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Abstract: We prove the identifiability property of Archimedean copula models for

dependent competing risks data when at least one of the failure times is expo-

nentially distributed. With this property, it becomes possible to quantify the de-

pendence between competing events based on exponentially distributed dependent

censored data. We demonstrate our estimation procedure using simulation studies

and in an application to survival data.

Key words and phrases: Archimedean copula models, copula graphic estimator,

identifiability of competing risks data.

1. Introduction

The identifiability of competing risks models has been a challenging topic in

statistical research. Suppose that T is a time to an event and C is a time to a

competing event, so that one can only observe (min{T,C}, I(T < C)). How to

evaluate the true association between T and C is an important research issue.

Tsiatis (1975) has proved the nonidentifiability of competing risks models for

this type of data, without any model or covariate information. Wang (2012) has

proved the nonidentifiability of Archimedean copula models based on dependent

censored data. Heckman and Honoré (1989) have proposed a set of conditions to

make a competing risks model identifiable with additional covariate information.

Wang et al. (2015) established a set of simpler conditions to make an Archimedean

copula model (a special class of competing risks model) identifiable with covariate

information.

In survival data analysis, survival times are often assumed to be exponentially

distributed. We are interested in finding models that are identifiable when the

time to an event is exponentially distributed and subject to dependent censoring.

It turns out that the Archimedean copula model assumption is good enough to
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make the corresponding model identifiable for dependent censored data when at

least one of the failure times is exponentially distributed (as we prove here).

Another motivation for this research is related to the estimation of survival

functions. The Kaplan–Meier estimator has become the major tool used in sur-

vival analysis since it was first introduced by Kaplan and Meier (1958). It is a

consistent estimator of the survival function of a failure time T when T is subject

to independent right censoring with a censoring time C. The available data we

have is (Xi, δi) = (min{Ti, Ci}, I(Ti < Ci)), for i = 1, 2, . . . , n, where T and C

are assumed to be independent and the Kaplan-Meier estimator is defined as

ŜT (t) = ΠXi<t

(
1− di

ni

)
,

where di and ni are defined as the number of failures at time Xi and the number

“at risk” just prior to time Xi, respectively. Then, one can show

ŜT (t)→ ST (t) = Pr(T > t)

uniformly when n → ∞ (see Fleming and Harrington (1991)). However, when

T and C are dependent, the Kaplan–Meier estimator can no longer be applied,

because it is a biased estimator of the survival function of T . Therefore, it is

of great importance and research interest to model the dependence structure

between T and C, and to quantify the true dependence between them effectively.

Once the dependence level is determined, the marginal survival functions can be

estimated consistently using the copula graphic estimator proposed by Zheng and

Klein (1995) and Rivest and Wells (2001), or the estimator proposed by Wang

(2014).

The remainder of the paper is organized as follows. We present our main

results about the identifiability in Section 2. In Section 3, we propose a new

approach to estimating the dependence parameter in Archimedean copula models

based on the property we proved in Section 2. Simulation studies in Section 4

demonstrate that the proposed method works well. We end our paper with a

discussion in Section 5.

2. Main Results

A bivariate random vector (T,C) follows an Archimedean copula if the joint

survival function of (T,C) can be expressed as

S(t, c) = ψθ
{
ψ−1
θ [S1(t)] + ψ−1

θ [S2(c)]
}
,
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where S1 and S2 are marginal survival functions of T and C, respectively, and

ψθ is defined on [0,∞] so that ψθ(0) = 1, ψ′θ(s) < 0, and ψ′′θ (s) > 0. Then, ψ−1
θ

is the inverse function of ψθ, defined as a copula generator (see Nelsen (2007)),

and θ is the unknown parameter.

The first Archimedean copula model was proposed by Clayton (1978). For

this model, ψα(s) = (1 + s)−1/α, which leads to the bivariate survivor function

S(t, c) =

{
1

S1(t)−α + S2(c)−α − 1

}1/α

,

for α > 0. Another important frailty model, the Hougaard model (Hougaard

(1986)), has ψβ(s) = exp(−sβ). Its bivariate survivor function is

S(t, c) = exp

(
−
[
{− log(S1(t))}1/β + {− log(S2(c))}1/β

]β)
for β ∈ (0, 1). In addition to the Clayton model and Hougaard model, other

well-known models such as the Frank model (Genest (1987)) and the Log-copula

model belong to this family.

For dependent censored data (X = min{T,C}, δ = I(T < C)) where (T,C)

can be modelled by an Archimedean copula, we can prove the following result:

Theorem 1. . For a dependent censored data (X = min{T,C}, δ = I(T < C)),

assume that the distribution of (T,C) can be modeled by an Archimedean copula

with the copula generator ψθ (θ is the dependence parameter):

S(t, c) = ψθ[ψ
−1
θ (S1(t)) + ψ−1

θ (S2(c))].

Under the assumption that ψ−1′

θ1
/ψ−1′

θ2
is a strictly increasing function for θ1 < θ2,

there is a unique Archimedean copula model such that the distribution of T (or

C) is exponential on [0,∞).

Proof: Suppose there are two marginal survival functions S
(1)
1 and S

(2)
1 of T ,

corresponding to different dependence levels θ1 and θ2, such that both of them

are exponential distributions with parameters λ1 and λ2, respectively, so that

S
(1)
1 (t) = exp(−λ1t), S

(2)
1 (t) = exp(−λ2t).

Then, we have two Archimedean copula models with the copula generators ψθ1
and ψθ2 , respectively such that

S(1)(t, c) = ψθ1 [ψ
−1
θ1

(S
(1)
1 (t)) + ψ−1

θ1
(S

(1)
2 (c))]
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and

S(2)(t, c) = ψθ2 [ψ
−1
θ2

(S
(2)
1 (t)) + ψ−1

θ2
(S

(2)
2 (c))],

and the distributions of (X, δ) corresponding to both models are the same. With-

out loss of generality, we assume that θ1 < θ2. Because the distributions of (X, δ)

are the same for both models, by Theorem 2 of Wang et al. (2015), the following

equality must hold:

S
(2)
1 (t) = ψθ2

[∫ t

0

ψ−1′

θ2
{π(u)}

ψ−1′

θ1
{π(u)}

dψ−1
θ1

(S
(1)
1 (u))

]
.

Taking the derivative with respect to t on both sides, we get:

S
(2)′

1 (t) = ψ′θ2

[∫ t

0

ψ−1′

θ2
{π(u)}

ψ−1′

θ1
{π(u)}

dψ−1
θ1

(S
(1)
1 (u))

]
ψ−1′

θ2
{π(t)}

ψ−1′

θ1
{π(t)}

ψ−1′

θ1
(S

(1)
1 (t))S

(1)′

1 (t)

=
ψ−1′

θ2
{π(t)}

ψ−1′

θ1
{π(t)}

ψ−1′

θ1
(S

(1)
1 (t))

ψ−1′

θ2
(S

(2)
1 (t))

S
(1)′

1 (t).

from which we have

ψ−1′

θ1
{π(t)}

ψ−1′

θ2
{π(t)}

=
ψ−1′

θ1
(S

(1)
1 (t))

ψ−1′

θ2
(S

(2)
1 (t))

× S
(1)′

1 (t)

S
(2)′

1 (t)
.

Suppose S
(1)
1 (t) = S

(2)
1 (t); then, S

(1)′

1 (t) = S
(2)′

1 (t). From the above equality we

must have

ψ−1′

θ1
{π(t)}

ψ−1′

θ2
{π(t)}

=
ψ−1′

θ1
(S

(1)
1 (t))

ψ−1′

θ2
(S

(2)
1 (t))

× S
(1)′

1 (t)

S
(2)′

1 (t)
=
ψ−1′

θ1
(S

(1)
1 (t))

ψ−1′

θ2
(S

(1)
1 (t))

,

which can’t hold because we know

π(t) = P (T > t,C > t) = S(t, t) = ψθ[ψ
−1
θ (S1(t)) + ψ−1

θ (S2(t))],

where θ = θ1 or θ2, because π(t) = P (T > t,C > t) = S(t, t) is the same for both

models. It is obvious that π(t) = S(t, t) is generally smaller than the probability

of P (T > t) = S1(t). By the condition that ψ−1′

θ1
/ψ−1′

θ2
is a strictly increasing

function when θ1 < θ2, we must have

ψ−1′

θ1
{π(t)}

ψ−1′

θ2
{π(t)}

<
ψ−1′

θ1
(S

(1)
1 (t))

ψ−1′

θ2
(S

(1)
1 (t))

,



THE IDENTIFIABILITY OF COPULA MODELS 987

which leads to a contradiction. Therefore, we only need to consider the situation

in which S
(1)
1 (t) 6= S

(2)
1 (t). Now, consider the stochastic ordering of S

(1)
1 (t) and

S
(2)
1 (t). Under the assumption that ψ−1′

θ1
/ψ−1′

θ2
is an increasing function when

θ1 < θ2, applying Proposition 2 in Rivest and Wells (2001), we can conclude

S
(2)
1 (t) ≤ S(1)

1 (t),

so that λ1 < λ2 (because we just proved that S
(1)
1 (t) 6= S

(2)
1 (t)). Hence,

S
(1)′

1 (t)

S
(2)′

1 (t)
=
λ1 exp(−λ1t)

λ2 exp(−λ2t)
.

Now, consider the equality:

ψ−1′

θ1
{π(t)}

ψ−1′

θ2
{π(t)}

=
ψ−1′

θ1
(S

(1)
1 (t))

ψ−1′

θ2
(S

(2)
1 (t))

× S
(1)′

1 (t)

S
(2)′

1 (t)
=
ψ−1′

θ1
(S

(1)
1 (t))

ψ−1′

θ2
(S

(2)
1 (t))

λ1 exp(−λ1t)

λ2 exp(−λ2t)
.

Letting t → 0 (t ≥ 0) on both sides, we can see that the limit of the left-hand

side equals to

lim
t→0

ψ−1′

θ1
{π(t)}

ψ−1′

θ2
{π(t)}

=
ψ−1′

θ1
{π(0)}

ψ−1′

θ2
{π(0)}

=
ψ−1′

θ1
{1}

ψ−1′

θ2
{1}

whereas the limit of the right-hand side is equal to

ψ−1′

θ1
(S

(1)
1 (0))

ψ−1′

θ2
(S

(2)
1 (0))

× λ1

λ2
=
ψ−1′

θ1
{1}

ψ−1′

θ2
{1}

λ1

λ2
6=
ψ−1′

θ1
{1}

ψ−1′

θ2
{1}

,

because ψ−1′

θ1
{1} and ψ−1′

θ2
{1} are well-defined finite quantities for Archimedean

copula models and λ1 < λ2, where the equality cannot hold on a set with prob-

ability measure greater than zero. This yields a contradiction. Therefore, we

can conclude that there is a unique Archimedean copula model such that the

marginal distribution of T is exponential on [0,∞).

Remark 1. The condition ψ−1′

θ1
/ψ−1′

θ2
being an increasing function for θ1 < θ2

is satisfied for most one parameter families of Archimedean copulas, such as the

Frank model or the Clayton model. This fact has been pointed out by Rivest

and Wells (2001). Note that the identifiability issue has already been dealt with

using copulas in previous studies (e.g., Carrière (1995) and Escarela and Carrierè

(2003)). However our work differs from theirs because in these two papers, the

authors assume that both the crude survival functions and the copula function

are known in order to identify the marginal survival functions. In our study,
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we assume only that the joint copula function is Archimedean, with the corre-

sponding dependence parameter unspecified. Then under the weak assumption

that one of the marginal survival function is exponential, the dependence can

be uniquely determined based on (X, δ), and the identifiability of the marginal

survival functions can be established.

3. Dependence Parameter Estimation

Using Theorem 1, we know that our model is identifiable, based on the ex-

ponential assumption of the marginal distributions of T . Now, we propose a new

parameter estimator for dependent censored data (Xi, δi) = (min{Ti, Ci}, I(Ti <

Ci)) under the above model/distribution assumptions; that is, the joint cop-

ula of (T,C) is an Archimedean copula, and the marginal distribution of T

is an exponential distribution. Define Xi = min{Ti, Ci}, δi = I(Ti < Ci),

Ni(y) = I(Xi < y, δi = 1), Yi(y) = I(Ti ≥ y, Ci ≥ y), N̄(y) =
∑n

i=1Ni(y), and

Ȳ (y) =
∑n

i=1 Yi(y). According to Fleming and Harrington (1991) and Rivest and

Wells (2001),

Mi(t) = Ni(t)−
∫ t

0
Yi(s)λ

](s)ds

and

M̄(t) = N̄(t)−
∫ t

0
Ȳ (s)λ](s)ds

are martingales with respect to the σ field F it = σ{I(Xi ≤ t, δi = 1), I(Xi ≤
t, δi = 0)} and Ft =

∨n
i=1F it , respectively, and λ](s) is defined as the crude

hazard function of T . We denote the corresponding crude cumulative function

and the survival function by Λ](s) and S](s), respectively. Using Theorem 1

in Wang (2014) or formula (8) in Rivest and Wells (2001), we can express the

marginal survival function of T as:

S1(t) = ψθ

[∫ t

0
ψ−1′

θ (π(u))π(u)d ln(S]1(u))

]

which can be estimated by (see Wang (2014))

Ŝ1(t) = ψθ

− ∑
Xi≤t,δi=1

ψ−1′

θ {π̂(Xi)}π̂(Xi)
dN̄(Xi)

Ȳ (Xi)

 ,

where ψ−1′

θ (u) is the derivative of ψ−1
θ with respect to u, and π(Xi) = Pr(X >

Xi), where π̂(Xi) is the empirical survival function of π(X) evaluated at Xi. The
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dependence parameter θ can be estimated in the following way: because S1(t)

is assumed to be the survival function of an exponential distribution, S1(t) =

exp(−λt), for some λ value. The cumulative hazard function of T is

H(t) = − log(S1(t)) = λt,

and H(t)/t = λ = 1/µ, where µ is the mean value of T . Given dependent censored

data, a natural estimator of µ can be established as:

µ̂ =

[
1

n

n∑
i=1

Ĥ1(Xi)

Xi

]−1

=

[
1

n

n∑
i=1

− log Ŝ1(Xi)

Xi

]−1

,

where Ŝ1 is the copula graphic estimator of S1 (see Rivest and Wells (2001)) or

the Wang estimator of S1 (see Wang (2014)). Therefore, the survival function

of the corresponding exponential distribution can be alternatively estimated by

exp(−Xi/µ̂). The dependence parameter value can then be determined as:

θ̂n = argmin
θ∈Θ

Q(θ) = argmin
θ∈Θ

n∑
i=1

{
Ŝ1(Xi)− exp

(
− Xi

µ̂

)}2

.

Assuming the differentiability of Ŝ1 with respect to the unknown parameter θ,

the corresponding estimating equation can be written as

dQ

dθ
= 2

n∑
i=1

{
Ŝ1(Xi)− exp

(
− Xi

µ̂

)}{
dŜ1(Xi)

dθ
− exp

(
− Xi

µ̂

)
Xi

µ̂2

dµ̂

dθ

}
= 0.

The asymptotic normality of our parameter estimator follows based on the corre-

sponding Taylor expansion of our estimating equation under necessary regularity

conditions.

Theorem 2. Under necessary regularity conditions, θ̂n is consistent and
√
n

(θ̂n − θ0) is asymptotically normal with mean zero and a finite variance σ2.

For the proof of Theorem 2, see the Appendix. The variance formula is quite

complicated, and we recommend using a bootstrap variance estimator to estimate

the variance.

4. Simulation Studies

We conducted simulation studies to demonstrate our parameter estimation

procedure. We consider weak to strong dependence levels, with Kendall’s τ val-

ues equal to 0.3, 0.5, and 0.7 for the Clayton copula model when the sample sizes
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are n = 500, n = 1500, and n = 3000, respectively. We generate (T,C) from a

Clayton copula model with unit exponential marginal distributions, and estimate

the dependence parameter α = 2τ/(1− τ) using our proposed method described

in Section 3. Based on any simulated sample, we get a bootstrap sample us-

ing the resampling approach. We estimated the parameter using our proposed

method for the bootstrap samples B times to get a bootstrap variance estimate

using the bootstrap estimates of the parameter. We then take the average of the

bootstrap variance estimate, which should be approximately the sample variance

of our proposed parameter estimates. For each simulated sample, we can get the

confidence interval for our parameter using the bootstrap variance estimate. The

simulation results are listed in Table 1. In Table 1, α̂1 represents our proposed

estimate of α, and α̂2 represents the MLE estimate of α, assuming that the joint

survival can be modeled by the Clayton model and the marginal distributions

are all exponential distributions. Furthermore, α̂3 represents the estimate of the

parameter α by minimizing the sum of the distances between the copula-graphic

estimates of ST and the survival function estimates of T , and also the distances

between the copula-graphic estimates of SC and the survival function estimates

of C, assuming that the joint survival can be modeled by the Clayton model

and the marginal distributions are all exponential distributions. From Table 1,

we can see that our proposed estimation approach works well for different levels

of dependence under the Clayton model assumption. When the sample size in-

creases from n = 500 to n = 3000, the proposed parameter estimates tend to be

less biased in both scenarios, the bootstrap variance estimators work reasonably

well, because they are close to the sample variances of the proposed parameter

estimates. In general, these results demonstrate the identifiability of our mod-

els when the marginal distributions of T are exponential. In addition, we see

that the MLE (α̂2) and α̂3 tend to be more efficient than the proposed param-

eter estimates by comparing the sample variances, and are also less biased (not

surprisingly, the MLE is the most efficient estimate). This is understandable, be-

cause we have more information about the data (here, we assume both marginal

distributions are exponential, rather than only one margin being exponentially

distributed, which is the assumptions under which our proposed estimate α̂1 is

developed).

5. An Illustrative Example

In this section, we illustrate our methodology by analyzing the bone marrow

transplant data described in Klein and Moeschberger (1997). The data set was
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Table 1. The Clayton model: performance of our parameter estimates based on 1,000
repetitions with sample sizes N = 500, N = 1500, and N = 3000. α̂1, α̂2, and α̂3 are
the mean values of α̂1, α̂2 and α̂3, respectively. v̂ar(α̂1), v̂ar(α̂2), and v̂ar(α̂3) represent

the sample variance of α̂1, α̂2 and α̂3 respectively. b̂var(α̂)1 represents the mean of the
bootstrap variances of the proposed parameter estimate α̂1.

α α̂1 α̂2 α̂3 v̂ar(α̂1) b̂var(α̂1) v̂ar(α̂2) v̂ar(α̂3)
N = 500

0.86 2.11 0.81 1.81 5.48 4.30 0.25 4.37
2.00 3.13 2.31 2.79 6.00 7.52 6.52 2.94
4.67 6.72 5.93 7.16 16.96 14.60 14.63 14.57

N = 1500
0.86 1.12 0.83 0.98 1.54 2.42 0.05 0.85
2.00 2.93 2.19 3.02 6.99 4.11 0.32 1.30
4.67 5.26 5.08 5.52 5.31 8.57 1.71 4.73

N = 3000
0.86 1.11 0.67 0.68 0.91 1.88 0.08 0.03
2.00 2.44 2.12 2.08 5.10 6.85 0.14 0.23
4.67 5.21 4.79 5.09 4.11 4.53 0.65 1.71

collected during a study in which 137 patients were followed in their recovery

from leukemia after a bone marrow transplant. We are interested in the disease-

free survival time T , that is, the time until a relapse of leukemia. The patients

can be censored by two possible events: disease-free death or disease-free and

alive at the end of the study. The censoring time C is then defined as the time

until the first of these two events happen. Assuming that T is exponentially

distributed and applying our estimation method, we find that the association

level is α̂ = 3.62 (τ̂ = 0.64), with the bootstrap standard error 0.93 under the

Clayton model assumption. The 95% confidence interval for α is CI=[3.62−1.96∗
0.93, 3.62 + 1.96 ∗ 0.93] = [1.80, 5.44], with 0 6∈ CI. There is enough evidence to

conclude that the dependence between T and C is significantly different from

zero. This conclusion is consistent with the results given in Lakhal, Rivest and

Abdous (2008) and Wang et al. (2015). In Lakhal, Rivest and Abdous (2008),

the authors explore the relationship between T and the time to death (different

from our censoring variable C) for the same data, and found a strong relationship

using a semicompeting risks model. Based on our parameter estimate, we can

estimate the survival function using the copula-graphic estimate proposed by

Rivest and Wells (2001) or the Wang estimate proposed in Wang (2014) (these

two estimates are equivalent asymptotically, as shown in Wang (2014)). We plot

the Wang estimate and the Kaplan-Meier estimate for the same data in the same

figure. From Figure 1, we can see that the Kaplan-Meier curve overestimates the
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survival function when the association is strong. There is a significant difference

between the two survival function estimates based on the same censored data.

Therefore, it is important to quantify the dependence level accurately to get

reasonable survival function estimates. The advantage of using our approach is

that we can directly estimate the association between T and C based on a simple

exponential distribution assumption of T , which is quite widely used in survival

analysis. We do not need to assume a special relationship between T and C (such

as T < C in the semicompeting risks setting) to make the association estimable

(see Lakhal, Rivest and Abdous (2008) and Fine, Jiang and Chappell (2001)).

6. Discussion

The identifiability of competing risks models has been a long-standing prob-

lem in statistical research, making the analysis of dependent competing risks data

a challenging task. This research is an attempt to solve this problem by imposing

a simple copula model and distribution assumption for dependent censored data.

We have proved the identifiability of Archimedean copula models for dependent

competing risks data when either the failure time T or the censoring time C is

exponentially distributed. We have also proposed a parameter estimation ap-

proach based on our model and distribution assumptions. In survival data anal-



THE IDENTIFIABILITY OF COPULA MODELS 993

ysis, researchers often assume exponential distributions for time-to-event data.

Therefore, our method should be quite useful for statistical analyses of dependent

censored data. Once we obtain consistent estimates of the dependence param-

eter, the association between T and C can be tested, and significance tests can

be developed based on the asymptotic theory described in Zeng, Lin and Lin

(2008) for semiparametric transformation models (see Theorems 2 and 3 in their

paper). The marginal survival functions can be consistently estimated using the

copula-graphic estimator (Zheng and Klein (1995), Rivest and Wells (2001)), or

the estimator proposed by Wang (2014).
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Appendix

Proof of consistency of our parameter estimator: by the strong law of large

numbers, it is easy to show that

Mn(θ) =
1

n

n∑
i=1

[
Ŝ1(Xi)− exp

(
−Xi

µ̂

)]2

p→ E

[
S1(X)− exp

(
−X
µ

)]2

= M(θ),

when n→∞ based on the following facts: (a) Ŝ1(Xi)
p→ S1(Xi) uniformly when

n→∞ by Theorem 1 in Rivest and Wells (2001); (b) exp(−Xi/µ̂)
p→ exp(−Xi/µ)

uniformly when n→∞ because of (a), the boundedness of corresponding deriva-

tives and the strong law of large numbers. By Theorem 1 we know there is a

unique θ = θ0 value such that S1(X) = exp(−X/µ) and M(θ) is a continuous

function of θ on a compact set Θ, therefore, we must have

min
θ:d(θ,θ0)≥ε

M(θ) > M(θ0) = 0.

Mn(θ̂) ≤Mn(θ̂) + op(1) is trivially satisfied because θ̂ is an M-estimator. There-

fore we can conclude that θ̂ → θ0 when n → ∞ by Theorem 5.7 in van der

Vaart (2007). Proof of asymptotic normality of our parameter estimator: using

the Taylor expansion at θ = θ0 (assuming that θ0 is the true parameter), our
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estimating equation can be written as:

0 =

n∑
i=1

gn(Xi, θ̂) ≈
n∑
i=1

gn(Xi, θ0)

+

n∑
i=1

dgn(Xi, θ0)

dθ
(θ̂ − θ0),

where gn(Xi, θ0) is defined as:

gn(Xi, θ0) =

{
Ŝ1(Xi)− exp

(
− Xi

µ̂

)}{
dŜ1(Xi)

dθ
− exp

(
− Xi

µ̂

)
Xi

µ̂2

dµ̂

dθ

}

= Ŝ1(Xi)
dŜ1(Xi)

dθ
− Ŝ1(Xi) exp

(
− Xi

µ̂

)
Xi

µ̂2

dµ̂

dθ

− exp

(
− Xi

µ̂

)
dŜ1(Xi)

dθ
+ exp

(
− 2Xi

µ̂

)
Xi

µ̂2

dµ̂

dθ
.

Therefore
√
n(θ̂ − θ0) =

(
√
n/n)

∑n
i=1 gn(Xi, θ0)

(1/n)
∑n

i=1−dgn(Xi, θ0)/dθ
.

Noticing the fact that when θ = θ0, S1(Xi)− exp(−Xi/µ) = 0 so that{
S1(Xi)− exp

(
− Xi

µ

)}{
dS1(Xi)

dθ
− exp

(
− Xi

µ

)
Xi

µ2

dµ

dθ

}
= 0.

Therefore,

n∑
i=1

gn(Xi, θ0) = Term 1 + Term 2 + Term 3 + Term 4.

Where

Term 1

=

n∑
i=1

Ŝ1(Xi)
dŜ1(Xi)

dθ
− S1(Xi)

dS1(Xi)

dθ

=

n∑
i=1

Ŝ1(Xi)
dŜ1(Xi)

dθ
− Ŝ1(Xi)

dS1(Xi)

dθ
+ Ŝ1(Xi)

dS1(Xi)

dθ
− S1(Xi)

dS1(Xi)

dθ

=

n∑
i=1

Ŝ1(Xi)

{
dŜ1(Xi)

dθ
− dS1(Xi)

dθ

}
+
dS1(Xi)

dθ

{
Ŝ1(Xi)− S1(Xi)

}
.
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Here

Ŝ1(t) = ψθ

{
−
∫ t

0
ψ−1′

θ {π̂(u)}π̂(u)
dN̄(u)

Ȳ (u)

}
,

and

dŜ1(t)

dθ

= ψ′θ

{
−
∫ t

0
ψ−1′

θ {π̂(u)}π̂(u)
dN̄(u)

Ȳ (u)

}{
−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

dN̄(u)

Ȳ (u)

}

=

{
−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

dN̄(u)

Ȳ (u)

}/
ψ−1′

θ

[
ψθ

{
−
∫ t

0
ψ−1′

θ {π̂(u)}π̂(u)
dN̄(u)

Ȳ (u)

}]

=

{
−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

dN̄(u)

Ȳ (u)

}/
ψ−1′

θ [Ŝ1(t)],

hence

dŜ1(t)

dθ
− dS1(t)

dθ

=

{
−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

dN̄(u)

Ȳ (u)

}/
ψ−1′

θ [Ŝ1(t)]

−

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}/
ψ−1
θ [S1(t)]

=

{
−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

dN̄(u)

Ȳ (u)

}/
ψ−1′

θ [Ŝ1(t)]

−

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}/
ψ−1′

θ [Ŝ1(t)]

+

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}/
ψ−1′

θ [Ŝ1(t)]

−

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}/
ψ−1
θ [S1(t)]

=
1

ψ−1′

θ [Ŝ1(t)]

[
−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

∆N̄(u)

Ȳ (u)
+

∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

]

+

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}[
1

ψ−1′

θ [Ŝ1(t)]
− 1

ψ−1′

θ [S1(t)]

]
.
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Mimicking the arguments given in Rivest and Wells (2001), we can show that

−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

dN̄(u)

Ȳ (u)
+

∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

= − 1

n

∫ t

0

dψ−1′

θ

dθ

{
Ȳ

n

}
dM̄(u) +

∫ t

0

[
−
dψ−1′

θ

dθ

{
Ȳ

n

}
Ȳ (u)

n

+
dψ−1′

θ

dθ
{π(u)}π(u)

]
dΛ](u),

and also

− 1√
n

∫ t

0

dψ−1′

θ

dθ

{
Ȳ (u)

n

}
dM̄(u) = − 1√

n

∫ t

0

dψ−1′

θ

dθ
{π(u)}dM̄(u) + op(1).

−
dψ−1′

θ

dθ

{
Ȳ

n

}
Ȳ (u)

n
+
dψ−1′

θ

dθ
{π(u)}π(u) = Φ′1(π(u))

[
Ȳ (u)

n
− π(u)

]
+ op(n

−1/2)

= Φ′1(π(u))
1

n

n∑
i=1

[I(Xi > u)− π(u)] + op(n
−1/2),

where Φ1 is defined as Φ1(s) = −s(dψ−1′

θ /dθ)(s). Combining these two results,

we have

−
∫ t

0

dψ−1′

θ

dθ
{π̂(u)}π̂(u)

dN̄(u)

Ȳ (u)
+

∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

=
1√
n

[
− 1√

n

∫ t

0

dψ−1′

θ

dθ
{π(u)}dM̄(u)

+
1√
n

∫ t

0

n∑
i=1

Φ′1(π(u)) [I(Xi > u)− π(u)] dΛ](u) + op(1)

]
.

Similarly, we have{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}[
1

ψ−1′

θ [Ŝ1(t)]
− 1

ψ−1′

θ [S1(t)]

]

=

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}
ψ−1′

θ (S1(t))

[ψ−1′

θ (S1(t))]2
[Ŝ1(t)− S1(t)]

=

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}
ψ−1′

θ (S1(t))

[ψ−1′

θ (S1(t))]2
1

[ψ−1′

θ (S1(t))]

×

{
−
∫ t

0
ψ−1′

θ {π̂(u)}π̂(u)
dN̄(u)

Ȳ (u)
+

∫ t

0
ψ−1′

θ {π(u)}π(u)dΛ](u)

}
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=

{
−
∫ t

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}
ψ−1′

θ (S1(t))

[ψ−1′

θ (S1(t))]3

× 1√
n

[
− 1√

n

∫ t

0
ψ−1′

θ {π(u)}dM̄(u)

+
1√
n

∫ t

0

n∑
i=1

Φ′(π(u)) [I(Xi > u)− π(u)] dΛ](u) + op(1)

]
,

where Φ(s) = −sψ−1′

θ (s). Therefore,

√
n

[
dŜ1(Xi)

dθ
− dS1(Xi)

dθ

]

=
1√
n

1

ψ−1′

θ [S1(Xi)]

∫ Xi

0
−
dψ−1′

θ

dθ
{π(u)}dM̄(u)

+
1√
n

1

ψ−1′

θ [S1(Xi)]

∫ Xi

0

n∑
j=1

Φ′1(π(u)) [I(Xj > u)− π(u)] dΛ](u)

+
1√
n

n∑
j=1

{
−
∫ Xi

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}
ψ−1′

θ (S1(Xi))

[ψ−1′

θ (S1(Xi))]3

×

[∫ Xi

0
−ψ−1′

θ {π(u)}dMj(u) +

∫ Xi

0
Φ′(π(u)) [I(Xj > u)− π(u)] dΛ](u)

]
+ op(1)

=
1√
n

n∑
j=1

[
1

ψ−1′

θ [S1(Xi)]

∫ Xi

0
−ψ−1′

θ {π(u)}dMj(u)

+
1

ψ−1′

θ [S1(Xi)]

∫ Xi

0
Φ′1(π(u)) [I(Xj > u)− π(u)] dΛ](u)

]

+
1√
n

n∑
j=1

{
−
∫ Xi

0

dψ−1′

θ

dθ
{π(u)}π(u)dΛ](u)

}
ψ−1′

θ (S1(Xi))

[ψ−1′

θ (S1(Xi))]3

×

[∫ Xi

0
−ψ−1′

θ {π(u)}dMj(u) +

∫ Xi

0
Φ′(π(u)) [I(Xj > u)− π(u)] dΛ](u)

]
+ op(1),

and

√
n[Ŝ1(Xi)− S1(Xi)]
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=
1

[ψ−1′

θ (S1(Xi))]

{
−
∫ Xi

0
ψ−1′

θ {π̂(u)}π̂(u)
dN̄(u)

Ȳ (u)

+

∫ Xi

0
ψ−1′

θ {π(u)}π(u)dΛ](u)

}

=
1√
n

1

[ψ−1′

θ (S1(Xi))]

[∫ Xi

0
−ψ−1′

θ {π(u)}dM̄(u)

+
1√
n

∫ Xi

0

n∑
j=1

Φ′(π(u)) [I(Xj > u)− π(u)] dΛ](u)

]
+ op(1)

=
1√
n

1

[ψ−1′

θ (S1(Xi))]

n∑
j=1

[∫ Xi

0
−ψ−1′

θ {π(u)}dMj(u)

+

∫ Xi

0
Φ′(π(u)) [I(Xj > u)− π(u)] dΛ](u)

]
+ op(1).

Hence (
√
n/n)Term 1 can be expressed as

√
n times a linear combination of order

2 U statistics, therefore it is asymptotically normal. Now

Term 2 = −
n∑
i=1

Ŝ1(Xi) exp

(
− Xi

µ̂

)
Xi

µ̂2

dµ̂

dθ
+ S1(Xi) exp

(
− Xi

µ

)
Xi

µ2

dµ

dθ
.

= −
n∑
i=1

exp

(
− Xi

µ

)
Xi

µ2

dµ

dθ
[Ŝ1(Xi)− S1(Xi)]

+ S1(Xi)

[
exp

(
− Xi

µ̂

)
Xi

µ̂2

dµ̂

dθ
− exp

(
− Xi

µ

)
Xi

µ2

dµ

dθ

]
+ op

(
1√
n

)
= −

n∑
i=1

exp

(
− Xi

µ

)
Xi

µ2

dµ

dθ
[Ŝ1(Xi)− S1(Xi)]

+ S1(Xi)
dµ

dθ

[
exp

(
− Xi

µ̂

)
Xi

µ̂2
− exp

(
− Xi

µ

)
Xi

µ2

]
+ S1(Xi) exp

(
− Xi

µ

)
Xi

µ2

[
dµ̂

dθ
− dµ

dθ

]
+ op

(
1√
n

)
= −

n∑
i=1

exp

(
− Xi

µ

)
Xi

µ2

dµ

dθ
[Ŝ1(Xi)− S1(Xi)]

+ S1(Xi)
dµ

dθ

[
− X2

i

µ2
exp

(
− Xi

µ

)
+

2Xi

µ
exp

(
− Xi

µ

)]{
1

µ̂
− 1

µ

}
+ S1(Xi) exp

(
− Xi

µ

)
Xi

µ2

[
dµ̂

dθ
− dµ

dθ

]
+ op

(
1√
n

)
.
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Noticing the fact that

√
n

{
1

µ̂
− 1

µ

}
=

√
n

n

n∑
j=1

{
− log(Ŝ(Xj))

Xj
− E

(
− log(S(X))

X

)}

=

√
n

n

n∑
j=1

[
− log(Ŝ(Xj))

Xj
− − log(S(Xj))

Xj

+
− log(S(Xj))

Xj
− E

(
− log(S(X))

X

)]
=

√
n

n

n∑
j=1

[
−Ŝ(Xj)

S(Xj)Xj
− −S(Xj)

S(Xj)Xj

+
− log(S(Xj))

Xj
− E

(
− log(S(X))

X

)
+ op(1)

]
=

1

n3/2

n∑
j=1

n∑
k=1

∫ Xj

0 −ψ−1′

θ {π(u)}dMk(u)

ψ−1′

θ (S1(Xj))S1(Xj)Xj

+
1

n3/2

n∑
j=1

n∑
k=1

∫ Xj

0 Φ′(π(u)) [I(Xk > u)− π(u)] dΛ](u)]

ψ−1′

θ (S1(Xj))S(Xj)Xj

+
1√
n

n∑
j=1

[
− log(S(Xj))

Xj
− E

(
− log(S(X))

X

)]
+ op(1),

and

√
n

(
dµ̂

dθ
− dµ

dθ

)
=

√
n

µ̂2

1

n

n∑
j=1

[
−dŜ(Xj)/dθ

Ŝ(Xj)Xj

− E
(
− dS(X)/dθ

S(X)X

)]

=
1

µ̂2

√
n

n

n∑
j=1

[
−dŜ(Xj)/dθ

Ŝ(Xj)Xj

+
dŜ(Xj)/dθ

S(Xj)Xj
− dŜ(Xj)/dθ

S(Xj)Xj

+
dS(Xj)/dθ

S(Xj)Xj
− dS(Xj)/dθ

S(Xj)Xj
+ E

(
dS(X)/dθ

S(X)X

)]
=

1

µ̂2

√
n

n

n∑
j=1

[
−dS(Xj)/dθ

Xj

(
1

Ŝ(Xj)
− 1

S(Xj)

)

− 1

S(Xj)Xj

(
dŜ(Xj)

dθ
− dS(Xj)

dθ

)
− dS(Xj)/dθ

S(Xj)Xj
+ E

(
dS(X)/dθ

S(X)X

)]
=

1

µ2

√
n

n

n∑
j=1

[
−[dS(Xj)/dθ]

2

S(Xj)2Xj
(Ŝ(Xj)− S(Xj))
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− 1

S(Xj)Xj

(
dŜ(Xj)

dθ
− dS(Xj)

dθ

)
− dS(Xj)/dθ

S(Xj)Xj
+ E

(
dS(X)/dθ

S(X)X

)]
+ op(1).

From above expression, we can easily show that (
√
n/n)Term 2 can be expressed

as
√
n times a linear combination of order 2 or order 3 U statistics following the

same way we have used for proving the asymptotic normality of (
√
n/n)Term 1,

hence (
√
n/n)Term 2 is asymptotically normal. Similar arguments can be applied

to prove the asymptotic normality of (
√
n/n)Term 3 and (

√
n/n)Term 4. We can

conclude that our parameter estimator is asymptotically normal based on above

derivations.
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