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Abstract: For nonparametric regression, where the regression function has disconti-
nuity points, the kernel regression estimator and cross-validation are known to be
affected by discontinuity. This effect is precisely quantified through the mean average
square error (MASE) for the kernel regression estimator and a limiting distribution
for the cross-validated bandwidth. An approach is proposed to adjust for the effect of
discontinuity on kernel regression estimation and bandwidth selection. The resulting
kernel regression estimator and cross-validation are further analyzed by the MASE
and a limiting distribution, respectively. Simulation studies show that the asymptotic
results are applicable to reasonable sample sizes.
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1. Introduction

Nonparametric regression is a smoothing method for recovering the regres-
sion function and its characteristics from noisy data. The simplest and most
widely used regression smoothers are based on kernel methods. Kernel regression
estimators are local weighted averages of the response variables. The weights as-
signed to the observations are calculated from a given function called the kernel
function. The width of the neighborhood in which averaging is performed is called
the bandwidth or smoothing parameter. The magnitude of bandwidth controls
the smoothness of the resulting estimate of the regression function. Choosing a
suitable value of bandwidth is the essence of the smoothing problem.

Currently, the results on kernel regression estimation and bandwidth selec-
tion given in the literature are usually derived under the assumption that the
regression function has two continuous derivatives. In this case, for asymptotic
properties of kernel regression estimators, see, for example, the monographs by
Eubank (1988), Miller (1988), and Hardle (1990, 1991). Also, for bandwidth
selection, cross-validation introduced by Clark (1975) is an attractive method. It
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takes the minimizer of the cross-validation score as an estimate of the optimal
bandwidth, the minimizer of the mean average square error (MASE) of the kernel
regression estimator. For asymptotic properties of the cross-validated bandwidth
and asymptotic equivalence of some popular data-driven bandwidth selectors to
cross-validation, see, for example, Rice (1984) and Hardle, Hall, and Marron
(1988). For other bandwidth selectors, see also Marron (1988), a survey paper,
and references given therein.

In practice, however, the regression function may have discontinuity points.
For example, consider the cases of studying the impact of advertising, the ef-
fect of medicine, and the influence of sudden changes in governmental policies
and international relationships. These actions may cause effect instantly. But
the times at which these actions cause effect are not known. See Shiau (1985)
and McDonald and Owen (1986) for many interesting examples where regression
functions are not continuous. See also Yin (1988) and Wu and Chu (1991a) for
estimating locations of discontinuity points of the regression function. For a de-
tailed discussion of the effect of discontinuity on the kernel density estimator and
cross-validation in the related field of kernel density estimation, see, for example,
Van Eeden (1985), Cline and Hart (1989), and Van Es (1990).

For the case that the regression function has discontinuity points, the MASE
for the kernel regression estimator and a central limit theorem (CLT) for the
cross-validated bandwidth are given in Section 3. This MASE quantifies the ef-
fect of discontinuity on the kernel regression estimator by showing the minimum
order of magnitude of the MASE. Also, this CLT quantifies the effect of disconti-
nuity on cross-validation by giving the rate of convergence of the cross-validated
bandwidth. The minimum MASE of the kernel regression estimator and the rate
of convergence of the cross-validated bandwidth are of larger and of smaller or-
ders than those given in Hardle, Hall, and Marron (1988) for the case that the
regression function has two continuous derivatives, respectively. These results are
the same as those given in Van Eeden (1985), Cline and Hart (1989), and Van
Es (1990) for estimating a discontinous density function.

To adjust for the effect of discontinuity on the kernel regression estimator and
cross-validation, an immediate remedy is to estimate the regression function and
to construct the cross-validation score on subintervals separated by estimates of
locations of discontinuity points. For this, if the number of discontinuity points is
known, using either of the methods in Yin (1988) and Wu and Chu (1991a), then
locations of discontinuity points can be estimated accurately, in the sense of the
rate of strong consistency. Based on these estimates of locations of discontinuity
points, the resulting kernel regression estimator and cross-validation are further
analyzed by the MASE and a CLT in Section 3. The results obtained are the
same as those given in Hardle, Hall, and Marron (1988) for the case that the
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regression function has two continuous derivatives.

The organization of this paper is as follows. Section 2 describes the regression
settings, including precise formulation of the proposed approach for estimating
the regression function and choosing the value of bandwidth when the regression
function has discontinuity points. Section 3 gives the theoretical results of this
paper. Section 4 contains simulation results which give additional insight into
what the theoretical results mean. For applications of the proposed approach,
we suggest taking the bandwidth needed by either of the methods in Yin (1988)
and Wu and Chu (1991a) for estimating locations of discontinuity points as the
cross-validated bandwidth. Simulation studies show that the performance of the
resulting kernel regression estimator is good, in the sense of the sample MASE.
Finally, sketches of the proofs are given in Section 5.

2. Regression Settings

In this paper, the equally spaced fixed design nonparametric regression model
is considered. The regression model is given by

Yn,i = m(mn,i) + €n,iy (21)

for i = 0,1,...,n. Here m is an unknown discontinuous regression function
defined on the interval [0,1] (without loss of generality), z,; are equally spaced
fixed design points, i.e. Tn; = i/n, €n; are unobservable regression errors, and
Y,; are noisy observations of the regression function m at the design points z, ;.
In the following, for simplicity of notation, let Y;, z;, and ¢; denote Yy, ;, Tn;, and
€n,i, respectively.

The discontinuous regression function m in (2.1) is defined by

m(z) = r(z) + ¢¥(x), (2.2)

where r is a continuous function defined on the interval [0,1] and 9 is a step
function defined by ¥(z) = Lf_; dilps, 1)(z) for z € [0, 1]. Here ¢ is a positive
integer representing the number of discontinuity points, t; are locations of dis-
continuity points, and dj are nonzero real numbers representing jump sizes of m
at t,. For simplicity of notation, let tg = 0, tg41 = 1, |d1] > |da| > -+ > |dg|, and
the distance between any two of these t;, for j = 0,1,...,¢ + 1, be greater than
6, where 6 is an arbitrarily small positive constant.

To estimate m(z), the kernel regression estimator introduced by Nadaraya
(1964) and Watson (1964) is considered. To deal with boundary effects on the
kernel regression estimator, the method of projected data in Wu and Chu (1991b)
is applied. For a detailed discussion of boundary effects, see, for example, Section
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4.3 in Miiller (1988) and Section 4.4 in Hardle (1990). The method of projected
data and the Nadaraya-Watson estimator are introduced in the following.

We now introduce the method of projected data in Wu and Chu (1991b).
Given the kernel functions L(z) = (-6 — 12z) - [|_; g(z) and R(z) = —1- L(—xz),
the bandwidth g, and the observations Y; at z; € [k, 7], a subinterval of [0, 1], the
projected data Y;F at z; = i/n € [2k — 7,27 — k| are defined by

Youa_i + 2mgr(k)(zs — k) fori=2A-B,2A-B+1,...,A~-1
Y=Y, fori=A,A+1,...,B (2.3)
Yap_i + 2/mgr(7)(zi—7) fori=B+1,B+2,...,2B - A.

Here A and B denote the minimum and the maximum subindices i for z; = i/n €
[k, 7], respectively. Note that 7hgr (k) and mgr(7) are defined by

Tth(fi) = n—lzi:zie[n,T]Lg(K’ - :I:i)Y;',
Tth(T) = n—lzi:mie[n,f]Rg(T - xi)y;

Here and throughout this paper, the upper index P stands for projection and the
notation f4(-) denotes g~1f(-/g) for any given function f and bandwidth g. For
formulation of Y;¥ and the choice of L and R, see (2.3) and Remark 3.2 in Wu
and Chu (1991b), respectively.

To estimate m(z) on the subinterval [, 7] of [0,1], the Nadaraya-Watson
estimator 7h(z) is as follows. Given the projected data Y;¥ in (2.3), the kernel
function K which is chosen to be a probability density function, and the band-
width h = g/1.572, define m(z) for = € [, 7] by

n—lzi:mi€[2n-—7,2‘r—n]Kh($ - wi)YiP
n_lzi:zie[Zn-—'r,ZT—-n]Kh(:v - "E'b)

m(z) = : (2.4)
(if the denominator of m(z) is zero, take 7(z) = 0). If m(z) has two continuous
derivatives on [k, 7], then the magnitude of bias of i(z), for = € [k, 7], is of order
h?. For this and the factor 1.572, see Section 3 and Remark 3.2 in Wu and Chu
(1991b), respectively. For another formulation of the projected data Y, see Hall
and Wehrly (1991).

The performance of the regression function estimator 7(z) in (2.4) is mea-
sured by the MASE defined by

das(h) = E[n_l 3 (rilz;) - m(xj))z]. (2.5)
=0

The optimal bandwidth hps for constructing /(z) is taken as the minimizer of
dn (h).
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In practice, however, the value of hjs is not available because the quantity
depends on the unknown m(z). Since the value of hy; can not calculated, cross-
validation is designed to choose the bandwidth by minimizing the cross-validation
score CV(h) defined by

n

2
CV(h)=n~ Z (ms(2) - ¥5) " (2.6)
Here mj(z;) is the “leave-1-out” version of m(z;), i.e. the observation (z;,Y}) is
left out in constructing m(z;), for each 7 = 0,1,...,n. More specifically, 7 ;(z;)

is defined by
"—lzi:x,-e[—m],i;éth(xj - "Ei)YiP

n—lzi:mie[—1,2],i¢th($j - ;)

mj(z;) =

- (if the denominator of 7m;(z;) is zero, take mj(z;) = 0), where Y, are the
projected data derived from Y; at z; € [0,1]. Let fzcv denote the minimizer
of CV(h). Based on (2.1), the asymptotic values of dps(h) and hjps and the
asymptotic behavior of hcy will be studied in Section 3.

Note that the above (z), dar(h), kar, CV(h), and hoy are defined for the
case that m(z) in (2.2) is not assumed to be discontinuous. When m(z) in (2.2)
is assumed to have unknown discontinuity points, the proposed approach for
estimating the regression function and choosing the value of bandwidth is given
in the following. If the value of ¢ is known, then #; can be estimated by either of
the methods in Yin (1988) and Wu and Chu (1991a). In this paper, we shall use
the kernel type estimators f; in Wu and Chu (1991a) to estimate tx. Let to=0
and fq+1 = 1. These kernel type estimators and their asymptotic behavior will
be given at the end of this section.

Based on the estimates ¢ of tx, (2.3), and (2.4), the proposed approach is to
estimate m(z) independently on each subinterval [fx_q, %] for k = 1,2,...,¢+ 1.
Let mf(x) denote the result obtained, i.e. for each k = 1,2,...,¢+ 1, and
T € [fk_l,fk],
n1SFK (z — z) YR

n 1Sk K(z — z;)

(if the denominator of m”(z) is zero, take m”(z) = 0). Here Y;"* are the pro-
jected data derived from Y; at z; € [fx—1,%k] and ZF = Eiill Zi:m;€[2fk_x—ik,Zik-—fk_l]'
The MASE of mf(z) is given by

2 = B[n7 Y (7(a3) - miz) ] (28)

J=0

mP(z) = (2.7)

Let hl, denote the minimizer of di;(h).
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On the other hand, based on (2.3) and (2.4), the proposed approach is to
choose the bandwidth by minimizing CVF(h) defined by

q+1

2
CVP(R) =07t S B ey i (1] (@) = Y5) (2.9)
k=1

Here, for each z; € [tk—1, k], mf(mj) is the “leave-1-out” version of mF(z;), i.e.

-1k . . Pk
J n—lzi’i¢th(1:j - sci)

(if the denominator of fnf(:vj) is zero, take r‘nf(:cj) = 0). Let fzgv denote the
minimizer of CVF(h). The asymptotic values of d5 (k) and k%, and the asymp-
totic behavior of hE,, will be studied in Section 3.

We now close this section by introducing the kernel type estimators £ in Wu
and Chu (1991a) and their asymptotic behavior, for the case that the value of ¢
is known. To estimate tx, given the kernel functions K;(z) = (0.4857 — 3.8560z +
2.8262z% — 19.1631z> + 11.9952z*) - I{_1 .2012)(z) and Ka(z) = Ki(—z) and the
bandwidth w, define J(z) for z € [0,1] by

J(z) = myk, () — Muk, (), (2.10)
where

n—lzi:zie[—lﬂ]FW(x - x‘i)}/ip

n18re-1,2Fu(T — z:)

ﬁ’l.wF(fE) =

I

and where F denotes K; and K, in each case. For the motivation of J(z)
and the choice of K; and K3, see (2.4) and Remark 2 in Wu and Chu (1991a),
respectively. In this case, i are taken as maximizers of |J(z)| over the sets I} =

[0,1] - ?;11 [fj -£i+ g], for k =1,2,...,q. For the asymptotic behavior of f,
based on Theorem 1 in Wu and Chu (1991a), #; are asymptotically independent
and

Itk — tk] < W' TP (log8) almost surely, - (2.11)
(nfw)!/? (B = ) = N(0, Vi), (2.12)
asn — oo, for k=1,2,...,q, where 8 € (0, %) is a given constant and

[ (5@ - k(@) da
[2dkK§”(0)]2

Vk=0'

)
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and where Kfl) and Kél) denote the first derivatives of K; and K3, respectively.

3. Results

In this section, we study the asymptotic values of das(h), has, di;(h), and
hﬂ and the asymptotic behavior of hcv and hgv. For these, in addition to the
assumptions given in Section 2, we impose the following assumptions:

(A.1) The function 7(z) in (2.2) has a uniformly continuous and square integrable
second derivative r(2)(z) on the interval (0,1).

(A.2) The kernel function K is a square integrable probability density function
with support contained in the interval [-1,1]. Also K is symmetric about zero
and the second derivative of K is Lipschitz continuous.

(A.3) The regression errors ¢; are independent and identically distributed random
variables with mean 0, variance 2, and all other moments finite.

(A.4) The total number of observations in this regression setting is n, with n — oo.

(A.5) The minimizers hcy and ]A‘Ic)v of CV(h) and CV®(h), respectively, are
searched in the interval H, = [an™%?, Bn=F], for n = 1,2,.... Here the positive
constants o and p are arbitrarily small and  large. The bandwidth w in (2.10)
is also selected in H, and satisfies the conditions n~1w=1+6) = o(1) and w!*? =
o(h?), where 8 € (0, 3) is a given constant.

Under the above assumptions, it is shown in Section 5 that dps(h) can be
asymptotically expressed as

dy(h) = a1-n A7+ By -+ o(nTAT 4 B), (3.1)
where

o = UZ/K(.’B)deU,
By = [kidi] [ex@pas.
=1

Here, the function C(z) is defined by [*_ f(u)du for —a < z < 0and (-1) [ f(u)
du for 0 < z < a, when the function f with support on the interval [—a,a],
0 < a <1, is given. For the components of MASE, o7 - n~1h~! and 8y - h rep-
resent the variance and the squared bias, respectively. A consequence of (3.1) is
that the minimum order of magnitude of das(h) is n~1/2 which is arrived at when
the value of h is of order n~1/2. However, it is larger than the minimum order
of magnitude of the MASE, n=%/5, given in Hardle, Hall, and Marron (1988) for

the case that the regression function has two continuous derivatives. '
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The following (3.2) and Theorem 1 show the effect of discontinuity of the
regression function on the asymptotic behavior of hcv The proof Theorem 1
is given in Section 5. By these results, the magnitude of hov is of order n~1/2
and the rate of convergence of hcv to hps is of order n =3/4 These orders for
the cross-validated bandwidth are smaller than those, n~1/% and n=3/10, given in
Hirdle, Hall, and Marron (1988) for the case that the regression function has two
continuous derivatives, respectively.

According to (3.1), by a straightforward calculation, the optimal bandwidth
hy can be asymptotically expressed as

hy = £y -n~Y2 (14 0(1)), (3.2)
where
g -1 -171/2
Ly = o /By)M? = [ /K dm(Zdz> (/Cx(x)2dx) }
Theorem 1. Under the above assumptions, if oy > 0, then
hcv/hy — 1 almost surely, (3.3)
n'/*(hov /b - 1) = N(0,VARy), (3.4)
. 1
n'/?(dns(hov)/du(hae) = 1) = 5 VARy - xi, (3.5)

as n — 0o, where
1/2
VAR, = [o /Zdz} £

and where

- | [ ox@?as | K(w)zdw}-“ 2 [ Cx@as [+ (K - G)(o)

—(K ~- G)(z))%dz + /(CG_2K * K(z) + Cx * G(z)
+Cox(2))dz / K(:c)2da:}

Here and throughout this paper, G(z) = (—z)K)(z), and * means convolution.

We now study the performance of the proposed approach to kernel regression
estimation and bandwidth selection. For this, in addition to the above assump-
tions, add

(A.6) The value of ¢ in (2.2) is known.
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Under the above assumptions, it is shown in Section 5 that d,}f,f(h) can be
asymptotically expressed as

dbi(h) =1 -n7 A 4 B, - R+ o(n R 4 AY), (3.6)

where the coefficient o; has been given in (3.1) and

Br = (1/4)</m2K(m)dfc>2/r(z)(z)zdm.

This asymptotic value of d{,(h) is the same as that of the MASE given in Hardle,
Hall, and Marron (1988) for the case that the regression function has two con-
tinuous derivatives.

The following (3.7) and Theorem 2 give the asymptotic behavior of Bgv- The
proof of Theorem 2 is given in Section 5. Based on (3.6), by a straightforward
calculation, the value of hf,, can be asymptotically expressed as

hE =t 075 (1 +0(1)), (3.7)

where
b= len/(4B))'V° = [02 / K (m)zdx< / :czK(a:)d:c) "2( / ) (g2 dz) "1J 1/5

Theorem 2. Under the above assumptions, if a; > 0 and B, > 0, then

hEv/hhy — 1 almost surely, (3.8)
n'/1(hgy/hfy —1) = N(0,VAR,), (3.9)
n'/®(dfy (hEy)/dfy (k) = 1) = 2. VAR, X}, (3.10)

as n — 00, where

1/5
VAR, = [0'2//7'(2)(1:)2de “TK,

and where

[+ (K - 6)2) - (K - G)(@))da
= (8/25)

TS (82 [(/K(x)mz)g(/ﬁK(m)dm)zJ Ve

By these results, the asymptotic behavior of ilgv 1s the same as that of the cross-
validated bandwidth given in Hardle, Hall, and Marron (1988) for the case that
the regression function has two continuous derivatives.
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We now close this section by the following remarks.

Remark 3.1. If oy = 0, then has, hev, by, and ALy, are equal to the left-end
of H, for all large n. On the other hand, if 3, = 0, then hf,, and hgv are equal
to the right-end of H, for all large n.

Remark 3.2. To apply the proposed approach, the number g of discontinuity
points of m(z) can be obtained from prior knowledge about the process under
study. Also, it can be obtained from testing hypotheses about the value of ¢
by Theorem 3 and Remark 4 in Wu and Chu (1991a), and estimated by the
method in Yin (1988). Let £ be the estimate of ¢ produced by either of these two
approaches. Based on these values of ¢ and £, the performance of the proposed
approach to kernel regression estimation and bandwidth selection is given in the
following. If £ > q > 0, then (3.6) through (3.10) still hold. On the other hand,
if £ < g, then (3.6) through (3.10) become (3.1) through (3.5) with the coefficient
¢_, d? replaced by Y7 _,., d2.

Remark 3.3. To estimate ¢z, the choice of the value of w in (2.10) in practice is
now discussed. In the case of ¢ > 1, we suggest taking w as hev. In this case, the
value of hgy is of order n~1/2. Also, by (3.6), the minimum order of magnitude of
the MASE of mF (z) is arrived at when the value of A is of order n~1/%. Given the
values of h and w of the orders n~1/% and n~1/2, respectively, the conditions on
w given in (A.5) are satisfied for any value of € (0,1/2). Simulation studies in
Section 4 show that the performance of fx, the estimate of ¢x, derived by choosing
w as hcv is good, in the sense of the sample MASE of mf(z).

4. Simulations

To investigate the practical implications of the asymptotic results presented
in Section 3, an empirical study was carried out. We first introduce the simulated
regression settings. The sample size was n = 100. The regression model (2.1) and
the kernel regression estimator (2.4) were considered. The continuous function
r and the step function 9 in (2.2) were r(z) = z* and ¥(z) = Ij/,1)(2), for
z € [0,1]. In this simulation study, we took the value ¢ = 1. It was assumed to
be known in advance. The location of the discontinuity point was ?; = 1/2 and the
corresponding jump size was d; = 1. The kernel function K was K(z) = (3/4)(1—
z?), for z € [-1,1]. See Section 5.4 in Miiller (1988) for properties of this kernel
function K. Given this kernel function K, we have [ Ck(z)’dz = 0.118. The
regression errors ¢; were pseudo independent normal random variables N (0, o?),
where o = 1/2. Based on (2.1), 100 independent sets of the observations Y; were
generated. Given this large value of 0 = 1/2, the location of the discontinuity
point ¢; = 1/2 of the regression function was not always distinguishable visually,
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from the data alone. For this, see Figure 1 where stars denote one set of simulated
data. To produce the projected data YiP, we took the value of bandwidth g =
1.572 - h where the bandwidth h was applied to #(z) and mF(z), in each case.
If ¢ < 0.05, then it was taken as 0.05. On the other hand, if g > 0.2, then it
was taken as 0.2. This restriction on the value of g was based on the fact that
the magnitudes of biases of hy1 (k) and mmgr(7) are proportional to the value of
g%. Hence, to produce the projected data Y.F properly, the value of g should not
be large. However, if the value of g is too small, then there is few observations
which can be used by myr(k) and hgr(7).

The calculation of dps(h), ha, CV(R), and hcy is now introduced. For each
data set, the values of d4(h) and CV(h) were calculated on an equally spaced
grid of 16 values in the interval [0.03,0.48]. Here d4(h) was defined by
2

da(h) =n"tY ((z;) - mla;)) (4.1)
3=0

The value of dps(h) was empirically approximated by averaging d a(h) over the
100 simulated data sets, for each given value of A. The minimizers hps and hev
of dys(h) and CV(h), respectively, were calculated. After evaluation on the grid,
a one step interpolation improvement was performed, with the results taken as
the selected bandwidths. If these functions had multiple minimizers on the grid,
the algorithm chose the smallest one, respectively (the choice could be made
arbitrarily).

We now introduce the calculation of t;, the estimate of ¢;. For each data
set, to estimate ?;, the value of w in (2.10) was chosen as w = hcv. By this,
the values of |J(z)| were calculated at the design points z;. Given the value
6 = 0.05 in (2.2), the maximizer ; of |J(z)| over the set [6,1 — 6] was calculated.
After evaluation at the design points z;, a one step interpolation improvement
was performed, with the result taken as the estimate of ;.

Based on the above estimate of t;, following the same algorithm for calculat-
ing da(h), dar(h), har, CV(R), and hoy, the values of df (h), db(h), kY, CVF(h),
ﬁgv, d%,(h), and h%, were calculated on the above equally spaced grid of h. Here
df(h) was defined by

n

_ A 2
db(h) =n"t Z (mP(:I:j) - m(:cj)) :
7=0
Also dZ.(h) and h%, were defined the same as d%;(h) and hf, with i) replaced
by t, in each case. Note that d% (h) denotes the MASE function of rn(z) in the
case that locations of discontinuity points in (2.2) are known. In the following,
the results of the simulation study are presented.
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Figure 1 shows one set of simulated observations (stars), the regression func-
tion (dashed curves), and the regression function estimates derived by 7(z) with
h = hgy (solid curve) and mP(z) with w = hcy and h = hgv (dotted curves).
For this data set, izcv = 0.0748. Given the value of w for estimating t; as this
hcv, we had £, = 0.4876 and hE, = 0.1711. Note that the regression function
estimate derived by n(z) with A = hgy is very rough and does not show the
discontinuity of the regression function. On the other hand, the regression func-
tion estimate derived by P (z) with w = hgy and h = AEy is smooth on the
subintervals [0,;] and [£;,1] and shows the discontinuity of the regression func-
tion clearly. Note also that the magnitude of bias of m*(z) in the neighborhood
of £ = t; is larger than those at z = 0 and z = 1. This magnitude of bias of
mP(z) in the neighborhood of z = t; was caused by the gap between ¢; and {;.
The gap between £, and t; caused one of the two estimates 7y (f1) and rgr(f1)
to have larger magnitude of bias than the other. Hence the performance of the
projected data at z = #; was inferior to that at z = 0 and z = 1, in the sense of
the magnitude of bias of ¥ (z).

'p}

(\j r T v T v T

i 1 n 1 N 1 L 1 A
0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 1. Plot of one simulated data set (stars), the regression function m(z) (dashed
curves), and the regression function estimates derived by n(z) with h = hev (solid
curve) and m”(z) with w = hey and h = ﬁgv (dotted curves).

n
-
!
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Figure 2 shows dps(h) (solid curve), df;(h) derived by using w = hev (dotted
curve), and d%,(h) (dashed curve). The location of the star on each curve denotes
that of the minimizer of the corresponding curve. In view of locations of these
stars, the value of hy is significantly smaller than those of hf; and hT,. Also the
value of dps(hpr) is larger than those of df (h%,) and d¥ (hT;). The difference
between the values of di;(h%,) and d%,(h%,) is caused by the gaps between t; and
t,, over the 100 simulated data sets. These gaps between {; and t; explain the
magnitudes of variance and bias of mf(z) in the neighborhood of t;.
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© 0.0 0.1 0.2 0.3 0.4 0.5
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Figure 2. The MASE functions dps(h) (solid curve), df;(h) withw = hcv (dotted curve),
and d%,(h) (dashed curve). Here the location of the star on each curve denotes that of
the minimizer of the curve.
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Figure 3 shows the regression function (dashed curves) and the average of
regression function estimates derived by #(z) with h = hcy (solid curve) over the
100 simulated data sets. Here bold dotted curves denote 1¥*STD bands around
the average. This STD was taken as the sample standard deviation over the 100
regression function estimates. Note that, for z € [0.42,0.58], the 1*STD bands
do not contain the regression function m(z), and the magnitude of bias of i (z)
is large. Hence, the continuity of the regression function should be checked before
the regression function is recovered by kernel regression estimators. For this, see
Theorem 3 and Remark 4 in Wu and Chu (1991a).

2.5

1.5

0.5

N
O 1 1 n 1 1 1 A ad L
I 0.0 0.2 0.4 0.6 0.8 1.0

X
Figure 3. The regression function m(z) (dashed curves), the average of the regression

function estimates derived by m(z) with h = hcy (solid curve), and 1xSTD bands (bold
dotted curves).
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Finally, Figure 4 shows the regression function (dashed curves) and the aver-
age of regression function estimates derived by m”(z) with w = hcv and h = ilgv
(dotted curve), over the 100 simulated data sets. Bold dotted curves denote
1%STD bands around the average. Note that these 1xSTD bands contain the
regression function m(z) for z € [0,1]. Also, this average of regression function
estimates shows the discontinuity of the regression function at £ = 1/2 clearly.
However, in the neighborhood of =z = t;, the magnitudes of STD and bias of
mF () are larger than those for z outside this neighborhood. These large magni-
tudes of STD and bias of mF(z) were caused by the gaps between #; and t; over
the 100 simulated data sets.
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Figure 4. The regression function m(z) (dashed curves), the average of the regression
function estimates derived by P (z) with w = hey and h = h&, (dotted curves), and
1xSTD bands (bold dotted curves).
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5. Sketches of the Proofs

The following notation and results will be used in this section. Let X, =
o.(a,) denote that, as n — oo, | X, /an| — 0 almost surely, and uniformly on H,
if a, involves h € H,,. For each z; € [h,1—h}, under the above assumptions, using
Riemann summation and Theorem 2 in Whittle (1960), and by a straightforward
calculation, we have the following asymptotic results:

n~t ZKh(-Tj —z;) =1+ O(n_lh"l),
1=0

n=? Z Kp(z; —z;)  =n"1h™! / K(z)*dz + O(n~2h~?),
1=0

b = [27 3 Kates - () = vt/ o S Knle; - )

=0

= Wr®(ay) [ 2K (@)dz + o(h?) + O(n™)

b = [0S Kz = 22)(m() = me)| /[0 3 Knlas - 1)
i=0 i=0
_ b,-j if Kh(:cj - tk) =0 for all k£
B bri + dxCx((z; — tk)/h) + O(n~th™1) if Kip(z; — tx) # O for some k,

E[(iej)%] =0(n*), fork=1,2,...,

=0

n-! Zn: Kh(mj - :z:z')ﬁi
s o, ((nh)_2/5) or O, ((nh)—1/2).

v; =

n
nt ZKh(mj - z;)
1=0

Proof of (3.1). Based on the performance of the projected data Y;*', the magni-
tudes of variance and bias of 7n(z) for each = € [0, h] and [1—h, 1] are of the orders
n~'h~! and h?, respectively. Using these results, djas(h) can be asymptotically
expressed as

du(h)=n"1 > BRI +nTt D bL+0(n7+ A%
Jiz;€[h,1=h] jixj€fh,1-h]
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Combining this result with the above asymptotic results and the continuity of
C%, by a straightforward calculation, the proof of (3.1) is complete.

Proof of Theorem 1. We first give the proof of (3.3). It is based on the ex-
pansion of CV(h). Through adding and subtracting the terms r(z;) and m(z;),
CV(h) can be expressed as

CV(h) =n"} §: e? + dps(h) + D(h) + Cross(h) + Remainder(h), (5.1)

3=0
where
D(h) = da(h) — dum(h),
Cross(h) = (=2)n"* Z (Thj(xj) - m(zj)) €5
Remainder(h) = i ('mJ (z;) - xJ)) (Thj(:cj) + m(z;) — 2m($j)),

and where d4(h) has been given in (4.1).

Under the above assumptions and asymptotic results, using the fact that
there are no boundary effects on 7(z) for z € [0, k] and [1 — h, 1] and following
essentially the same proofs of (5.3) and Lemmas 3 and 4 in Hardle and Marron
(1985) in the random design setting, we have

D(h) = ou(dm(h)), (5.2)
Cross(h) = ou(dm(h)), (5.3)
Remainder(h) = oy(dp(h)). (5.4)

Combining these results with (5.1) yields
CV(h) =n"1 > € + du(h) + ou(dn(h)). (5.5)
=0

Applying Taylor’s theorem to (5.5) and combining the result with the consequence
of (5.5) that the values of hcy and hps are of the order n~1/2 yields

;lCV/hM =1+ 0yu(1).

Hence the proof of (3.3) is complete.
Based on (5.1) and the fact that there are no boundary effects on m(z) for z €
[0,'A] and [1 — A, 1], the proofs of (3.4) and (3.5) are essentially the same as those
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of Theorems 1 and 2 in Hardle, Hall, and Marron (1988). The only difference

between these proofs concerns on the variance of D(Y)(h) + Cross!(k). In our
case, under the above assumptions and asymptotic results, by a straightforward
calculation, this variance can be asymptotically expressed as

Var(D®)(h) + Cross)(h))
_ Sn—2h—3a4/ (K + (K - G)(2)dz — (K — G)()) do + 4n~ h"0? [ 5 d,%}
k=1

/ (CG._QK x K(z) + Cg x G(z) + CG_K(ZII)>2d.’L‘ +o(n 2R3 4+ n7tR7Y).

Under the above assumptions, using this asymptotic variance and following the
proofs of Theorems 1 and 2 in Hardle, Hall, and Marron (1988), the proofs of
(3.4) and (3.5) are complete. Thus the proof of Theorem 1 is complete.

Proof of (3.6). By virtue of (2.12) and (A.5), we have
ltk — ti] < w!™® = 0(h?) almost surely.

Based on this result, the distance between f; and t; is much smaller than the
values of bandwidths A and g. Hence, the effect of dr on the projected data
Y.F* derived from Y; at z; € [tx_1,1x) is negligible, in the sense of the bias of
mFf (tx_1) and M ({). Combining this result with the above asymptotic results,
the performance of the projected data on dealing with boundary effects, and the
boundedness of m(z) for z € [0, 1], the proof of (3.6) is complete.

Proof of Theorem 2. We first give the proof of (3.8) which is based on the
expansion of CVF(h). Through adding and subtracting the terms mf(z;) and
m(z;) and using the results given in the proof of (3.6), CVF(h) can be expressed
as

CVF(h) = n™1> € +djy(h) + DP(h) + Cross” (k)
i=0
+ Remainder? (k) 4+ o, (n"th™! + h*), (5.6)

where

DP(h) = d” () - dfy (), |
CrossT(h) = (—Z)n_lzj:zjeBJ (mf(xj) - m(zj)> €55

Remainder? (h) = n"l)Jj;zJ.eBJ (ﬁsz(:cj)—mp(mj))(ﬁzf(zj) +mP(z;) - 2m(:z:j)),
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and where

q
BJ = [0’1] - U[ik—w,£k+W],
k=1

& (h) = 07 S50y, (7 (25) = m(z))

Under the above assumptions and asymptotic results, following the same
proofs of (5.3) and Lemmas 3 and 4 in Hérdle and Marron (1985) in the ran-
dom design setting, by a straightforward calculation, DFP(h), Cross(h), and
Remainder? (k) are of the order oy (df,f(h)). Combining these results with (5.6)
yields

CVP(R)=n""? i €2 + djyr(h) + ou (dﬁ}(h)). (5.7)
3=0

Applying Taylor’s theorem to (5.7) and combining the result with the consequence
of (5.7) that the values of h&y and h%, are of the order n~1/5 yields

Hence the proof of (3.8) is complete.

Given (5.6), the proofs of (3.9) and (3.10) are essentially the same as those
of Theorems 1 and 2 in Hardle, Hall, and Marron (1988). Hence the proof of
Theorem 2 is complete.

Acknowledgements

The research of the second author was supported by the National Science
Council under the contract NSC80-0208-M007-32. We gratefully thank the refer-
ees, the associate editor, and the editor for their many valuable comments which
substantially improved the presentation.

References

Clark, R. M. (1975). A calibration curve for radiocarbon data. Antiquity 49, 251-266.

Cline, D. B. H. and Hart, J. D. (1989). Kernel estimation of densities with discontinuities or
discontinuous derivatives. Statistics 22, 69-84.

Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression. Marcel Dekker, New
York.

Hall, P. and Wehrly, T. E. (1991). A geometrical method for removing edge effects from kernel-
type nonparametric regression estimators. J. Amer. Statist. Assoc. 86, 665-672.

Hirdle, W. (1990). Applied Nonparametric Regression. Cambridge University Press.

Hirdle, W. (1991). Smoothing Techniques: With Implementation in 5. Springer Series in Statis-
tics, Springer-Verlag, New York.



576 J.S. WU AND C. K. CHU

Hardle, W., Hall, P. and Marron, J. S. (1988). How far are automatically chosen regression sm-
oothing parameters from their optimum? J. Amer. Statist. Assoc. 83, 86-101.

Hardle, W. and Marron, J. S. (1985). Optimal bandwidth selection in nonparametric regression
function estimation. Ann. Statist. 13, 1465-1481.

Marron, J. S. (1988). Automatic smoothing parameter selection: A survey. Empirical Econom.
13, 187-208.

McDonald, J. A. and Owen, A. B. (1986). Smoothing with split linear fits. Technometrics 28,
195-208.

Miller, H. G. (1988). Nonparametric analysis of longitudinal data. Lecture Notes in Statistics
46, Springer-Verlag, Berlin.

Nadaraya, E. A. (1964). On estimating regression. Theory Probab. Appl. 9, 141-142.
Rice, J. (19.84). Bandwidth choice for nonparametric regression. Ann. Statist. 12, 1215-1230.

Shiau, J. H. (1985). Smoothing spline estimation of functions with discontinuities. Ph.D. Dis-
sertation, Department of Statistics, University of Wisconsin, Madison, Wisconsin.

Van Eeden, C. (1985). Mean integrated squared error of kernel estimators when the density
and its derivatives are not necessarily continuous. Ann. Inst. Statist. Math. 37, Part A,
461-472.

Van Es, B. (1990). Asymptotics for least squares cross-validation bandwidths in non-smooth
cases. To appear in Ann. Statist.

Watson, G. S. (1964). Smooth regression analysis. Sankhyd Ser.A 26, 359-372.

Whittle, P. (1960). Bounds for the moments of linear and quadratic forms in independent vari-
ables. Theory Probab. Appl 5, 302-305.

Wu, J. S. and Chu, C. K. (1991a). Kernel type estimators of jump points and values of a re-
gression function. To appear in Ann. Statist.

Wu, J. S. and Chu, C. K. (1991b). Modification for boundary effects and jump points in non-
parametric regression. To appear in J. Nonparamet. Statist.

Yin, Y. Q. (1988). Detection of the number, locations and magnitudes of jumps. Comm. Statist.
Stochastic Models 4, 445-455.

Department of Mathematics, Tamkang University, Taipei 25103, Taiwan.
Institute of Statistics, National Tsing Hua University, Hsinchu 30043, Taiwan.

(Received July 1991; accepted January 1993).



