counter example pointed out
that the conjecture is not always true. His example shows that “superefficiency”
of the estimator can occur even in the smoothest model.

To state the result more precisely, we need to introduce some notation and
conditions. For simplicity, assume, at first, that the parameter space is © = R
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Let X, be an observation taking values in the sample space (X,,, Bx,,v,), where
vy is a o-finite measure on the o-field By, . Denote by Py(B) the distribution of
X, under @ and py(z,) the corresponding density with respect to v,. According
to Wong (1992) the following conditions on the model are needed.

Condition (M): For every n, pg(z,) is a measurable function of (6, z,).

Condition (L): For all h € R,

dP,
O (1) = explbI(6)Ans — SIOR + Ba(6,1), (13)
6

where

Ee{An,G} - N(O’ 1(9)_1)7 Rn(97 h) = Op(l)

and Fisher’s information /() is assumed to be a strictly positive and continuous
function of # (the notation “Le{A, ¢} — N(0,I(6)~?)” means that the distribu-
tions of random variables A, ¢ converge to the distribution N (0, 1(8)71).

Condition (L'): In Condition (L), the constant h is replaced by a series of real
numbers h,, which tends to a constant h.

LeCam (1953) first observed that, for asymptotically efficient estimators,
superefficiency can occur only in sets of measure zero. Bahadur (1964) made the
following extension.

Theorem 1.1. Under conditions (M) and (L), if Lo(/n(T, — 6)) — N(0,vs)
for all 6 € ©, then
p{0:ve < I(6)"'} =0, (1.4)

where p stands for the Lebesgue measure on the parameter space ©.

The result has been extended in several ways. First the restriction of the
asymptotical normality of the estimator T, is removed. A series of estimators 7T},
for the parameter 6 is called stable, if for every 6 € ©,

Lo(vn(Tn = 0)) — Fo, (1.5)

where Fy is the asymptotic distribution of the estimator series. Since the asymp-
totic distribution in (1.5) is arbitrary, a natural way to consider the efficiency of
stable series is to compare the concentration probabilities around the true value of
the parameter. One may want to establish a result that the concentration prob-
ability Po{\/n|T, — 6] < p} is asymptotically bounded above by P{|Zy| < p},
where Zg ~ N(0,1(6)'). Wong (1992) obtained the following extension.

Theorem 1.2. Under conditions (M) and (L), if T,, is stable and r() =
lim Py{T, < 6} is continuous almost everywhere, then for almost all § € ©,

lim Po{/n | T, — 8] < p} < P{|Z4| < p} (1.6)
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for all p > 0.

In this paper we will remove the condition of continuity of r(f) under a
slightly stronger condition (L) on the model. We have

Theorem 1.3. Under the conditions (M) and (L'), if T,, is stable, then for
almost all § € ©, (1.6) holds.

A series of estimators T, is called almost everywhere (a.e.) stable, if there
exists a subset @, of © with Lebesgue measure zero such that for every § € ©\0,,
(1.5) holds. For the a.e. stable estimators, we have

Theorem 1.4. Under the conditions (M) and (L"), if T,, is a.e. stable, then for
almost all 6 € ©, (1.6) holds.

Example 1.1. Let X;,...,X, ~iid N(6,1),0 € (0,1). Let A, ={6;,,...,6;, }
be a series of finite subsets of parameters satisfying

(i) Ai C A C© -y

(ii) A = lim A, is dense in (0,1),

(iii) there exists a series of constants ¢, — oo such that

p{ U {0:p(6,A,) <n%c,}} — 0 as ng — oo,

n>ng

where 4 is the Lebesgue measure on (0,1) and p(6, A,) stands for the distance
between @ and the set A,. Let ¢, = nt,

Az{gi,i21}={_l.,_1.§l§§z_1_35 }

and
Di={91,92,...,6’i}, 121

Let ]

n; = inf{n:n"3(i+1) < o

An = D,’, Ni—1 <N S n;, ('I’LO = 0)
It is easy to show that for the c, and A, defined above, conditions (i), (ii) and
(iii) are fulfilled. Therefore the Lebesgue measure of the set

N=[) U106 A <nte}
no>1ln>ng

is equal to zero.

Let
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When 6 € A,

— 1 1
In = (X” + ﬁ) - ﬁf{p()‘(n,An)zn‘%}‘

For n sufficiently large,

I

(pnanznty = ixa—aznhy

IA
~

(VAIZa—ozaty = Op(1):

Therefore

Vn(T, —8) =vn(X, - 6)+1— I oaysn-t)
=vn(Xn —0) +1+0,(1) = N(1,1), for6e A (1.7)

Now suppose that 6 ¢ {N U A}. Then

\/T—L(Tn - 6’) = \/E(Xn - 0) + I{p(Xn,An)<n'%}' (1.8)

Since 6 € N, i.e., 0 € ﬂnZno{é : p(é, A,) > n%c,} for large no, it is easy to show
that
{p(Xn, A,) <n~ 3} C {|Xn— 6] >n"%(c, —2)}, for large n,

which implies that I (o(% _1

%..4,)<n-}y = 0p(1). Therefore

vn(T, —0) — N(0,1), for 8 € (0,1)\{N U A}, (1.9)

where the symbol \ stands for the set operation subtraction. Equations (1.7) and
(1.9) show that 7(6) = lim sup(Pe{+/n(T, — 8) < 0} is not a.e. continuous. In
fact every 6 € (0,1) is a discontinuous point of r. In this example, we can apply
Theorem 1.4 to T},, but we cannot use Wong’s result on T7,.

Let A(#) be a continuously differentiable function of #. To establish bounds
for estimating such a function, we have

Theorem 1.5. Under conditions (M) and (L'), if T,, is a stable estimator of
A(8), then for almost all § € O,

lim Po{/n| T, — M(6)| < p} < P{|Z¢| < p} (1.10)
holds for all p > 0, where

Zo ~ N(0,X(0)I(6)71).

Now suppose that the densities in the family { Py, } are indexed by a possibly
infinite dimensional parameter § € ©, where © is an open set in a real Hilbert
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space L, which is separable. Since there is no direct generalization of Lebesgue
measure in Hilbert space, we consider Gaussian measure instead.

Definition 1.1. A probability measure Q, defined on a Hilbert space L, is
called a Gaussian measure if for every fixed 6 € L, the real valued random
variable (6,7), defined on n € £, has a normal distribution, where the notation
(, ) stands for the inner product in L.

From the theory of Gaussian measure (see Kuo (1975)), we know that Gaus-
sian measure is characterized by the mean value mg € £ and the covariance
operator Sg, which is a nonnegative, self-adjoint, compact operator in £ with its
eigenvalues )\; satisfying Y o, A; < oo and is given by

(Soz,4) = [ (@2 = ma)(y, 2 = ma) Q(d)

So, we can use the notation N(m, S) to denote a Gaussian measure in the Hilbert
space L, where m € L is the mean, S is the operator mentioned above.
Without loss of generality, we assume that the space is given in the form of

L={(cr,cz,...), Y} < oo}
i=1

with (6,1) = 3 6im:, where § = (61,02,...), 7 = (71,7M2,...). As an example
of a Gaussian measure, consider N(0,S), where S is an operator in £ with
S0 = (026,,020,,...), and 5_o? < co. In this case, the coordinates 6; of ¢ are
independent of each other with each 6; ~ N (0, 0?).

Denote the set of unit vectors in £ by Lo. For the distribution family {Fy :
6 € ©} on X,, we require

Condition (L"). For all h, — h >0, v, — v € Ly the following holds

1
() = exp{hn,L(0,V) A0 — EhiI(G,v) + R, (0,vn,hn)},  (1.11)

where Lo{Anso} — N(0,1(6,v)71), Rn(b,vn,hn) = 0p(1), and I(6,v) is a

strictly positive and continuous function of 8 and v.

From Condition (L") we know that

1(0, —v) = I1(6,v). (1.12)

Theorem 1.6. Suppose that Condition (M) holds, that Condition (L") holds
for all § € © and v € Ly and that the measure Q is a Gaussian measure on the
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separable Hilbert space L. Suppose that ) : 6 — R is continuously differentiable
in the sense that, for all 0, the directional derivative

dA(0 + tv)

Xo(v) = S

t=0

is continuous in v € Lo and that T, is a stable estimators of A(6). Then for
almost all § € © with respect to Q and for all p > 0,

lim Po{/n | T — X(6) | < p} < P{| Z| < p}, (1.13)
where
Z ~ N(0,0?%),
Ap(v)]?
o E
7T ek, 1(6,0)

From the expression for \j(v), we know that

Ay(=v) = =My (w). (1.14)

2. Proofs
First, we need a lemma.

Lemma 2.1. Suppose that 7(0) is a measurable function of 6, where 6 is a real
parameter. Then there exists a set N of 6 with Lebesgue measure zero such that
for every § € N and every h € R!, there exists a series h, = h,, (6, h) satisfying
the following conditions

h, — h, (2.1)
40+§%)ﬁrw% (2.2)
49—5%)ﬁrwy (2.3)

Proof. Without loss of generality, we may assume that the domain of r is
R'. According to the theory of real analysis (see Natanson (1950), p.297), the
function 7(#) is almost everywhere approximately continuous, i.e., there exists a
null set V such that for every § ¢ N, there exists a set M = My satisfying

w(M (6 —60+6))
26

—1, as 6—0 (2.4)
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and
lim r(n) = r(6). (2.5)

n—6
neM

Let M; be the symmetric set of My with respect to g, i.e.,
M;={n=0+¢&:6—&¢€ My}
It is easy to show from (2.4) that the set My N M; satisfies

p(My N Mg 0 (6= 6,6+8)
26

1, as 6 —0.

Therefore
p(My N Mg 0 (0 — 22,0+ 22))

piy )
vn

as n — 0o,

from which we know that there exists a series of positive numbers 6, — 0 such
that the intersection

vn ' vn
is not empty for sufficiently large n. Choosing h, such that 6 + % € MgNMj;nN
6+ h\"/f—l" 0+ h}f{‘ ), it follows that ‘

My M; 0 (6+

h h

—~ My, 6-—4€M,
Jn € Mo, /n € M,
which, together with (2.5), shows that (2.1) — (2.3) hold.

Proof of Theorem 1.3. Let

h, — h, 6 +

r(0) = lim Pp{T, < 6}. (2.6)

n—oo

From Condition (M), it is easy to show that r(f) is a measurable function of 6.
By Lemma 2.1 we know that there exists a null set N such that for every 6 ¢ N
and p € Rt = (0, 00), there exists a series p, = pn(6, p) — p for which

. pn . . _ ﬁ'r_z_ __
nl_l_’rglor(G + ﬁ> = nlg&r(& \/ﬁ> = r(0). (2.7)
To prove (1.6), it suffices to prove that there exists a countable set S which is
dense in R* such that for every p € S, every p' € (0, p) and every subseries {n;}
of {n}, there exists a subseries {m;} of {n;} satisfying

limsup Po{\/m; | T, — 6] < p'} < P{|Zs] < p}, ae. 6€0O. (2.8)

™m;j—00
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The result can now be established by repeated use of the optimality of the Like-
lihood Ratio test. We omit the details because the argument is very similar to
that in the proof of Proposition 4 in Wong (1992).

Proof of Theorem 1.4. The proof is the same as the proof of Theorem 1.3.

Proof of Theorem 1.5. To prove Theorem 1.5, it suffices to prove that there
exists a countable set S, which is dense in R*, such that for every p € S, p' € RT,
p' < p, and every sequence n; — oo, there exists a subsequence m;, satisfying

limsup Py(y/m; | Trm, — A(0)| < p') < P(|Zs] < p) ae. 6€O, (2.9)
where Zg ~ N(0,)\(0)%(1/1(6))). Let r(8) = limg_o Po(T, < A(f)). From
Lemma 2.1, we know there exists a sequence p,, — p such that

- Pn ) (o - 2o =
hrnr(9 1 —\;:) = hmr(G \/ﬁ) = r(0), a.e.
Let fn,(6) = P{T,, < A(0)} — r(6). Then there exists a subsequence m; such
that )
flo+ =21} —o, a.e.
Let N be the exceptional null set, i.e., for 6 € N,
Prm,;
fl6x—=)—0

as m; — 00, or

. Pm;

Im P, om; (T, < M0 £ —==) =7(6). 2.10
When ¢ € {\'(6) = 0}, (1.10) holds automatically. For § € {\'(8) # 0} N N¢,
where N° stands for the complement of N, we obtain, by a proof similar to treat
for Proposition 4 in Wong (1992),

lim sup Fo{\/m; | T, — A(6)] < p'N(8)} < P{|Zo| < p}
lim sup Po{\/m; | Trn, — M(8)| < p'} < P{|Z4] < p},

where Zy ~ N(0, (X (8))?/1(6)), which shows that (2.9) holds.
Let
Lo ={v:v=_(e1,...,¢,0,0,...) € Lo,k =1,2,...}. (2.11)

Lemma 2.2. Suppose that r(0) is a measurable function on © C L and that Q =
N(mq, S) is a Gaussian measure on L. Then there ezists a set N with Q(N) = 0
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such that for every 8 ¢ N, every h € R* and every v = (cy,...,¢k,0,0,...) €
L0y (k is an arbitrary positive integer), there ezists a series of h, (0, h,v) and
vn(8,h,v) = (c1,.--,¢,0,0,...) € Lo such that

hn
hn — h, v, = v, 7'(9 + ——vn) — r(6). (2.12)

NZD

Proof. This lemma is an R* version of Lemma 2.1.

Proof of Theorem 1.6. Suppose that @ is a Gaussian measure on L. We
use the notation Q = N(mg, S), where mq € £, S is a nonnegative, self-adjoint,
compact operator with its eigenvalues A; satisfying 3" A; < co. Let e, 0 =1,2,...
be the eigenvectors of S. Then S has the representation Sz = Y Mz, e)e;.
Without loss of generality, we may assume that {ei,i =1,2,...} is a base of £,
where e; = (0,...,0, z1, 0,...). To prove the theorem, we need only to prove the

following conclusion: for almost all § € ©
hmpg{\/ﬁlTn - )\(9)! < h} < P{IZ(&@‘ < h}, (2.13)

where v € Lo, b > 0, Zg.0) ~ N(0, [ Xg(v)[>/1(6,v)).
Since, as a function of v, Ap(v)?/I(6,v) is continuous and the set Lo,0) =
{v="(c1,¢2,---,Ck,0,...) € Lo, k=1,.. .} is dense in Ly, it is easy to show that
(V) _ o(v)?

szlop ——1(9,’0) = 5,(13;0)) ——I(H,U)' (2.14)

From (2.14) we know that to prove (2.13), it is equivalent to prove that there
exists a countable set S which is dense in RT such that for every h € S, b’ € (0, h),
v € L) and every subseries {n;} of {n}, there exists a subseries {m;} of {n;}
satisfying

Jll’n;lo Pg{‘ij - )\(0)' < hl} < P{IZ(B,U)I < h}, a.e. Q (215)

Now suppose that v = (c1,...,¢,0,0,...) = (Vk,0) € L(o,0)- According to
Lemma 2.2, for every h € R*, there exist series hA(n k) and v k) € RF such that

R "
h(n,k) - h, U(n,k) — Uk T(gk + ( ’A)U(n’k), Gk) e r(@), a.c. Q, (216)

vn
where 6 = (x, 0;) and 6, € R*. Let

Fu, (8) = Po{Tn, < X(6)} — 7(6). (2.17)
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From the definition of r(6) we know that

fn, (0) = 0, a.e. Q.

Consider

Q{4 = [ 0@ [ dQ(eud),

where A = {|fn, (6 = ’u—"\/%v(njyk),ékﬂ > e} and Ag. = {6k : (Hk,ék) € A}. Let
0= (&,&,...)and Oy = (&1,...,&). It is easy to show that under Q, &, &,, . .. are
independent and & ~ N(mg;, Ai),i = 1,2,..., where mg is the ith coordinate
of mg. Therefore

Q(A) = /dQ(ék)/A- (\/——zzﬂ)kilj?/—l_)—\;exp{ - %)V(Ci - mQ,i)z}dci

O

_ 5 Loy
B /dQ(gk)/{|fnj(ok,ék>|2s}(\/2—7r)

1 Pn, k)

k
1
—== exp{— (e F V(n, k) (1) — mq,:)®}de;,
E VA 2); NG )

where v(,, x)(?) is the ith coordinate of the vector U(ny k)- Since A, k) and vy, k)
can be chosen so that they are uniformly bounded, there exists a pair of positive
numbers b and B such that

Q(4) < /dQ(ék>/ Bﬁexp{bcl?}

{Ifnj(ek,ékﬂzf} I=1
1 \k 1 1
) Tlonl- s mar

k
- / B exp{bc2}dQ(8).
(fn; OI2e} i

Since f,, — 0, a.e. @, and [],_, exp{bc?} is integrable with respect to Q, we find
by the Lebesgue’s dominated convergence theorem,

k
/ B exp{bcf}dQ(6) — 0,
{Ifn, (6)2¢€}

=1

therefore Q{A} — 0 as j — oo for every € > 0, ie., fo, (6 £ hﬁ@v(nﬁk),ék)
Q

— 0. Therefore, there exists a subseries {m;} of {n;} such that as m; — oo,

Rnj k) ;
Ty (06 £ =220, 1,6) — 0, ace. Q. (2.18)

J
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From (2.16) and (2.18) we know that for almost all § € ©,(Q),

hm, k) i
a=lm P s (T, < MOk + 220, 1), 0 )
j—.oo (9k+h_(\/—Lm_§lU(mj.k)79k) ’ ( k \/W_g ( J’k) k)
hm, k) -
=lm P rm s Th. < A0 — 2 msk),0k)) =b. (2.19
]-1-41’23 ok_'—(;—y%’v(mj,k)( 3 ( k \/777] ’U( JJC) k)) ( )

Without loss of generality, we assume that A\j(v) = Ap(vk,0) > 0.
Consider the test problem

: H,: P, .
° P(e+h—(\’/"—;n;;ﬁ(v<mj,k),0>> Yo Harte (2.20)

Let

h mj,k
ij = {ij < )\(9 + -—(\/_TTT')(v(mj’k)’O))}

be a rejection region of the test and let

Am,; = {Am, 6,000 im0 L (0, (Vk; 0)) + B,
< I(0, (06, 0)) 12, 1y + Zay\ il i1 (6, (i, 0},

where Z,, is the o;-quantile of the standard normal distribution. Let o; \, a’ >
a. Since the family {Ps ., } satisfies Condition (L"), we have, using a standard
technique,

1
. Am- v —h s N 0, T 7. AW /0
6+ h(—imm;_k—) (U(mj,k),O)( 3:65(vi,0) ( -”k)) - ( I(e, (Uka 0))>

N

from which it follows that

!
h(m,‘k) (Am)_ﬁa >CL.
9+—#(U(mj,k)70) 7

e

Since A,,, is the likelihood ratio rejection region,

lim sup Pp{/m; (T, — M(6)) < Ag(vr, 0)R'}

: h(m, k)
< limsup Pg{Tm. < Al + —Z=(V(m, k),O))}

Za X,
< lim P{Am.} = P{ Zg.(vr.0) < Agh + el : 2.21
< lim P{Am,} { (6,(v,0)) < g 1(9’(%’0))} (2.21)

where h' < h.
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Now consider the test problem:

Hy:Py vs Hy:P &, . . 2.22
0 0 A G‘E(T/J—m—‘j‘)(vimj,k)fo) ( )

Let

> _ h(mjvk)
By, = {Tm, < X6 - v = (V(my 2, 0)) }
be the rejection region of (2.22). Let
Am_,,- = {Amj,e,v(“h(mj,k))l(ea (vka 0)) + ij
> I(9> (Ukv 0))h?mj,k) + Zaj \/I(Q, (Uk’ 0))h?m]—,k)}>

where a; \, (1 —b') > 1 —b. It is easy to know that

lim P &, /1 =b <b= lim P (. B
™o 9‘(_\/7%')(%%*)’0){ sl ™y oo 9’"'1‘\/%(%%@‘0){ m )

Since f‘im}. is the rejection region of the likelihood ratio test, we have

lim inf Po{ /75 (T, — A(6)) < =B Ng((vi, 0))} > lim Py{B,,.}
Zy 3g((04,0))

T o } (2.23)

> lim Pp{A,,} = P{Z(e,_(vk,o)) < =Xy ((vg, 0))h +
Comparing (2.21) and (2.23), we obtain (2.15).

3. An Example

Let
Y =az + ¢(u) +¢, (3.1)

where z € [0,1], ¢(-) € £,(0,1) and the error distribution is standard normal.
Let (X,U) ~ u x v, where y and v are known distributions on [0, 1]. Without
loss of generality, we suppose that var(X) = [z?du — ([ zdu)? > 0. Suppose
that X,U and € are independent. It is easy to see that (3.1) is a semiparametric
model with parameter § = (a,¢). Consider the parameter § as a member of a
Hilbert space £ with inner product

<01, 92> = a10as +/(; ¢1¢2du. (32)

Let du x dv X dy be a o-finite measure on [0, 1]> x R'. The density of (X,U,Y)
with respect to du x dv x dy is

¢1§% exp{ = 5(y — az ~ o(w))*}, (3.3)
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which, as a function of (z,u,y,8), is measurable. Let (X;,U;,Y;), 1 =1,...,n,
be a sample of size n from the model (3.1). It is easy to see that the joint density
of (X;,U;,Y;), i =1,...,n, satisfies Condition (M).

Let v = (ag, ¢o) be a vector with ||v||? = a2 + [) ¢2(u)du = 1. Let v, =
(an, #n) be a series of vectors in L. Suppose that v, — v = (ao, ¢o) in L. Let
h, be a series of real numbers with limit A. The likelihood ratio of the sample
((z1,u1,%1)s- - s (ZTny Un, Yn)) has the form

dP9+*&vn
~dPy HeXp{ zi — ¢(us) = %(%xi + ¢n(ui))]2}
/ Uexp{ - v a0}
= exp {hnI(O,v)An,e,v - %hiI(G, v) + op(l)}, (3.4)
where

1(8,v) = E(aoX + ¢o(U))*

and

nq 1
Brsw = 3 = (Vi = a0Xs = Go(U)) (@n s + én(U3)/1(8,0) =N (0, 72— a v)),

which shows that the family {P,,0 € ©} satisfies Condition (L”). Let A(0) = a.
It is easy to show that A;(v) = ao, where v = (a0, ¢o) € L. So,

. Ap(w)? 1
vlelg I(6,v)  var(X)

Now Suppose that Q ~ N(mg, S) is a Gaussian measure in the Hilbert space
L={0:6=(a,¢),a € R,¢ € L5(0,1)}. By using Theorem 1.5, we conclude
that for every stable estimator T}, of A\(f) = a, there exists a null set N in L,
such that for every 6 = (a,¢) € N and every p > 0,

lim Po{/n| T, — a| < p} < P{|Z| < p},
where Z ~ N(0,0?) and o? = (var(X))™".
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