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Abstract: This paper examines necessary and sufficient conditions for the existence

of Maximum Likelihood Estimates (MLE) and the propriety of the posterior under

a bounded improper prior density for a wide class of discrete (or multinomial) choice

models. The choice models are based on the principle of utility maximization. Our

results cover a wide class of latent variable distributions defining the utility, includ-

ing in particular multinomial logistic and probit classification and choice models as

special cases. Albert and Anderson (1984) gave separation and overlap conditions

for the existence of the MLE in logistic classification models. We generalize their

conditions to multinomial choice models, giving necessary and sufficient conditions

for the existence of a finite MLE and the propriety of the posterior for a wide class

of bounded improper priors. Consistency and asymptotic normality for both the

MLE and the posterior are also proved under mild conditions.

Key words and phrases: Asymptotic normality, logistic, maximimum likelihood

estimation, multinomial choice model, posterior, probit.

1. Introduction

Bayesian inference in discrete choice models such as logistic and probit re-
gression has received a great deal of recent attention. While many Bayesians favor
using proper subjective priors, in practice there may be limited information or
time constraints that make the use of noninformative or default priors desir-
able. Other statisticians prefer noninformative priors on philosophical grounds.
Raghavan and Cox (1998) considered noninformative priors with a bounded prior
density for the binary logistic model, and Albert and Chib (1993) proposed a
constant prior for the binary probit model. A natural question is whether the
posterior is proper for a general multinomial choice model if a bounded improper
prior, such as a constant prior, is used. Without proper precaution, simple nonin-
formative priors such as a constant prior can be misused, sometimes unknowingly
(for example, see Hobert and Casella (1996)).

We have been interested in both classical and Bayesian inference for a general
class of discrete choice models (including logistic and probit regression). This
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interest has led us to investigate some fundamental issues regarding existence of
estimators. Although the behavior of maximum likelihood in the usual logistic
models is well understood, surprisingly there seems to be a gap in the literature
for more general models. A notable exception is Chen, Ibrahim and Shao (2004),
who considered the propriety of the posterior in generalized linear models when
covariates are missing.

The purpose of this paper is to study the existence of maximum likelihood
estimates and the propriety of the posterior when an improper prior is used. Our
main results show that, in a broad class of problems, the existence of the two
estimators coincide. In addition, we demonstrate asymptotic normality of the
MLE and the posterior under mild conditions.

The classes of models considered here have the following properties. Suppose
y1, . . . , yn are independent random variables, where

yi ∼ multinomial(1, p(Xi, β)) for i = 1, . . . , n, (1.1)

p(Xi,β) = (p1(Xi,β), . . . , pk(Xi, β))t, P (yi = j | β) = pj(Xi, β), Xi =
(xi1, xi2, . . . , xik) is an m × k design matrix for the ith observation, β is a pa-
rameter vector of length m, and p(Xi,β) satisfies

pj(Xi, β) ≥ 0 for j = 1, . . . ,m;
k∑

j=1

pj(Xi, β) = 1.

There are two common forms of parameterization for these models, which we
term choice models and classification models. References to choice models go
back to Thurstone (1927), Luce (1959), etc., in psychology. Multinomial choice
models have a long history in economics and transportation, see e.g., Anas (1983),
Ben-Akiva and Lerman (1985) and Anderson, de Palma and Thisse (1992). As
a simple example, consider the following model for choosing a location to shop.
Person i has k available shopping location choices. Each location has properties
that make it more or less attractive as a shopping destination: the distance
from person i’s home, a measure of available shopping opportunities such as
the number of retail employees at the location, and possible interaction with
the socio-economic status of person i. These variables are captured in a vector
of covariates xij of length m and depend in general on both characteristics of
person i and destination j. In the multinomial logistic model, the probability
that person i makes choice j is

pj(Xi, β) =
exp(xt

ijβ)
exp(xt

i1β) + · · · + exp(xt
ikβ)

, (1.2)
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where β is an unknown vector with length m. Note that the specification is not
unique. For example, xij can be replaced by xij −xik, for j = 1, . . . , k − 1, with
xik = 0.

The second model is one we term the classification model. To illustrate,
suppose patient i is to be classified into one of k disease states on the basis of a
vector of measurements xi of length r. A common model is the logistic model,

P (yi = j | β) =


exp(xt

iβj)

1+
Pk−1

l=1 exp(xt
iβl)

, j = 1, . . . , k − 1,

1
1+

Pk−1
l=1 exp(xt

iβl)
, j = k,

(1.3)

for parameter vectors β1, . . . , βk−1. The binary case is most common. If k = 2,
we assume that yi = 0 or yi = 1, and P (yi = 1 | β) = exp(xt

iβ)/{1+exp(xt
iβ)} =

1−P (yi = 0 | β). In this case, the choice and classification models are equivalent.
In general, the classification model is a special case of the choice model. Let
m = r(k − 1), and define xt

i1 = (xt
i,0

t, . . . ,0t), . . . , xt
i,k−1 = (0t, . . . ,0t, xt

i),
xt

ik = (0t, . . . ,0t). With βt = (βt
1, . . . , β

t
k−1), the classification model (1.3) has

exactly the form (1.2).
These choice models can be motivated and generalized using the principle

of utility maximization. Suppose there are continuous latent random variables
ξij such that xt

ijβ + ξij is the utility of choice j to person i. Assuming that
individuals act to maximize utility, person i makes choice j if

xt
ijβ + ξij > xt

ilβ + ξil for l = 1, . . . , k, l 6= j.

(By assumption this choice exists with probability one.) Then

pj(Xi, β) = P (xt
ijβ + ξij > xt

ilβ + ξil for all l 6= j, l = 1, . . . , k |β). (1.4)

Here probability is in terms of the joint distribution of ξi = (ξi1, . . . , ξik)t, and
throughout this paper we assume ξ1, . . . , ξn are independent random vectors with
the same joint distribution. Although commonly the case, the components of ξi

are not necessarily independent and identically distributed within the vector.
A Multinomial Logistic Model. If we assume that the ξij , j = 1, . . . , k,

i = 1, . . . , n, are i.i.d. (independent and identically distributed) from the Type I
extreme value (or Gumbel) distribution with cdf (cumulative distribution func-
tion) F (t) = exp(−e−t), −∞ < t < ∞, then it can be shown that

pj(Xi, β) ∝ exp(xt
ijβ), j = 1, . . . , k

(e.g., see Anderson, de Palma and Thisse (1992, p.39)). Consequently, pj(Xi,β)
is given by (1.2). The multinomial logistic model is one of the oldest multinomial
choice models because of its closed form expression (1.3).
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A Multinomial Probit Model. If we assume that the ξij are i.i.d. N(0, 1) ran-
dom variables, we have a multinomial probit model. In this case, the probability
that person i makes choice j is

pj(Xi, β) =
∫ ∞

−∞

∏
l 6=j

Φ(s + (xij − xil)tβ)dΦ(s),

where Φ is the cdf of the standard normal distribution. A special case is binary
probit regression when k = 2, xi1 = xi, xi2 = 0, and ξi1, ξi2 are i.i.d. N(0, .5)
random variables. Then P (yi = 1 | β) = Φ(xt

iβ) = 1−P (yi = 0 | β). While this
property is appealing, computation can be demanding. A number of frequen-
tist and Bayesian computational methods for these models have been proposed.
See, for example, McFadden (1984), Geweke (1991), Geweke, Keane and Run-
kle (1994), Keane (1994), Albert and Chib (1993), McCulloch and Rossi (1994),
Nobile (1998) Chib and Greenberg (1998), McCulloch, Polson and Rossi (2000)
and Imai and van Dyk (2005). As far as we know, despite the computational
advances, there are no general results on the existence of the MLE or propriety
of the posterior for these models.

A Multinomial multivariate-t Model. There are other possible forms of the
utility. For example, we might assume that the ξi have multivariate-t distribu-
tions with density

p(ξ) =
Γ((a + k)/2)

Γ(a/2)(aπ)k/2|Σ|1/2[1 + a−1ξtΣ−1ξ](a+k)/2
, ξ ∈ Rk, (1.5)

where a > 0, and Σ is a positive definite k × k matrix. This multivariate-t
distribution has a hierarchical structure. If ξ | δ ∼ MVNk(0, δΣ) and δ has
an inverse-gamma(a/2, 1/2) distribution, namely 1/δ ∼ χ2

a, the marginal density
of ξ is (1.5) (cf., Anderson (1984, p.283)). Here the density of δ is given by
f0(δ) = {2a/2Γ(a/2)}−1δ−a/2−1 exp{−1/(2δ)}. When Σ is the k × k identity
matrix Ik, the probability that person i makes choice j has the form

pj(Xi, β) =
∫ ∞

0

∫ ∞

−∞

∏
l 6=j

Φ
[s + (xij − xil)tβ√

δ

]
dΦ(sδ−

1
2 )f0(δ) dδ. (1.6)

The rest of the paper is organized as follows. In Section 2, we generalize
Albert and Anderson’s (1984) concepts of complete separation, quasi-complete
separation, and overlap for logistic classification models to general multinomial
choice models. An equivalence lemma relates the overlap conditions to the conical
hull of a special set of “structure vectors” associated with the problem. A “quasi-
norm” constructed from the conical hull is used to prove the existence of both
the MLE and the posterior in Section 3. Under mild restrictions, it is also
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shown that the MLE exists if and only if the posterior with constant prior is
proper. In Section 4, some conditions are given to verify overlap in choice models.
Finally, Section 5 contains a short example. An online supplement contains
two appendices. Proofs of lemmas on overlap are given in Appendix A, and
consistency and asymptotic normality for both the MLE and the posterior are
proved under some mild additional conditions in Appendix B.

2. Preliminaries

A number of authors including Haberman (1974), Wedderburn (1976), Sil-
vapulle (1981), Silvapulle and Burridge (1986), Albert and Anderson (1984) and
Santner and Duffy (1986) have considered the problem of existence of finite max-
imum likelihood estimates for logistic regression and classification problems. See
also Amemiya (1976) and Tse (1986). Our work most closely follows Albert and
Anderson (1984), and we generalize their results to multinomial choice models
for the logistic case, and to more general choice models based on multivariate
normal and multivariate-t choice distributions.

2.1. Separation and overlap

Albert and Anderson (1984) gave the following criteria for the logistic multi-
nomial classification problem with k ≥ 2. To motivate their definitions, suppose
that observation i is classified to group j if

xt
iβj > xt

iβl for all l 6= j. (2.1)

The sample (X(n), y(n)) has complete separation if there exist parameter vectors
β1, . . . , βk−1 such that

xt
iβyi

> xt
iβl for all l 6= yi, i = 1, . . . , n.

(By our convention, βk = 0.) In other words, complete separation means that
it is possible to classify all the data points correctly by an equation of the form
(2.1). The sample has quasi-complete separation if

xt
iβyi

≥ xt
iβl for all l 6= yi, i = 1, . . . , n.

In all other cases, the sample is said to have overlap. In other words, there is
overlap if and only if, for any choice of β1, . . . , βk−1 not all zero, there is an xi

and alternative l 6= yi such that

xt
iβyi

< xt
iβl.

Albert and Anderson (1984) showed that in the logistic multinomial classification
problem (including logistic regression), a finite maximum likelihood estimate
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exists if and only if the sample has overlap. Jacobsen (1989) derived this result
from a more general theorem on discrete exponential families.

These definitions translate easily to the choice model setup given by (1.1)
and (1.4). Denote the data points by (X(n), y(n)), where X(n) = (X1, . . . , Xn)
is the matrix of covariates and y(n) = (y1, . . . , yn) is the observation vector. We
will say that the sample (X(n), y(n)) has complete separation if there is a nonzero
β ∈ Rm such that

(xiyi − xil)tβ > 0 for all i = 1, . . . , n, and l 6= yi (2.2)

and has quasi-complete separation if there is a nonzero β ∈ Rm such that

(xiyi − xil)tβ ≥ 0 for all i = 1, . . . , n, and l 6= yi. (2.3)

Otherwise, the sample (X(n), y(n)) has overlap, i.e., for every nonzero β ∈ Rm,
we have

(xiyi − xil)tβ < 0 for some i and l 6= yi.

The intuition is the same as for the classification problem. The data have overlap
if and only if there is no single rule that correctly predicts the actual choice for
every observation.

We abstract the notions of separation and overlap to arbitrary sets, moti-
vated by the following special set (called the set of structure vectors in Jacobsen
(1989)). Define

A = {xiyi − xil : l 6= yi, l = 1, . . . , k, i = 1, . . . , n}. (2.4)

We say that A has complete separation if there is a β ∈ Rm such that

ztβ > 0 for all z ∈ A.

In other words, complete separation means that A lies in the interior of some
half-space. Similarly, A has quasi-complete separation if there is a β ∈ Rm

(β 6= 0) with
βtz ≥ 0 for all z ∈ A, (2.5)

and A is overlapped if for any 0 6= β ∈ Rm, there is a z ∈ A such that

ztβ < 0.

It turns out that the notions of separation and overlap are related to geo-
metric concepts involving cones. We review some definitions (see Panik (1993))).
A cone C ⊂ Rm is a set of points such that if x ∈ C, then λx ∈ C for any λ ≥ 0.
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A cone C in Rm is called a convex cone if it is also closed under addition. For a
set of vectors {a1, . . . , al} in Rm, a conical (nonnegative linear) combination is

x =
l∑

j=1

λjaj ,

where λj ≥ 0 for j = 1, . . . , l. For a set C in Rm, the conical hull of C is the
collection of all conical combinations of vectors from C, i.e.

coni(C) =
{ i∑

j=1

λjaj : aj ∈ C, λj ≥ 0 and i is a positive integer
}

.

Thus coni(C) is the smallest cone containing all convex combinations of points
in C.

Example 1. If m = 2, a1 = (1, 0) and a2 = (0, 1), then coni({a1,a2}) =
{(x1, x2) : x1 ≥ 0, x2 ≥ 0}, the first quadrant. We need another vector besides a1

and a2 to form R2. In fact, coni({a1, a2, a3}) = R2 if and only if a3 = (a31, a32)
with a31 < 0 and a32 < 0. In general, a set C ⊂ Rm must have at least m + 1
elements for coni(C) = Rm.

Our final notion is a function on Rm, associated with a set C when coni(C) =
Rm, that has important properties of a norm. For any finite subset C of Rm,
define

‖b‖C = max
z∈C

(−ztb) = −min
z∈C

ztb, b ∈ Rm.

Clearly, the definition ‖ · ‖C satisfies the triangle inequality, ‖b1 +b2‖C ≤ ‖b1‖C +
‖b2‖C for any b1, b2 ∈ Rm. In order for ‖·‖C to be a norm, three further conditions
must hold:

‖b‖C ≥ 0, b ∈ Rm; (2.6)

‖b‖C = 0 if and only if b = 0; (2.7)

‖αb‖C = |α|‖b‖C for all α ∈ R. (2.8)

Property (2.8) only holds for α ≥ 0 and does not hold in general. However, when
the sample has overlap, ‖ · ‖A has the other properties of a norm.

Lemma 1. The following conditions are equivalent.

(i) The sample (X(n),y(n)) has overlap.

(ii) coni(A) = Rm.

(iii)Properties (2.6) and (2.7) hold.
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The proof is given in Appendix A. The lemma has a very useful consequence.
Let ‖b‖ =

√
b2
1 + · · · + b2

m denote the Euclidean norm for b = (b1, . . . , bm)t ∈ Rm.
The proof of the following corollary is also given in Appendix A.

Corollary 1. If any of the conditions of the Lemma 1 hold, there is a constant
C > 0 such that C‖b‖ ≤ ‖b‖A for all b = (b1, . . . , bm)t ∈ Rm.

2.2. Binary case

For ordinary logistic and probit regression, the classification problem with
two outcomes, Silvapulle (1981) gave necessary and sufficient conditions in terms
of the sample outcomes. Let

S = coni{xi : yi = 1} =
{

x : x =
n∑

i=1,yi=1

λixi, λi ≥ 0
}

,

F = coni{xi : yi = 0} =
{

x : x =
n∑

i=1,yi=0

λixi, λi ≥ 0
}

.

Our notation differs slightly from Silvapulle’s, who uses S and F to denote the
relative interiors, not the cones themselves. Silvapulle’s conditions for the exis-
tence of the MLE are

(S1) the rank of {x1, . . . , xn} is m;

(S2) either S ∩ F 6= ∅ or one of S,F = Rm,

where m is the dimension of x.
Note that for the special case of binary outcomes yi = 0 or 1,

A = {(−1)yi+1xi : i = 1, . . . , n}. (2.9)

It’s not hard to show the equivalence of Silvapulle’s conditions to the conical hull
condition in the last lemma. The proof of the next result is in Appendix A.

Lemma 2. The conditions of Lemma 1 in the binary case with k = 2 are
equivalent to (S1) and (S2).

3. Existence of the MLE and the Posterior

The likelihood function of β based on data (X(n), y(n)) is

L(β) =
n∏

i=1

pyi(Xi,β).

We examine conditions for the existence of the MLE and the posterior under a
constant prior. We first prove that under complete or quasi-complete separation,
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the posterior is improper and the MLE does not exist. Let G(u1, . . . , uk−1) be the
(k − 1)-dimensional common distribution function of (ξi1 − ξik, . . . , ξi,k−1 − ξik).

Theorem 1. Assume that G is absolutely continuous, is exchangeable in its
arguments, and has a density that is positive on Rm−1. Then the MLE exists
and is finite if and only if there is overlap in the sample (X(n), y(n)).

Proof. We first consider necessity and argue by contradiction. If there is no
overlap, we have quasi-complete (which includes complete) separation, i.e. there
is a nonzero β∗ ∈ Rm so that

(xiyi − xil)tβ∗ ≥ 0 for i = 1, . . . , n, and l 6= yi. (3.1)

If the rank of A is m, there must be an observation i∗ and an alternative l∗ 6= yi∗

such that (xi∗yi∗ − xi∗l∗)
tβ∗ > 0. For any finite β ∈ Rm,

L(β) =
n∏

i=1

G((xiyi − xi1)tβ, . . . , (xiyi − xik)tβ)

<
n∏

i=1

G((xiyi − xi1)t(β + β∗), . . . , (xiyi − xik)t(β + β∗))

= L(β + β∗),

where the inequality holds because (3.1) holds, strict inequality holds for some
i∗ and l∗ 6= yi∗ , and G is strictly increasing in its coordinates since the density
is assumed positive. Thus no finite β can maximize L(β). On the other hand, if
equality holds in (3.1) for all i and l 6= yi, then A must have rank less than k. In
this case, L(β) = L(β + tβ∗) for all β ∈ Rm and t ∈ R, again contradicting the
assumption that the MLE must be finite.

To prove sufficiency, note that for any fixed β and any j = 1, . . . , k,

pj(Xi, β) = P (ξil − ξij ≤ (xij − xil)tβ, for all l 6= j | β)
≤ P (ξis − ξij ≤ (xij − xis)tβ | β)

for any s 6= j. Define

H(t) = P ( min
j 6=l=1,...,k

(ξ1l − ξ1j) ≤ t), t ∈ R.

Then
pj(Xi, β) ≤ min

1≤l≤k, l 6=yi

H((xiyi − xil)tβ)

and, since H is bounded by 1,

L(β) ≤ min
1≤l≤k, l 6=yi,1≤i≤n

H((xiyi − xil)tβ)

= H( min
1≤l≤k, l 6=yi, 1≤i≤n

(xiyi − xil)tβ),



740 PAUL SPECKMAN, JAEYONG LEE AND DONGCHU SUN

where the second equality holds because H is a monotone function. From the
assumption and Corollary 1, we know that there is a constant C > 0 such that

L(β) ≤ H(−C‖β‖), (3.2)

where ‖β‖ is the Euclidean norm of β. Fix an arbitrary vector β∗ ∈ Rm. Then
there is a constant M > 0 so that for any ‖β‖ ≥ M ,

L(β) ≤ H(−C‖β‖) ≤ H(−CM) < L(β∗).

Therefore
sup

β∈Rm
L(β) = sup

‖β‖≤M
L(β).

Since L(β) is continuous, its maximum exists and any MLE is finite.

Remark. For the special case of the logistic multinomial choice model (1.2), the
theorem follows directly from Jacobsen’s (1989) results on discrete exponential
families. Jacobsen’s theorem also shows uniqueness of the MLE when it exists
for the logistic case.

To illustrate the meaning of separation, quasi-separation and overlap, con-
sider the following examples.

Example 2. Consider ordinary logistic regression with two observations, both
at the same x > 0, with one success and one failure. Then

L(β) =
{

exp(β0 + β1x)
1 + exp(β0 + β1x)

}{
1

1 + exp(β0 + β1x)

}
,

whose maximum of 0.25 is achieved for any β0 + β1x = 0. From (2.9), A =
{(1, x), (−1,−x)}, which is quasi-complete. In particular, ztβ = 0 for all z ∈ A
if β = (−x, 1). Hence L(β) achieves its maximum, but the set on which the
maximum is attained is unbounded.

Example 3. Suppose a third observation is added to the data set, a success at
2x. Now A = {(1, x), (−1,−x), (1, 2x)}, which is still quasi-completely separated
(using the same β) but A has full rank. For this case,

L(β) =
exp(β0 + β1x) exp(β0 + 2β1x)

[1 + exp(β0 + β1x)]2[1 + exp(β0 + 2β1x)]
.

It’s easy to see that L(β) < 0.25 for all β. However, L(βs) → 0.25 as s → ∞ if
βs = (−sx, s). No finite MLE exists in this case.



MULTINOMIAL CHOICE MODELS 741

Example 4. Finally, suppose there are again three observations but with
one success at x and failures at 0 and 2x. Then A = {(1, x), (−1, 0), (−1,−2x)}
and coni(A) = R2. In this case, the likelihood

L(β) =
exp(β0 + β1x)

[1 + exp(β0)][1 + exp(β0 + β1x)][1 + exp(β0 + 2β1x)]
.

is maximized with β1 = 0 and 1/{1 + exp(β0)} = 2/3.

Example 2 illustrates that if A does not have full rank, the set of MLE’s is
not bounded. In Example 3, A does have full rank, but coni(A) is not the whole
parameter space, so the MLE does not exist. In Example 4, A has full rank,
coni(A) = Rm, and the MLE exists and is finite.

Our next theorem gives conditions for the existence of a proper posterior.
For simplicity, we again assume that the distribution of ξi is exchangeable. Our
sufficient condition assumes only a moment condition on the components ξij .

Theorem 2. Assume that a constant prior for β is used and G is exchangeable in
its arguments. (a) If there is quasi-complete separation in the sample (X(n), y(n))
and the cdf G is continuous, the posterior is improper. (b) If there is overlap in
the sample (X(n), y(n)) and E(|ξ1j |m) < ∞ for j = 1, . . . , k, the posterior of β is
proper.

Proof. To prove (a), suppose that there is a β∗ ∈ Rm satisfying (3.1). Without
loss of generality, assume that ‖β∗‖ = 1. Choose α∗ ∈ Rm such that L(α∗) >

0. Since L(α) is continuous, there exists a constant C > 0 and a bounded
neighborhood of α∗, say U , such that L(α) > C for any α ∈ U . Since U

is bounded, there is a constant M so that ‖α‖ ≤ M for any α ∈ U. Define
B = {α + tβ∗ : α ∈ U, t > 0}. Then for any β = α + tβ∗ ∈ B, and for any
l 6= yi, i = 1, . . . , n,

(xiyi − xil)tβ = (xiyi − xil)t(α + tβ∗)

= (xiyi − xil)tα + t(xiyi − xil)tβ∗

≥ (xiyi − xil)tα,

where the last inequality follows from (3.1).

L(β) =
n∏

i=1

G((xiyi − xi1)tβ, . . . , (xiyi − xik)tβ)

≥
n∏

i=1

G((xiyi − xi1)tα, . . . , (xiyi − xik)tα)

= L(α) = C
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for all β ∈ B. Clearly the Lebesgue measure λ(B) is infinite, hence∫
Rm

L(β) dβ ≥
∫

B
L(β) dβ ≥ Cλ(B) = ∞.

This proves (a).
For part (b), it follows from the sufficiency proof of Theorem 1 that there is

a constant C > 0 such that (3.2) holds, and∫
Rm

L(β) dβ ≤
∫

Rm

H(−C‖β‖) dβ.

By using the polar transformation, we get∫
Rm

L(β)dβ ≤ C1

∫ ∞

0
rm−1H(−Cr) dr

= C2

∫ ∞

0
rm−1H(−r) dr

= C2

∫ ∞

0
rm−1

∫ −r

−∞
dH(s) dr

= C2

∫ 0

−∞

{∫ −s

0
rm−1dr

}
dH(s)

≤ C3

∫ ∞

−∞
|s|m dH(s)

≤ C3E

∣∣∣∣ min
j 6=l=1,...,k

(ξ1l − ξ1j)
∣∣∣∣m ,

where the Ci are finite positive constants. Since ξ1j has finite mth moment, the
right hand side is finite, proving (b).

Remark 2. Although the ξij , j = 1, . . . , k, are often i.i.d. random variables,
they need not be independent or identically distributed for the conditions of the
theorem to hold.

Note that the ξij are i.i.d. with the standard extreme-value distribution for
the logistic model and the normal distribution for the probit model. Since both
distributions have all moments, the next result follows from Theorems 1 and 2
immediately.

Theorem 3. For the multinomial logistic or probit choice model, the following
conditions are equivalent.
(i) There is overlap in the sample (X(n), y(n)).
(ii) The MLE of β exists and is finite.
(iii)The posterior of β is proper under the constant prior.
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Raghavan and Cox (1998) showed that (ii) and (iii) are equivalent for a
binary logistic model, which is a special case here.

Remark 3. We should point out that the moment condition of the theorem
is sufficient and convenient, but not necessary. Since our main concerns are the
multinomial logistic and probit models, the moment condition suffices here. How-
ever, for the multinomial multivariate-t model given by (1.1) and (1.6), E(|ξij |m)
is finite if and only if a−m > 0. A weaker condition may be possible; we do not
explore that here.

Note that the constant prior is also not necessary here. In practice, one
might use a proper prior such as a normal distribution or a partially informative
prior such as the one in Sun, Tsutakawa and Speckman (1999), defined by

p(β) ∝ exp(− 1
2δ

βtBβ),

where δ > 0 and B is a nonnegative definite symmetric matrix. Such a prior
is bounded above by a constant. The proof of Theorem 2(b) easily extends to
bounded priors, and we have the following.

Corollary 2. Assume that there is overlap in the sample (X(n), y(n)) and
E(|ξ1j |m) < ∞ for j = 1, . . . , k. If the prior of β is bounded, the posterior of
β is proper.

4. Verifying Overlap in Choice Models

From a practical standpoint, it may not be clear if a data set has overlap so
the MLE exists. A number of authors have addressed this problem in the context
of logistic regression and the multinomial logistic model (1.3). Albert and An-
derson (1984) give a detailed discussion of various strategies. Translated to our
setting, they note that the problem of determining complete separation (2.2) or
quasi-complete separation (2.3) is a linear programming problem. Further details
on implementing the linear programming problem are given by Silvapulle and
Burridge (1986). Albert and Anderson (1984) also proposed methods for moni-
toring maximum likelihood iterations to determine if complete separation exists.
When complete separation exists, the logistic discriminant rule will eventually
give perfect discrimination. Monitoring the number of correct classifications dur-
ing iteration can detect this case. The situation with quasi-complete separation is
more complicated, but Albert and Anderson (1984) suggest a more sophisticated
monitoring scheme that appears effective in detecting problem cases. Lesaffre
and Albert (1989) proposed detecting problem data sets based on monitoring
the number of correctly classified cases and the standard errors of the estimated
parameters from standard output of maximum likelihood programs.
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These results clearly carry over to the logistic multinomial choice model
(1.2). Moreover, the problem of detecting complete or quasi-complete separation
is independent of the choice of latent variable distribution, so the Lesaffre and
Albert (1989) method based on logistic regression could be used for detecting
problems for probit or Bayesian models, for example.

In some cases, it might be possible to easily verify overlap based on certain
simple rules. For example, consider a subset of the sample, say I ⊂ {1, . . . , n}.
Let AI denote the set of structure vectors for this restricted sample, i.e.,

AI = {xiyi − xil : l 6= yi, l = 1, . . . , k, i ∈ I}.

Clearly, if AI has overlap, then A must as well. In describing applications, we
distinguish two cases. Let Case I denote models incorporating a separate constant
term for all but one possible choice. Thus the explanatory vectors xij might have
the form

xt
i1 = (1, 0, . . . , 0, zt

i1),

xt
i2 = (0, 1, . . . , 0, zt

i2),

xt
i,p−1 = (0, . . . , 0, 1, zt

i,p−1)

xt
ip = (0, 0, . . . , 0, zt

ip),

where the zip are covariate vecors. Let βt = (β1, β2, . . . , βp−1, γ
t), so that

pj(Xi, β) ∝ exp(βj + γtzij), 1 ≤ j < p,

pp(Xi, β) ∝ exp(γtzip).

Case II denotes a model without constant parameters for each choice. In some
applications, such as the transportation study in Appendix B, models are con-
structed without constant terms because one wants to estimate the probability
of future choices based solely on attributes of the choice itself and possible co-
variates dependent on interactions between the ith case and the choices. In other
cases, it makes sense to include the constant terms.

In Case II, with no constant terms, it is possible that there is overlap in a
subset of the sample belonging to as few as two possible choices. Choosing the
two most frequent outcomes, for example, one could run a simple simple binary
logistic regression for the restricted subset. Following the rules of Lesaffre and
Albert (1989), if the algorithm converges and the standard errors are satisfactory,
one could conclude that there is overlap in the binary case, which automatically
implies overlap in the complete data set.

For Case I, we have the following result. Let Hj = {i : yi = j}, j = 1, . . . , p,
i.e., Hj is the portion of the sample with choice j.



MULTINOMIAL CHOICE MODELS 745

Theorem 4. Suppose the following two conditions hold:

(i) Hj 6= ∅, j = 1, . . . , p;

(ii) there exists a pair of choices j 6= k such that the subset of the sample Hj ∪Hk

has overlap with respect to the binary choice problem.

Then the entire sample has overlap.

Proof. Assume that j, k < p. (The case j = p or k = p is analogous and
left to the reader.) Without loss of generality, let j = 1 and k = 2. We argue
by contradiction. Suppose A has quasi-complete separation, i.e., there exists a
nonzero vector bt = (b1, . . . , bp−1, c

t) such that btvij ≥ 0 for all vij ∈ A. The
restricted set of structure vectors AH1∪H2 consists exactly of vectors of the form

vi1 = xi1 − xi2 = (1,−1, 0, . . . , 0, zt
i1 − zt

i2)
t, i ∈ H1,

vi2 = xi2 − xi1 = (−1, 1, 0, . . . , 0, zt
i2 − zt

i1)
t, i ∈ H2.

This restricted set must also have quasi-complete separation, so

b1 − b2 + ct(zi1 − zi2) ≥ 0 for all i ∈ H1,
(4.1)

b2 − b1 + ct(zi2 − zi1) ≥ 0 for all i ∈ H2.

On the other hand, by assumption, the binary problem with structure vectors
ṽi1 = (1, zt

i1 − zt
i2)

t for i ∈ H1 and ṽi2 = (−1, zt
i2 − zt

i1)
t for i ∈ H2 has overlap.

Thus if b̃
t
ṽij ≥ 0 for all ṽij , then b̃ = 0. From (4.1), we conclude b1 = b2 and

c = 0. Next, consider choices j < p and k = p. By assumption, there is at
least one observation for each choice, so without loss of generality, let j = 1.
Then A contains at least one vector of the form vip = (1, 0, . . . , 0, zt

i1 − zt
ip)

t for
some i ∈ H1, and at least one of the form v`1 = (−1, 0, . . . , 0,zt

`p − zt
`1)

t for
some ` ∈ Hp. But we have already shown that c = 0, so btvip = b1 ≥ 0 and
btv`1 = −b1 ≥ 0, implying b1 = 0. Similarly, we conclude b2 = · · · = bp−1 = 0,
contradicting the existence of nonzero b. This shows that the complete sample
must have overlap.

5. Application

We have computed the MLE and a Bayesian estimate for a simplified choice
model based on data from the 1994/95 Portland Activity/Travel Survey. The
Portland, Oregon metropolitan region is divided into 1244 travel activity zones.
We chose k = 100 zones near downtown as possible work locations. A total of
n = 1386 individuals from the sample worked in one of these zones. We used
two factors to predict work zone choice, the total number of employees in zone
j and the distance from home to the center of zone j. Thus the probability that
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Table 1. The MLE and the Posterior Quantities of βj for a Multinomial Logit Model

MLE Post. Mean Post Variance Post. Stan. Dev.
β1 0.98637 0.98682 0.00057 0.0239
β2 −2.55467 −2.54562 0.03428 0.1851

person i works in zone j is a function of xij = (xij1, xij2)t, where for i = 1, . . . , n,

j = 1, . . . , k,

xij1 = tj = log(number employees at zone j),

xij2 = zij = distance (in km.) from the ith person’s home to zone j.

Note that xij1 depends only on j, while xij2 = zij depends on both i and j.
To verify overlap in this sample, we used the method of Case II in Section 4.

The set of structure vectors A for the first two locations showed obvious overlap,
hence there is overlap for the full data set. One can also observe that the MLE
iterations converge with finite asymptotic variances as shown in the table below,
again indicating overlap according to the criteria of Albert and Anderson (1984)
and Lesaffre and Albert (1989).

We fit the multinomial logistic model

pj(Xi, β) =
exp(β1tj + β2zij)∑k
`=1 exp(β1t` + β2zi`)

to the probability that person i works in zone j. Given observations (y1, . . . , yn),
the likelihood function of β = (β1, β2) is

L(β) = p(y | β) =
n∏

i=1

pyi(Xi, β) =
exp(β1

∑n
i=1 tyi + β2

∑n
i=1 ziyi)∏n

i=1

∑k
j=1 exp(β1tj + β2zij)

.

The MLE is given in Table 1.
To compute Bayesian estimates, we used a constant prior on β and Gibbs

sampling. We have the following full conditional distributions:

f1(β1 | β2; data) ∝
exp(β1

∑n
i=1 tyi)∏n

i=1

∑k
j=1 exp(β1

∑n
i=1 tj + β2zij)

,

f2(β2 | β1; data) ∝
exp(β2

∑n
i=1 ziyi)∏n

i=1

∑k
j=1 exp(β1

∑n
i=1 tj + β2zij)

.

These conditional densities are all log-concave, so the adaptive algorithm from
Gilks and Wild (1992) can be used. We used 5,000 samples for burn-in and
obtained another 10,000 samples to estimate the posterior. Estimates of the
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posterior means, variances and standard deviations of β1 and β2 are given in
Table 1. In this example, the MLE and Bayesian estimates of βj are quite close.
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