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Abstract: The partly linear additive Cox model is a useful tool for modeling fail-

ure time data with multiple covariates. The global smoothing method based on

polynomial splines has been demonstrated as an efficient estimation approach for

this model in the sense that it achieves the semiparametric information bound.

However, there is no method available for consistently estimating the asymptotic

variance matrix of the resulting estimators of finite parameters, which hampers

inference for the model. This motivates us to propose a bootstrap method for esti-

mating the distributions of the estimators; it is shown to be consistent. Moreover,

to test linear hypotheses on the finite parameters, we propose a new test statistic

and obtain its asymptotic null distribution. We show that the test is consistent

and can detect alternatives nearing the null hypothesis at a rate of
√

n. Our results

enable inference about the model based on the efficient polynomial splines estima-

tion. Simulations are conducted to demonstrate nice performance of the proposed

method. A data example is also given.
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1. Introduction

As an extension of the Cox (1972) model, the partly linear Cox model (Sasieni
(1992)) specifies the conditional hazard rate of failure time T given the covariate
value (x, w) ∈ Rd × RJ as

λ{t; x, w} = lim
∆t↓0

[
1

∆t
Pr{t ≤ T < t + ∆t|T ≥ t, x, w}

]
= λ0(t) exp{β′x + φ(w)}, (1.1)

where λ0(·) ≥ 0 is an unspecified base-line hazard, β is a d-vector of parame-
ters, and φ(w) is an unknown function of w. This model provides flexibility to
the covariate specification when some continuous covariates may have nonlinear
effects on the risk function. There are many works in the literature concern-
ing estimation of the model. For example, Grambsch, Therneau, and Fleming
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(1990) and Fleming and Harrington (1991) explored the functional form of the
covariate effect by smoothed martingale residuals; Sasieni (1992) calculated the
information bound for estimating β and suggested using the partial likelihood
based on a spline to estimate the model; Dabrowska (1997) considered the con-
tinuously stratified Cox model in Sasieni (1992), a variation of (1.1) where the
covariate w was embedded into the baseline; Heller (2001) studied the profile
partial likelihood estimation using a kernel function.

Model (1.1) is useful for modeling failure time data with multiple covari-
ates, but for high-dimensional covariate w it suffers from the so-called “curse-of-
dimensionality” problem in estimation. One of the methods attenuating this dif-
ficulty uses an additive structure for the function φ(·), as in Huang (1999), which
leads to the partly linear additive Cox model. It specifies the conditional hazard
of the failure time T given the covariate value (x, w) as

λ{t; x, w} = λ0(t) exp{β′x + φ(w)}, (1.2)

where φ(w) = φ1(w1) + · · · + φJ(wJ). The parameters of interest are the finite
parameter vector β and the unknown φ’s. The former measures the effect of the
treatment variable vector x, and the latter may be used to suggest a parametric
structure of the risk. This model allows one to explore nonlinearity of certain co-
variates, avoids the “curse-of-dimensionality” problem inherent in the saturated
multivariate semiparametric hazard regression model (1.1), and retains the nice
interpretability of the traditional linear structure in Cox’s model (Cox (1972)).
See the discussions in Hastie and Tibshirani (1990).

The global smoothing method based on polynomial splines is efficient for
estimating the finite parameters in (1.2), in the sense that it achieves the semi-
parametric information bound. See the seminal work of Huang (1999). This
indicates that the estimator of β is asymptotically most efficient among all the
regular estimators (see for example, van der Vaart (1991) and Chapter 3 of
Bickel et al. (1993)). However, there is no consistent estimator available for the
asymptotic variance matrix of the estimator of β. This is similar to parameter
estimators for censored regression models or from nonsmooth estimation equa-
tions, where the asymptotic covariance matrix of the estimator involves unknown
density functions. In general, resampling techniques are employed to deal with
this problem. For example, Bilias, Chen, and Ying (2000) Zhou (2006), and Zeng
and Lin (2008) used resampling to estimate the variance matrix of the estimators.

For the global smoothing method, Huang (1999, p.1540) empirically sug-
gested using the inverse of the observed partial information matrix to estimate
the variance matrix, but its consistency is unknown and seems difficult to es-
tablish. This hampers applications of the efficient polynomial spline estimation
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for model (1.2). It is desirable to develop a consistent estimate of the variance
matrix.

In this paper we propose a bootstrap approach to estimating the distribution
of the above estimator of β, which furnishes a consistent variance estimation
method for the efficient estimator of β in Huang (1999). The result allows for
a useful inference tool for model (1.2) based on the efficient polynomial spline
estimation. Moreover, we introduce a new statistic to test some linear hypotheses
about β, while leaving the nonparametric components as nuisance functions. The
asymptotic null distribution and consistency of the test are established, and the
limit rate for the detectable alternatives converging to the null hypothesis is

√
n.

To derive our theoretic results, we draw a parallel between the estimator and
its bootstrap analogue and obtain their Bahadur’s representations which share a
similar form, except that the representation for the latter is a random weighting
sum while the former is a uniform weighting sum. This facilitates the proofs of
theorems, and the parallel arguments are novel, representative, and applicable
to other scenarios.

Note that model (1.2) was extended by Cai et al. (2007) to multivariate cases
with one additive component. They proposed a profile pseudo-partial likelihood
estimation approach. The resulting estimators of the finite parameters allowed
for consistent variance estimation but they were not efficient, since the asymp-
totic variances of the estimators did not achieve the semiparametric information
bound. Therefore, it is meaningful to study the efficient estimation method based
on the polynomial splines approximation.

The paper is organized as follows. In Section 2, we introduce the partial
likelihood of model (1.2) along with the polynomial splines based estimation.
In Section 3, we propose a bootstrap method for estimating the distribution
of the efficient estimator of β, and establish the consistency and asymptotic
normality of the bootstrap estimation. In Section 4, we consider hypothesis
testing for β and derive asymptotics for the proposed test. We present the
details of implementation and conduct simulations in Section 5. Some concluding
remarks are given in Section 6. Technical conditions and proofs are provided in
the Appendix.

2. Partial Likelihood and Global Smoothing Based on Polynomial
Splines

Suppose that there are n independent individuals in a study cohort. Let
{Xi, Wi} denote the covariate vector for the ith subject (i = 1, · · · , n). Then
observed data for the ith subject is {Si, δi, Wi,Xi}, where Si is the observed
event time for the ith subject, which is the minimum of the potential failure time
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Ti and the censoring time Ci, and δi is the indicator of failure. Let ri(β, φ) =
exp{β′Xi + φ(Wi)}. Then the partial likelihood function for model (1.2) is

L(β, φ) =
n∏

i=1

{ ri(β, φ)∑
j∈Ri

rj(β, φ)

}δi

, (2.1)

where Ri = {j : Sj ≥ Si} is the risk set at time Si.
If φ(·) has been parameterized, one can obtain the maximum partial likeli-

hood estimator by maximizing the partial likelihood (2.1) with respect to β and
the parameters in φ(·). Since φ is unknown, the partial likelihood function in
(2.1) cannot be maximized for estimating φ.

In the following, we consider the partial likelihood estimation for β and
φ(·) using polynomial splines approximation. The use of polynomial splines in
estimating the fully nonparametric additive Cox model based on the partial like-
lihood was first proposed by Stone (1986). This method was extended to the
partly linear additive Cox model by Huang (1999). In principle, the additive
components can be approximated by polynomial splines with different numbers
of knots. For easy exposition in the following, we employ the same number of
knots for each component, and use some notation from Huang (1999) and Fan
and Jiang (2009).

Without loss of generality, assume that W takes values in W = [0, 1]J . Let
ξ = {0 = ξ0 < ξ1 < · · · < ξK < ξK+1 = 1} be a partition of [0, 1] into K

subintervals IKi = [ξi, ξi+1), i = 0, . . . ,K − 1, hk = ξk − ξk−1, and IKK =
[ξK , ξK+1], where K ≡ Kn = O(nv) with 0 < v < 0.5 being a positive integer
such that h ≡ max1≤k≤K+1 |hk| = O(n−v). Let S(`, ξ) be the space of polynomial
splines of degree ` ≥ 1 consisting of functions s(·) satisfying

(i) the restriction of s(·) to IKi is a polynomial of order ` − 1 for 1 ≤ i ≤ K,

(ii) for ` ≥ 2, s(·) is ` − 2 times continuously differentiable on [0, 1].

According to Schumaker (1981, p.124), there exists a local basis Bi(·), 1 ≤ i ≤ q,
for S(`, ξ) with q = Kn + `, such that for any φnj(·) ∈ S(`, ξ),

φnj(wj) =
q∑

i=1

bjiBi(wj), 1 ≤ j ≤ J.

For convenience of exposition, let {Bi(·)}q
i=1 be the normalized B-spline basis

(see de Boor (1978)), such that
Bi(w) = 0 unless ξi < w < ξi+`,

Bi(w) ≥ 0,∑q
i=1 Bi(w) = 1.
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A specific example for such a basis was given in Zhou, Shen and Wolfe (1998).
Put B(w) = (B1(w), . . . , Bq(w))′, B(w) = (B′(w1), . . . , B′(wJ))′, bj = (bj1, . . .,
bjq)′, and b = (b′

1, . . . , b
′
J)′. Then φnj(wj) = b′

jB(wj) and φn(w) ≡
∑J

j=1

φnj(wj) = b′B(w). Under regular smoothness assumptions, φj ’s can be well-
approximated by functions in S(`, ξ). Therefore, by (2.1), the logarithm of an
approximated partial likelihood is

`(β,b) =
n∑

i=1

δi

{
β′Xi + φn(Wi) − log

∑
k∈Ri

exp[β′Xk + φn(Wk)]
}

, (2.2)

where φn(Wi) =
∑J

j=1 φnj(Wji), with Wji being the jth component of Wi, for
i = 1 . . . , n. Let (β̂, b̂) maximize (2.2). Then an estimator of φ(·) at point w
is simply φ̂(w) =

∑J
i=1 φ̂j(wj) with φ̂j(wj) = b̂

′
jB(wj). Computationally, the

maximization problem in (2.2) can be solved via the existing Cox regression
program, for example coxph and bs in the R software (for details, see Huang
(1999)).

With the estimators of β and φ(·), one can estimate the cumulative base-
line hazard function Λ0(t) =

∫ t
0 λ0(u)du under mild conditions by the following

Breslow estimator (see Breslow (1972, 1974):

Λ̂0(t) =
∫ t

0

[ n∑
i=1

Yi(u) exp{β̂′Xi + φ̂(Wi)}
]−1

n∑
i=1

dNi(u),

where Yi(u) = 1(Si ≥ u) is the at-risk indicator and Ni(u) = 1(Si < u, δi = 1) is
the associated counting process.

The estimator β̂ achieves
√

n-consistency. Especially, it achieves the semi-
parametric information lower bound (see Huang (1999, Remark 3.2)). This shows
that the estimator is asymptotically efficient among all the regular estimators.
However, the information lower bound cannot be consistently estimated, which
makes inference for β difficult in practice. This motivates us to propose the
bootstrap estimation for the distribution of β̂.

3. Bootstrap Estimation for the Parameter Vector

The estimation of the variance of β̂ allows one to construct confidence in-
tervals for β. Since a direct consistent estimator is not available, it is useful to
develop a bootstrap method for this task.

For the proportional hazards model of Cox (1972), Burr (1994) studied three
methods of bootstrapping: ordinary resampling from the empirical cumulative
distribution function; resampling conditional on the covariates; resampling con-
ditional on the covariates and the censoring pattern. We opt for the first method,
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since its consistency is guaranteed (see Theorem 1 below), but the other two boot-
strap methods are also interesting and worth investigation. Specifically, we re-
sample from the empirical distribution Fn of the observations {Si, δi,Wi, Xi}n

i=1.
The bootstrap procedure is detailed as follows.

1. Resample a bootstrap sample {S∗
i , δ∗i , W

∗
i , X

∗
i }n

i=1 from Fn.

2. Based on the sample, fit model (1.2) and obtain the estimated value β̂∗ of β.

3. Repeat steps 1 and 2 to obtain a sample of β̂∗’s, β̂∗(k), k = 1, . . . , B, say.
Compute β̂∗(k) − β̂.

4. Use the bootstrap sample {β̂∗(k) − β̂}B
k=1 to determine the quantiles of β̂ − β.

As in Huang (1999, Thm. 3.1), let Z=(X,W) and let I(β)=E[l∗β(S, δ, Z)]⊗2

be the information bound for estimation of β, where l∗β(S, δ, Z) =
∫ τ
0 (X− a∗(t)−

g∗(W)) dM(t) is the efficient score for estimating β in model (1.2), τ is defined
in (A3) of Appendix I, g∗(w) =

∑J
j=1 g∗j (wj), and a∗, g∗1, . . . , g

∗
J are the unique

L2 functions that minimize E[δ ‖X − a(S) −
∑J

j=1 gj(Wj)‖2] with ‖ · ‖ denoting
the Euclidean norm.

The following theorem demonstrates that the conditional distribution of
(β̂∗ − β̂) given Fn is asymptotically the same as the unconditional distribution
of β̂ − β; this establishes the consistency of the proposed bootstrap method.

Theorem 1. Assume that the conditions in Appendix I hold. If 0.25/p < v <

0.5 and v(q + p) > 0.5, where p is the measure of smoothness of φj defined in
Condition (A1), and with q defined in Condition (A6), then

sup
t

|P{
√

n(β̂∗ − β̂) < t|Fn} − P{
√

n(β̂ − β) < t}| → 0, a.s..

From the theorem, we can estimate the variance matrix n−1I−1(β) of the β̂

by the bootstrap sample variance

SB = (B − 1)−1
B∑

k=1

(β̂∗(k) − β̂)(β̂∗(k) − β̂)′,

and approximate the 100(1 − α)% confidence region of β by

(β̂ − β)′S−1
B (β̂ − β) ≤ χ2

d(α),

where χ2
d(α) is the (1 − α)th quantile of the chi-squared distribution with d

degrees of freedom.
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4. Testing Linear Hypotheses

Many problems of statistics can be reduced to the problem of testing a linear
hypothesis. In particular, it is interesting to investigate whether β, lying in the
d-dimensional linear space Rd, belongs to a linear subspace of dimension d − m,
m > 0. This reduces to testing,

H0 : Aβ = 0 versus H1 : Aβ 6= 0,

where A is a known m × d matrix with rank m and d is the dimension of β.
Since A is of full row rank, by the singular value decomposition there exists a
unique (d−m)× d matrix C satisfying CC ′ = Id−m and AC ′ = 0. Then the null
hypothesis becomes H ′

0 : β = C ′γ, where γ is a (d − m) × 1 vector.
As the additive components are nuisance functions, the testing problem is

semiparametric. If V (β) = [I−1(β) − C ′{CI(β)C ′}−1C] and γ̂ is the estimator
of γ under H ′

0, then we have a Bahadur representation for the estimators.

Theorem 2. If the conditions in Appendix I hold, then under H0,

(i) C ′(γ̂ − γ) = C ′{CI(β)C ′}−1Cn−1
∑n

i=1 `∗β(Si, δi, Zi) + op(n−1/2),

(ii)
√

n(β̂ − C ′γ̂) = V (β)n−1/2
∑n

i=1 `∗β(Si, δi, Zi) + op(1).

Note that V (β)I(β)V (β) = V (β). It follows from Theorem 2 that, under
H0,

√
n(β̂ − C ′γ̂) D−→ N (0, V (β)). Let V ∗(β) = Id − {I(β)}1/2C ′{CI(β)C ′}−1

C{I(β)}1/2. Then V (β) = {I(β)}−1/2V ∗(β){I(β)}−1/2, V ∗(β) is a symmetric
and idempotent matrix with rank m, and V (β) is a d × d singular matrix with
rank m < d. Therefore, the Wald-type test statistic, which takes the form
Tn0 = (β̂−C ′γ̂)′V −1(β)(β̂−C ′γ̂), cannot be employed, since the inverse of V (β)
does not exist.

An intuitive test method is to directly compare the difference between the
estimators of parameters under the null and alternative hypotheses, which leads
to the test statistic

Tn = ||
√

n(β̂ − C ′γ̂)||2,

where β̂ and γ̂ are the estimators of β and γ, respectively, under H1 and H0. In
principle, a large value of Tn suggests rejecting H0.

Since V ∗(β) is idempotent, V ∗(β) has m eigenvalues equal to 1 and d − m

eigenvalues equal to 0. Let D be a d × m matrix consisting of m normal-
ized eigenvectors corresponding to the m nonzero eigenvalues of V ∗(β), and let
{wi, i = 1, . . . ,m} be the eigenvalues of D{I(β)}−1D′. The next theorem de-
scribes the asymptotic null distribution of the test statistic Tn.
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Theorem 3. If the conditions in Appendix I hold, then under H0, Tn
D−→∑m

i=1 wiχ
2
1,i, where the χ2

1,i’s are independent chi-square variables with one degree
of freedom.

Unfortunately, this result cannot be used to make statistical inference di-
rectly, because there is no consistent estimator available for the unknown weights
w’s. We propose a bootstrap method to estimate the null distribution. Specifi-
cally, given Fn, one can draw a bootstrap sample, {S∗

i , δ∗i , W
∗
i , X

∗
i }n

i=1, from Fn

as in Section 3, then fit the null model under H0 and the alternative model (1.2).
Denote by β̂∗ and γ̂∗ the resulting estimators of β and γ, respectively. We take
the bootstrap version of Tn to be

T ∗
n = ||

√
n(β̂∗ − C ′γ̂∗) −

√
n(β̂ − C ′γ̂)||2.

Theorem 4. Assume that the conditions in Theorem 3 hold. Then under H0,
supt |P (T ∗

n < t|Fn) − P (Tn < t)| → 0 a.s..

Although the null distribution of Tn cannot be calculated, the null distribu-
tion of T ∗

n can be obtained by resampling. Theorem 4 has the null distribution
of Tn well-approximated by that of T ∗

n .
To study the power of the proposed test, we consider the local (Pitman)

alternatives of the form

H1n : β = C ′γ + n−rβn,

where βn is a sequence of nonzero vectors in Rd such that βn → β∗. Assume
that there does not exist a γn ∈ Rd−m such that βn = C ′γn, otherwise H1n

coincides with H0 and any test has no power to detect H1n. Both the null
and alternative are semiparametric, since the additive components {φj(·)}J

j=1

are nuisance functions. From Theorem 3, an approximate level-α test can be
constructed as ψn = 1{Tn ≥ χn,1−α}, where χn,1−α is the 100(1−α)th percentile
of the limit distribution of Tn under H0. By Theorem 4, one can estimate χn,1−α

by the 100(1 − α)th percentile of distribution of T ∗
n .

The probability of type II error at the alternative H1n is then given by
β(α, r) = P{ψn = 0|H1n}. The following theorems characterize how fast the test
ψn detects the alternatives.

Theorem 5. If the conditions in Appendix I hold, then for the testing problem
H0 ↔ H1n when r < 1/2, the test ψn can detect alternative H1n asymptotically
with probability one.

We conclude this section by considering the limiting behavior of the test
statistic under the local alternative H1n with r = 1/2.
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Theorem 6. If the conditions in Appendix I hold, then under H1n with r = 1/2,

(i)
√

n(β̂ − C ′γ̂) D−→ N (β∗, V (β)),

(ii) the test statistic Tn converges weakly to the random variable ‖β∗+η‖2, where
η is a m-dimensional normal random variable with mean zero and variance
matrix V (β).

The theorem shows that the test ψn can detect the local alternatives at a
rate of

√
n, the optimal rate in all regular parametric tests.

5. Numerical Studies

5.1. Choice of knots

For implementation of the estimation method in (2.2), one needs to specify
the location of knot sequence {ξk}Kn

k=1, given the number of knots Kn. In practice,
equally spaced and quantile knot methods are usually used. The latter places
knots at the sample quantiles of the variable so that there are approximately
the same number of observed values of the variable between any two adjacent
knots. We choose it. The number of knots, Kn, acts as a smoothing parameter.
It may be selected by visual trial and error to pick a value balancing smoothness
against fidelity to the data. Experience from simulations suggest that stable and
satisfactory results can be obtained by using three to ten knots.

More formal methods of selecting the number of knots are to minimize the
mean squared errors of the fit, either by employing a formula approximating the
mean square error (e.g. the plug-in estimators), or by a form of cross-validation
(CV). For uncensored data, CV and generalized cross-validation (GCV) are com-
monly used for selection of Kn; see for example Hastie and Tibshirani (1990).
For survival data, Ø’Sullivan (1988) proposed CV and GCV for choosing the
smoothing parameter in smoothing spline estimation of relative risk; Nan et al.
(2005) extended CV and GCV to choose the number of knots in regression spline
estimation of a varying-coefficient Cox model. It is worth developing the CV and
GCV methods to give a data-driven choice for the number of knots in the current
setting, but we do not attempt this here.

Since our theoretic results hold for a large range of numbers of knots, we
empirically decide the number of knots in simulations. Throughout this section,
we employ the B-spline basis with three quantile knots. Even though the number
of knots is not optimal, the simulation results are acceptable for evaluation of
our methodology.
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5.2. Simulations

We did simulations to demonstrate that the bootstrap method gives an accu-
rate estimate for the distribution of β̂, and to check the consistency and power of
the proposed test. Specifically, we calculated the standard deviation of β̂ in sim-
ulations, the bootstrap estimate of the standard error of β̂, and the 95% coverage
probability for β based on the bootstrap. We also compared the null distribution
of the testing statistic Tn with its bootstrap version T ∗

n and calculated the powers
of the test under local contiguous alternatives.

In addition, we compared the proposed estimation method with a “naive
method” using the inverse of the observed partial information matrix to estimate
the variance matrix of β̂ in Huang (1999). When there is only one additive
component in the model, the profile pseudo-likelihood (PPL) method in Cai et
al. (2007) can be used, and the Wald-type test based on this method can be
constructed. We did comparison with the PPL method. We expected that our
efficient-estimation-based test would be more powerful than the Wald-type test
based on the PPL.

Example 1. Covariate X was generated from the bivariate normal distribution
with marginal N(0, 1) and correlation 0.5, W1 and W2 were uniform on [0, 1] with
correlation 0.5, and the failure time was from an exponential distribution with
hazard function

λ(t; X, W) = λ0 exp(β1X1 + β2X2 + φ(W)), (5.1)

where β1 = 0.6, β2 = 0.4, and φ(w) = φ1(w1) + φ2(w2) with φ1(w1) = −8w1(1−
w2

1) and φ2(w2) = 2 log(200 + (w2 − 1.2)3). The censoring variable given (X, W)
was uniformly distributed on [0, 6] and independent of the failure time. The
baseline λ0 was taken to be 1. There were about 47% censored data.

First, we assessed our estimation approach with 1,000 simulations. We con-
sidered different sample sizes n =400, 800, 1,600. In each simulation, we used
the “naive method” mentioned above and 1,000 bootstrap replicates to calculate
the standard error of β̂. Let ŝeb and ŝena represent the estimated standard er-
ror for the bootstrap and naive methods, respectively. The estimators and their
standard deviations (SD) were evaluated along with the average of the estimated
standard error for the estimators. The coverage probability (CPb and CPna) of
the 95% confidence interval for β was also calculated based on the bootstrap and
naive methods. For the naive method, the CPna for β was calculated using the
normal approximation and the estimated standard error ŝena.

Table 1 reports the simulation results. It is evident that the estimated stan-
dard errors were quite close to the corresponding standard deviations and the
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Table 1. Summary of simulation results (β1 = 0.6 and β2 = 0.4).

Size Parameters Mean(β̂) SD(β̂) ŝeb (ŝena) 95% CPb (CPna)
400 β1 0.612 0.096 0.094 (0.092) 0.92 (0.93)

β2 0.405 0.089 0.092 (0.089) 0.93 (0.94)
800 β1 0.607 0.063 0.065 (0.064) 0.94 (0.95)

β2 0.402 0.060 0.063 (0.062) 0.94 (0.96)
1,600 β1 0.602 0.044 0.045 (0.045) 0.95 (0.96)

β2 0.403 0.045 0.044 (0.043) 0.95 (0.94)

Figure 1. Estimated densities. Left panel: n=400; right panel: n=800. Solid
— true, dotted — the bootstrap approximation.

coverage probability was satisfactory for both methods. The naive and bootstrap
estimation methods for β performed well in this example.

Second, we checked the performance of the proposed test. To this end, we
considered testing the null hypothesis, H0 : Aβ = 0 versus H1 : Aβ 6= 0,where
A = (2,−3). For each simulation, we obtained four bootstrap samples (this is
merely for the reduction of computational cost; using more samples would not
alternate our results) and computed the test statistic T ∗

n . Pooling together the
bootstrap samples from each simulation, we obtained 4,000 bootstrap statistics.
Their sampling distribution, computed via the kernel density estimate, is the
distribution of T ∗

n . By using the kernel density estimation method, the distri-
bution of the realized values of the test statistic Tn in simulations was the true
distribution (except for the Monte Carlo errors). Figure 1 displays the estimated
densities for T ∗

n and the true densities of Tn. It is seen there that the boot-
strapped distribution was good enough for approximating the true one. It is
reasonable to use the bootstrap distribution to approximate the null distribution
of the proposed test statistic Tn.

We next investigated the power of the test by considering the following al-
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Table 2. Powers of the proposed test at significance level α

n α θ = 0 θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8 θ = 1.0
400 0.10 0.086 0.367 0.867 0.991 1.000 1.000

0.05 0.040 0.239 0.756 0.982 1.000 1.000
800 0.10 0.094 0.606 0.989 1.000 1.000 1.000

0.05 0.048 0.513 0.977 1.000 1.000 1.000
1,600 0.10 0.099 0.862 1.000 1.000 1.000 1.000

0.05 0.042 0.788 1.000 1.000 1.000 1.000

ternative sequences indexed by θ = 0, 0.2, 0.4, 0.6, 0.8, 1.0:

H1n,θ : β = (0.6, 0.4)′ + θ
√

0.52βn,

where βn = (2/
√

13,−3/
√

13)′ is orthogonal to β and satisfies ‖βn‖ = 1, and√
0.52 is the length of β under H0. Note that for all of the above alternatives,

when θ is small, the null and alternative models are nearly impossible to differ-
entiate, and especially when θ = 0, the null and the alternative are the same.
Therefore, it can be expected that, (i) when θ = 0, the power of test should be
close to the significance level; and (ii) the farther is θ away from 0, the greater
is the power. These are consistent with the results in Table 2, where the power
is calculated as the frequency of rejections in 1,000 simulations and in each sim-
ulation the null is rejected if the value of T ∗

n is bigger than the critical value of
the bootstrap distribution of T ∗

n . The test sizes are reasonable and the power of
the test increases with the sample size.

Example 2. Motivated by comments from an AE and a referee, we compared the
power of the proposed test with the Wald-type test based on the PPL method.
Since the PPL method deals with only the partly linear model with J = 1, we
modified model (5.1) by taking

λ(t; X,W ) = λ0 exp(β1X1 + β2X2 + φ(W )), (5.2)

where β1 = 0.6, β2 = 0.4, and φ(w) = sin(4πw). X = (X1, X2)′ was generated as
before, and W was uniform on [0, 1]. The censoring variable given (X,W ) was
uniformly distributed on [0, 6] and independent of the failure time. The baseline
λ0 was taken to be 1.

For model (5.2), it is also interesting to compare the proposed bootstrap
method with the naive method as in Example 1. Table 3 summarizes the simu-
lation results for estimation. It seems that the proposed method is better than
the naive method here since the estimated ŝe is closer to the standard deviation
and the coverage probability is comparable.
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Table 3. Summary of simulation results (β1 = 0.6 and β2 = 0.4).

Size Parameters Mean(β̂) SD(β̂) ŝeb (ŝena) 95% CPb (CPna)
400 β1 0.595 0.082 0.079 (0.077) 0.95 (0.94)

β2 0.399 0.079 0.077 (0.075) 0.94 (0.94)
800 β1 0.606 0.055 0.055 (0.054) 0.94 (0.94)

β2 0.404 0.054 0.053 (0.053) 0.95 (0.94)

Table 4. Comparison of powers at significance level α.

Test α θ = 0 θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8 θ = 1.0
T ∗

n 0.05 0.044 0.415 0.940 0.998 1.000 1.000
0.10 0.096 0.558 0.972 0.999 1.000 1.000

Tn1 0.05 0.047 0.217 0.742 0.977 0.997 1.000
0.10 0.093 0.323 0.852 0.988 0.997 1.000

We also investigated whether the efficient global spline estimation leads to
a more powerful test than the PPL method. To this end, we considered the
Wald-type statistic

Tn1 = n(β̂PL − β)′Ω̂−1(β̂PL − β) → χ2(2), under H0,

where β̂PL is the PPL estimate of β and Ω̂ is the estimate of the asymptotic
variance matrix of

√
n(β̂PL − β) in Cai et al. (2007).

To investigate the powers of the tests, we considered the alternative sequence
H1n,θ in Example 1 with θ = 0 corresponding to the null hypothesis. We set the
sample size n = 400 and did 600 simulations for calculating the powers of the
test statistic Tn1. For each simulation, we drew data from H1n,θ and calculated
the values of Tn1. If the value of Tn1 was larger than the critical value of χ2(2)
for significance level α, then the null H0 was rejected. The power of the test Tn1

is just the relative frequency of rejections in the 600 simulations.
Table 4 reports the powers of the test statistics T ∗

n and Tn1. It is obvious
that the proposed test T ∗

n was more powerful than the Wald-type test. This was
to be expected, since T ∗

n is constructed from the efficient estimate and Tn1 is
based on the less efficient PPL estimate.

5.3. A data example

We applied our proposed procedure to analyze data from the well-known
“Framingham Heart Study (FHS)” (Dawber (1980)). The FHS study started
in 1948. The dataset used here contains all participants in the study who had
an examination at age 44 or 45, which we refer to as the “age 45” exam, and
were disease-free at that examination in the sense that there existed no history
of hypertension or glucose intolerance, and no previous experiences of a coronary
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Table 5. Estimated parameters for the FHS data. β̂ - the estimated param-
eters, ŝeb - the standard error of β̂, LCI and UCI are respectively the lower
and upper bounds of the 95% confidence interval.

Effect β̂ ŝeb LCI UCI
Age (at the “age 45” exam) 0.0676 0.1168 -0.16544 0.28338
Cholesterol, mg/dl 0.0041 0.0016 0.00069 0.00717
Systolic blood pressure, mm Hg 0.0160 0.0052 0.00471 0.02602
Smoking status: yes=1,no=0 0.3254 0.1491 0.03786 0.62090
Gender: female=1, male=0 -0.6180 0.1418 -0.90471 -0.34171

heart disease (CHD). The sample size n is 1571. There are about 90.42% cen-
soring in the dataset. The failure time, times to CHD, is our concern. The risk
factors are age (at age “45” exam), gender, systolic blood pressure (SBP), body
mass index (BMI), cholesterol level, waiting time, and cigarette smoking.

Times to CHD are measured from the time at the “age 45” exam to the
occurrences of the corresponding diseases. The variables BMI, SBP, cholesterol
level, and smoking status are measured at the “age 45” exam. We fit the data
using model (1.2) with

x = (Age at the “age 45” exam, SBP, Cholesterol,

Smoking status, Gender)′,

w1 = Waiting time, w2 = MBI, and w3 = w1 ∗ w2, where w3 is used to explore
possible interaction between the BMI and Age, and “Waiting time” is the time
elapsed from the initial entry into the FHS study to the “age 45” exam. Since
the year of birth equals to (1948 + waiting time - 45), we include the waiting
time in the model to adjust for birth cohort effect.

Table 5 reports the estimated parameters and their estimated standard errors
along with their 95% confidence intervals based on the bootstrap method. It
is evident that all of the selected risk factors except for Age are statistically
significant at significance level 5%. The nonsignificance result for Age is expected
since, by definition, the values for Age do not vary much among subjects.

Now we applied the test statistic T ∗
n to test the null hypothesis H0 : Aβ = 0

against H1 : Aβ 6= 0, where A = (1, 0, 0, 0). This tests whether the risk factor,
Age, is significant while retaining the effects of other factors as nuisance param-
eters. The realized value of T ∗

n for this dataset was 6.785, and the corresponding
p-value was calculated as 0.44. There is no enough evidence for rejecting the
null.
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6. Conclusion

In this paper we studied the efficient polynomial-spline estimation for the
partly linear additive Cox model. We developed the bootstrap method to esti-
mate the distribution of β̂ and proposed the test statistic Tn and its bootstrap
version to test linear hypotheses on the finite parameters. This facilitates the
inference about the finite parameters in the model. The proposed methodology
is easy to implement using the software R and is endorsed by the mathematical
theory and simulations.

Further work in progress for the model includes hypothesis tests for the
nonparametric components using the generalized likelihood ratio test in Fan,
Zhang, and Zhang (2001) and selection of variables in the parametric part via
the nonconcave penalized likelihood in Fan and Li (2002) and Li and Liang
(2008), based on the efficient polynomial splines estimation. This, together with
the method in this paper, provides a useful semiparametric inference tool for the
model.
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Appendix I: Notations and Conditions

In addition to the condition for the smoothing parameter Kn in Section 2,
the following conditions used in Huang (1999) are also needed for the theorems.

(A1) (i) The regression parameter β belongs to an open subset (not necessarily
bounded) of Rd, and each φj lies in A for j = 1, . . . , J , where A is the class
of functions φ on [0, 1] whose kth derivative exists and satisfies the Lipschitz
condition of order α:

|φ(k)(s) − φ(k)(t)| ≤ C|s − t|α for s, t ∈ [0, 1],

where α ∈ (0, 1] satisfies p = k + α > 0.5.

(ii) E(δX) = 0 and E[δφj(Wj)] = 0, 1 ≤ j ≤ J.

(A2) The failure time T and the censoring time C are conditionally independent
given the covariate (X, W).

(A3) (i) Only the observations for which the event time Si (1 ≤ i ≤ n) is in a
finite interval [0, τ ], say, are used in the partial likelihood. The baseline
cumulative hazard function Λ0(τ) =

∫ τ
0 λ0(s) ds < ∞. (ii) The covariate X
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takes values in a bounded subset of Rd, and the covariate W takes values
in W.

(A4) There exists a small positive constant ε such that (i) P (δ = 1|X, W) > ε

and (ii) P (C > τ |X, W) > ε almost surely with respect to the probability
measure of (X, W).

(A5) Let 0 < c1 < c2 < ∞ be constants. The joint density f(t, w, δ = 1) of
(S, W, δ = 1) satisfies c1 ≤ f(t, w, δ = 1) < c2 for all (t, w) ∈ [0, τ ] ×W.

(A6) Assume that the q-th partial derivative of the joint density f(t, x,w, δ = 1)
of (S, X, W, δ = 1) with respect to t or w exists and is bounded. (For
discrete covariate X, f(t, x, w, δ = 1) is defined to be (∂2/∂t∂w)P (S ≤
t,X = x,W1 ≤ w1, . . . ,WJ ≤ wJ , δ = 1).)

(A7) The information matrix I(β) is positive definite.

Appendix II: Proof of Theorem

Proof of Theorem 1. The results are proven by drawing a parallel between
the approximated partial likelihood and its bootstrap analogue.

Let ωki = 1(S∗
k = Si), for k, i = 1, . . . , n. That is, ωki equals 1 if S∗

k = Si,
and is 0 otherwise. Then

P (ωki = 1|Fn) =
1
n

, and P (ωki = 0|Fn) = 1 − 1
n

,

where Fn is the empirical distribution of {Si, δi,Wi, Xi}n
i=1. Given the bootstrap

sample {S∗
i , δ∗i , W

∗
i , X

∗
i }, i = 1, . . . , n, the logarithm of the approximated partial

likelihood is

`∗(β,b) =
n∑

i=1

δ∗i

{
β′X∗

i + φn(W∗
i ) − log

∑
k∈Ri

exp[β′X∗
k + φn(W∗

k)]
}

,

which can be written as

`∗(β,b) =
n∑

i=1

ωiδi

{
β′Xi + φn(Wi) − log

∑
k∈Ri

ωk exp[β′Xk + φn(Wk)]
}

, (A.1)

where ωi =
∑n

k=1 ωki for i = 1, . . . , n. This is just a random weighted version of
the approximated partial likelihood in (2.2). Note that the bootstrap estimators
(β̂∗, b̂

∗
) for (β,b) maximize the likelihood in (A.1). Following the argument for

Theorem 3.3 in Huang (1999), we can obtain the Bahadur representation

√
n(β̂∗ − β) = n−1/2I(β)−1

n∑
i=1

ωil
∗
β(Si, δi, Zi) + op(1). (A.2)
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Recalling the result of Huang’s Theorem 3.3,

√
n(β̂ − β) = n−1/2I(β)−1

n∑
i=1

l∗β(Si, δi, Zi) + op(1), (A.3)

we obtain from (A.2) and (A.3) that

√
n(β̂∗ − β̂) = n−1/2I(β)−1

n∑
i=1

(ωi − 1)l∗β(Si, δi, Zi) + op(1)

≡ Ln + op(1).

It suffices to show that

P{Ln < t|Fn} → N(0, I(β)−1), a.s.. (A.4)

Note that

Ln = n−1/2I(β)−1
n∑

i=1

[
n∑

k=1

(ωki −
1
n

)]l∗β(Si, δi, Zi)

= n−1/2I(β)−1
n∑

k=1

ηkn, (A.5)

where ηkn =
∑n

i=1[(ωki−1/n)]l∗β(Si, δi, Zi). It is easy to see that conditional on Fn,
the ηkn’s are iid random vectors with mean zero. Note that E[(ωki−1/n)2|Fn] =
1/n− 1/n2, and for i 6= j, E[(ωki − 1/n)(ωkj − 1/n)|Fn] = −1/n2, almost surely.
Simple algebra gives that

E[ηknη′kn|Fn] = n−1
n∑

i=1

[l∗β(Si, δi, Zi)]2 − [n−1
n∑

i=1

l∗β(Si, δi,Zi)]2

→ I(β), almost surely.

Further, for any a ∈ Rd such that ‖ a ‖= 1, E[a′ηknη′kna|Fn] converges to a′I(β)a
almost surely. It is easy to verify that the following Lindberg condition holds:

n∑
k=1

E[(a′ηkn)21(|a′ηkn| ≥ ε)|Fn] → 0, almost surely for any ε > 0.

Therefore, conditional on Fn, a′ηkn is asymptotically normal. By the Cramér-
Wold device, ηkn|Fn

D−→ N (0, I(β)) . This combined with (A.5) leads to (A.4).

Proof of Theorem 2. By Theorem 3.3 of Huang (1999),

I(β)(β̂ − β) = n−1
n∑

i=1

`∗β(Si, δi, Zi) + op(n−1/2). (A.6)
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Following the argument for (A.6), one obtains that, under H0,

CI(β)C ′(γ̂ − γ) = n−1C

n∑
i=1

`∗β(Si, δi, Zi) + op(n−1/2).

Note that CC ′ = Id−m. It follows that

C ′(γ̂ − γ) = C ′{CI(β)C ′}−1Cn−1
n∑

i=1

`∗β(Si, δi, Zi) + op(n−1/2). (A.7)

Under H0, combining (A.6) and (A.7) leads to

√
n(β̂ − C ′γ̂) = [I−1(β) − C ′{CI(β)C ′}−1C]n−1/2

n∑
i=1

`∗β(Si, δi, Zi) + op(1)

= V (β)n−1/2
n∑

i=1

`∗β(Si, δi,Zi) + op(1).

Proof of Theorem 3. Let Θ = I(β) and

Φn = n−1/2
n∑

i=1

`∗β(Si, δi, Zi).

Then under H0, by Theorem 2(ii),
√

n(β̂ − C ′γ̂) = Θ−1/2[Id − Θ1/2C ′{CΘC ′}−1CΘ1/2]Θ−1/2Φn + op(1).

Since the matrix V ∗(β) = Id−Θ1/2C ′{CΘC ′}−1CΘ1/2 is symmetrical and idem-
potent with rank m, by condition (A7), it can be rewritten as D′D, where D is
a m× d matrix satisfying DD′ = Im. Let ξn ≡ DΘ−1/2Φn. Then ξn

D→ N (0, Im),
and under H0 we have

√
n(β̂ − C ′γ̂) = Θ−1/2D′ξn + op(1). Therefore,

Tn = ξ′nDΘ−1D′ξn + op(1). (A.8)

By (A.8) and the asymptotic normality of ξn, the result holds.

Proof of Theorem 4. Using the same argument as for (A.2), we obtain that,
under H0,

CI(β)C ′(γ̂∗ − γ) = n−1C
n∑

i=1

wi`
∗
β(Si, δ,Zi) + op(n−1/2),

that is,

√
nC ′(γ̂∗ − γ) = C ′{CI(β)C ′}−1Cn−1/2

n∑
i=1

wi`
∗
β(Si, δ,Zi) + op(1).
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This combined with (A.3) yields that, under H0,

√
n(β̂∗ − C ′γ̂∗) = n−1/2V (β)

n∑
i=1

wi`
∗
β(Si, δ,Zi) + op(1), (A.9)

where V (β)=[I−1(β)−C ′{CI(β)C ′}−1C]. Let Φ∗
n =n−1/2

∑n
i=1(wi−1)`∗β(Si, δ,Zi)

and ξ∗n = DΘ−1/2Φ∗
n. Then by (A.8) and (A.9),

√
n(β̂∗ − C ′γ̂∗) −

√
n(β̂ − C ′γ̂)

= [I−1(β) − C ′{CI(β)C ′}−1C]Φ∗
n + op(1).

Therefore, T ∗
n = ξ∗n

′DΘ−1D′ξ∗n + op(1). Conditional on Fn, the first term of the
righthand side is asymptotically distributed as

∑m
i=1 wiχ

2
1,i. Then by Slutsky’s

Theorem, the same is true for T ∗
n . This combined with Theorem 3 and the Polya

Theorem completes the proof of the theorem.

Proof of Theorem 5. The approximated partial likelihood for γ is

`(γ, b) =
n∑

i=1

δi

{
γ′CXi + φn(Wi) − log

∑
k∈Ri

exp[γ′CXk + φn(Wk)]
}

.

Let Z∗
i = (CXi, Wi) and the efficient score be `∗γ(Si, δi, Z∗

i ). Similar to (A.3), we
have

√
n(γ̂ − γ) = n−1/2I(γ)−1

n∑
i=1

`∗γ(Si, δi, Z∗
i ) + op(1).

Note that by definition of the efficient score, `∗γ(Si, δi, Z∗
i ) = C`∗β(Si, δi, Zi), and

hence I(γ) = E[`∗γ(S, δ, Z∗)]⊗2 = CI(β)C ′. It follows that

√
nC ′(γ̂ − γ) = n−1/2C{CI(β)C ′}−1C

n∑
i=1

`∗β(Si, δi, Zi) + op(1)

which, together with (A.2), leads to

√
n(β̂ − C ′γ̂) =

√
n(β − C ′γ) + n−1/2V (β)

n∑
i=1

`∗β(Si, δi,Zi) + op(1).

Thus, under H1n,

√
n(β̂ − C ′γ̂) = n

1
2
−rβn + n−1/2V (β)

n∑
i=1

`∗β(Si, δi, Zi) + op(1). (A.10)

Since the second term on the righthand side is asymptotically normal with mean
zero and covariance Σ(β) = V (β)I(β)V ′(β) = V (β),

β(α, r) = P{Tn < χn,1−α|H1n} → 0,

only if ||n1/2−rβn|| → ∞, that is, r < 1/2.
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Proof of Theorem 6..
(i) Note that V (β)I(β)V (β) = V (β) and βn → β∗. The result is obvious from

(A.10).

(ii) By (A.10), under H1n with r = 1/2,

√
n(β̂ − C ′γ̂) = βn + n−1/2V (β)

n∑
i=1

`∗β(Si, δi, Zi) + op(1).

Similar to (), we obtain that
√

n(β̂ −C ′γ̂) = βn + Θ−1/2D′ξn + op(1), which
converges weakly to N (βn, V (β)). Let ηn = Θ−1/2D′ξn. Then ηn converges
weakly to η ∼ N (0, V (β)). Therefore, under H1n, Tn = ‖βn + ηn‖2 + op(1).

Hence, by the Continuous Mapping Theorem, Tn
L−→ ‖β∗ + η‖2.
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