
Statistica Sinica 17(2007), 775-795

TESTING FOR SYMMETRIC ERROR DISTRIBUTION IN

NONPARAMETRIC REGRESSION MODELS

Natalie Neumeyer and Holger Dette

Universität Hamburg and Ruhr-Universität Bochum

Abstract: For the problem of testing symmetry of the error distribution in a non-

parametric regression model, we investigate the asymptotic properties of the dif-

ference between the two empirical distribution functions of estimated residuals and

their counterparts with opposite signs. The weak convergence of the difference

process to a Gaussian process is shown. The covariance structure of this process

depends heavily on the density of the error distribution, and for this reason the

performance of a symmetric wild bootstrap procedure is discussed in asymptotic

theory, and by means of a simulation study. In contrast to available procedures,

the new test is also applicable under heteroscedasticity.

Key words and phrases: Empirical process of residuals, testing for symmetry, non-

parametric regression.

1. Introduction

Consider the nonparametric heteroscedastic regression model

Yi = m(Xi) + σ(Xi)εi (i = 1, . . . , n) (1)

with unknown regression and variance functions m(·) and σ2(·), respectively,

where X1, . . . ,Xn are independent identically distributed. The unknown errors

ε1, . . . , εn are assumed to be independent of the design points, centered and inde-

pendent identically distributed with absolutely continuous distribution function

Fε and density fε. Hence −εi has density f−ε(t) = fε(−t) and cumulative distri-

bution function F−ε(t) = 1 − Fε(−t). In this paper we are interested in testing

the symmetry of the error distribution, that is:

H0 : Fε(t) = 1 − Fε(−t) for all t ∈ IR

versus

H1 : Fε(t) 6= 1 − Fε(−t) for some t ∈ IR

In the case where ε1, . . . , εn are directly observable Smirnov (1947) proposed to

compare the empirical distribution functions of εi and −εi using the empirical
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process

Sn(t) =
1

n

n∑

i=1

(
I{εi ≤ t} − I{−εi ≤ t}

)
= Fn,ε(t) − Fn,−ε(t), (2)

where I{·} denotes the indicator function, Fn,ε is the empirical distribution func-

tion of ε1, . . . , εn and Fn,−ε is the empirical distribution function of −ε1, . . . ,−εn.

Under the hypothesis of symmetry Fε = F−ε and the process
√

nSn converges

weakly to the process S = B(Fε)+B(1−Fε), where B denotes a Brownian bridge,

and a suitable asymptotic distribution-free test statistic is then obtained by the

Cramer-von-Mises functional. The resulting test is consistent with respect to lo-

cal alternatives converging to the null at a rate n−1/2 (see Koul and Staudte Jr.

(1976) for some bounds on the power function of these tests).

The problem of testing symmetry of the unknown distribution of the residu-

als in special parametric regression models has been considered by numerous au-

thors (see for example Bhattacharya, Gastwirth and Wright (1982), Aki (1981),

Huškova (1984), Koziol (1985), Schuster and Berger (1987), Hollander (1988),

Ahmad and Li (1997), Hyndman and Yao (2002) or Psaradakis (2003), among

many others). A generalization of the process (2) for the unknown residuals

ε1, . . . , εn in linear models with fixed design and homoscedastic error structure

can be found in Koul (2002, p.258). In the present paper we transfer this ap-

proach to the problem of testing the hypothesis of a symmetric error distribution

in a nonparametric regression model with heteroscedastic error structure. The

process defined in (2) is modified by replacing the unknown errors εi by esti-

mated residuals ε̂i = (Yi − m̂(Xi))/σ̂(Xi) (i = 1, . . . , n), where m̂(·) and σ̂(·)
denote kernel based nonparametric estimators for the regression and variance

function, respectively. This yields the process

Ŝn(t) =
1

n

n∑

i=1

(
I{ε̂i ≤ t} − I{−ε̂i ≤ t}

)
,

and this allows us to consider heteroscedastic nonparametric regression models.

Our interest in this problem stems from two facts. On the one hand we are

looking for a test which is applicable to observations with a heteroscedastic error

structure. On the other hand the available procedures for the nonparametric re-

gression model with homoscedastic errors are only consistent against alternatives

which converge to the null hypothesis of symmetry at a rate (n
√

h)−1, where h

denotes the smoothing parameter of a kernel estimator (see Ahmad and Li (1997)

and Dette, Kusi–Appiah and Neumeyer (2002)). It is the second purpose of this

paper to construct a test for the symmetry of the error distribution in model (1)

that can detect local alternatives at a rate n−1/2.
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In Section 3 we prove weak convergence of a centered version of the empir-

ical process Ŝn to a Gaussian process under the null hypothesis of a symmetric

error distribution, local alternatives, and any fixed alternative. The covariance

structure of the limiting process depends in a complicated way on the unknown

distribution of the error and, as a consequence, an asymptotically distribution-

free test statistic cannot be found. For this reason we propose a modification of

the wild bootstrap approach to compute critical values. The consistency of this

bootstrap procedure is discussed asymptotically and by means of a simulation

study in Section 4 and Section 5, respectively. The numerical results indicate

that the new bootstrap test is applicable for sample sizes larger than 20, and is

more powerful than existing procedures derived under the additional assumption

of homoscedasticity.

2. Technical Assumptions

In this section we state some technical assumptions that are required for the

statement of the main results in Sections 3 and 4. We assume that the distribution

function of the explanatory variables Xi, say FX , has support [0, 1] and is twice

continuously differentiable with density fX bounded away from zero. We also

assume that the error distribution has a finite fourth moment. Further suppose

that the conditional distribution P Yi|Xi=x of Yi given Xi = x has distribution

function

F (y|x) = Fε

(y − m(x)

σ(x)

)

and density

f(y|x) =
1

σ(x)
fε

(y − m(x)

σ(x)

)

such that supx,y |yf(y|x)| < ∞, where F (y|x) and f(y|x) are continuous in (x, y),

the partial derivative ∂
∂y f(y|x) exists and is continuous in (x, y) such that

sup
x,y

∣∣∣∣y
2 ∂f(y|x)

∂y

∣∣∣∣ < ∞.

In addition, we also require that the derivatives ∂
∂xF (y|x) and ∂2

∂x2 F (y|x) exist

and are continuous in (x, y) such that

sup
x,y

∣∣∣∣y
∂F (y|x)

∂x

∣∣∣∣ < ∞ , sup
x,y

∣∣∣∣y
2 ∂2F (y|x)

∂x2

∣∣∣∣ < ∞.

The regression and variance functions m and σ2 are assumed to be twice contin-

uously differentiable with minx∈[0,1] σ
2(x) ≥ c > 0 for some constant c.
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Throughout, let K be a symmetric twice continuously differentiable density

with compact support and vanishing first moment and let h = hn denote a

sequence of bandwidths converging to zero as n → ∞ such that nh4 = O(1) and

nh3+δ/ log(1/h) → ∞ for some δ > 0.

3. Weak Convergence of the Empirical Symmetry Process

For the estimation of the residuals we define nonparametric kernel estimators

of the unknown regression function m(·) and variance function σ2(·) in model (1)

by

m̂(x) =

∑n
i=1 K(Xi−x

h )Yi
∑n

j=1 K(
Xj−x

h )
(3)

σ̂2(x) =

∑n
i=1 K(Xi−x

h )(Yi − m̂(x))2

∑n
j=1 K(

Xj−x
h )

. (4)

Note, that m̂(·) is the usual Nadaraya–Watson estimator (Nadaraya (1964) and

Watson (1964)) which is considered here for the sake of simplicity, but the follow-

ing results are also correct for local polynomial estimators (see Fan and Gijbels

(1996)), where the kernel K has to be replaced by its asymptotically equivalent

kernel (see Wand and Jones (1995)). Now the standardized residuals from the

nonparametric fit are defined by

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)
(i = 1, . . . , n). (5)

The considered empirical process is based on the residuals (5) and is given by

Ŝn(t) = F̂n,ε(t) − F̂n,−ε(t) =
1

n

n∑

i=1

(
I{ε̂i ≤ t} − I{−ε̂i ≤ t}

)
. (6)

Throughout, we call the process Ŝn(t) (and any process of the same form) an

empirical symmetry process. Our first result states the asymptotic behaviour of

this process.

Theorem 3.1. Under the assumptions stated in Section 2 the process {Rn(t)}t∈IR

defined by

Rn(t) =
√

n
(
Ŝn(t) − Fε(t) + (1 − Fε(−t)) − h2B(t)

)

converges weakly to a centered Gaussian process {R(t)}t∈IR with covariance struc-
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ture

G(s, t) = Cov(R(s), R(t))

= Fε(s ∧ t) − Fε(s)Fε(t) + Fε((−s) ∧ t) − Fε(−s)Fε(t)

+ Fε(s ∧ (−t)) − Fε(s)Fε(−t) + Fε((−s) ∧ (−t)) − Fε(−s)Fε(−t)

+ (fε(t) + fε(−t))(fε(s) + fε(−s))

+ (fε(s) + fε(−s))

∫ t

−∞
x(fε(x) + fε(−x)) dx

+ (fε(t) + fε(−t))

∫ s

−∞
x(fε(x) + fε(−x)) dx

+
s

2
(fε(s) − fε(−s))

∫ t

−∞
(x2 − 1)(fε(x) + fε(−x)) dx

+
t

2
(fε(t) − fε(−t))

∫ s

−∞
(x2 − 1)(fε(x) + fε(−x)) dx

+
s

2
(fε(s) − fε(−s))(fε(t) + fε(−t))E[ε3

1]

+
t

2
(fε(t) − fε(−t))(fε(s) + fε(−s))E[ε3

1]

+
st

4
(fε(s) − fε(−s))(fε(t) − fε(−t))Var (ε2

1),

where the bias is

B(t) =
1

2

∫
K(u)u2 du

(
(fε(t)+fε(−t))

∫
1

σ(x)

(
(mfX)′′(x)−(mf ′′

X)(x)
)

dx

+ t(fε(t) − fε(−t))

∫
1

2σ2(x)

(
(σ2fX)′′(x) − (σ2f ′′

X)(x)

+2(m′(x))2fX(x)
)
dx

)
.

The proof of Theorem 3.1 is deferred to the Appendix.

Note that in the asymptotic covariance, one can write

Fε(s ∧ t) − Fε(s)Fε(t) + Fε((−s) ∧ t) − Fε(−s)Fε(t) + Fε(s ∧ (−t))

−Fε(s)Fε(−t) + Fε((−s) ∧ (−t)) − Fε(−s)Fε(−t)

= Fε(s ∧ t) + 1 − Fε(−(s ∧ t)) − (Fε(t) + 1 − Fε(−t)) + Fε((−s) ∧ t)

+1 − Fε(−(−s) ∧ t) − (Fε(t) − 1 + Fε(−t))(Fε(s) − 1 + Fε(−s))

and, under the hypothesis H0 : Fε(t) = 1 − Fε(−t), this expression reduces to

2Fε(s ∧ t) − 2Fε(t) + 2Fε((−s) ∧ t) = 2Fε(−(|s| ∨ |t|)), (7)
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which coincides with the covariance of the limit of the classical empirical sym-

metry process (2) based on an i.i.d. sample. Additionally, under H0, the bias in

Theorem 3.1 is

B(t) =

∫
K(u)u2 du fε(t)

∫
1

σ(x)

(
(mfX)′′(x) − (mf ′′

X)(x)
)

dx.

Corollary 3.2. If the assumptions of Theorem 3.1 and the null hypothesis H0 of

a symmetric error distribution are satisfied, the process {√n(Ŝn(t)−h2B(t))}t∈IR

defined in (6) converges weakly to a centered Gaussian process {S(t)}t∈IR with

covariance

H(s, t) = Cov(S(s), S(t))

= 2Fε(−(|s| ∨ |t|)) + 4fε(s)fε(t) + 4fε(s)

∫ t

−∞
xfε(x) dx

+4fε(t)

∫ s

−∞
xfε(x) dx.

Comparing the covariance kernel H with the expression (7) obtained by

Smirnov (1947) we see that there are three additional terms depending on the

density of the error distribution. This complication is caused by the estimation

of the variance and regression function in our procedure. We also note that the

bias h2B(t) in Theorem 3.1 and Corollary 3.2 can be omitted if h4n = o(1).

Remark 3.3. Linear models. We compare the results obtained in the nonpara-

metric setting to results of Koul (2002). To this end consider a homoscedastic

linear model Yni = xT
niβ + εni with fixed design, where the errors εn1, . . . , εnn

are independent and identically distributed with distribution function Fε and

variance Var (εni) ≡ 1, for simplicity. Koul (2002) considers M–estimators β̂n for

the parameter β, but we concentrate here on the special case of the least squares

estimator β̂n. Then, under certain regularity assumptions, the process
√

nŜn

based on the parametric residuals ε̂ni = Yni − xT
niβ̂n converges weakly under the

null hypothesis of a symmetric error distribution to a centered Gaussian process

S with covariance

Cov(S(s), S(t)) = 2Fε(−(|s| ∨ |t|)) + 4cfε(s)fε(t)

+ 4cfε(s)

∫ t

−∞
xfε(x) dx + 4cfε(t)

∫ s

−∞
xfε(x) dx. (8)

Here the constant c is limn→∞ n−1
∑n

j=1

∑n
i=1 xT

ni(X
T
n Xn)−1xnj , where xT

ni de-

notes the ith row of the design matrix Xn. Thus the covariance structure in

(8) is essentially the same as obtained in Corollary 3.2 for the nonparametric

regression model.
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Remark 3.4. Local alternatives. Asymptotic tests based on the empirical sym-

metry process can detect local alternatives converging to the null at a rate n−1/2.

To see this, consider the nonparametric regression model Yni = m(Xi)+σ(Xi)εni,

where the errors εn1, . . . , εnn are independent with distribution function Fεn . We

assume that

lim
n→∞

√
nGn(t) := lim

n→∞

√
n[Fεn(t) − (1 − Fεn(−t))] = G(t)

uniformly in t ∈ IR, for some function G, and that the functions Gn are continu-

ously differentiable such that limn→∞ supt∈IR |G′
n(t)| = 0. The conditional distri-

bution function F (y|x), now n–dependent, should fulfill the assumptions stated

in Section 2 uniformly in n ∈ IN . Then the process
√

n(Ŝn(t) − h2B(t)), t ∈ IR,

defined in (6), converges weakly to a Gaussian process with expectation G(t) and

covariance defined in Corollary 3.2. Essentially, the proof follows along the lines

of the proof of Theorem 3.1, but Theorem 1 in Akritas and Van Keilegom (2001)

is not directly applicable because now the error variables εn1, . . . , εnn build a tri-

angular array with n–dependent distribution. With some technical effort Akritas

and Van Keilegom’s (2001) proof can be generalized to this case under applica-

tion of Theorem 2.11.9 of Van der Vaart and Wellner (1996, p.211)) The details

are omitted for the sake of brevity.

4. Symmetric Wild Bootstrap

Suitable test statistics for testing symmetry of the error distribution Fε are,

for example, Kolmogorov–Smirnov and Cramer–von–Mises type test statistics,

sup
t∈IR

|Ŝn(t)| and

∫
Ŝ2

n(t) dĤn(t), (9)

where Ĥn is the empirical distribution function of |ε̂1|, . . . , |ε̂n|, and the null hy-

pothesis of symmetry is rejected for large values of these statistics. The asymp-

totic distribution of the test statistics can be obtained from Theorem 3.1, an

application of the Continuous Mapping Theorem, and (in the latter case) the

uniform convergence of Ĥn, supt∈IR |Ĥn(t)−H(t)| = op(1), where H denotes the

distribution function of |ε1|. However, because of the complicated dependence of

the asymptotic null distribution of the process Ŝn(t) on the unknown distribution

function, these test statistics are not asymptotically distribution-free. Thus the

critical values cannot be computed without estimating the unknown features of

the error distribution of the data generating process. To avoid the problem of

estimating the distribution and density function Fε, fε we propose a modifica-

tion of the wild bootstrap approach, which is adapted to the specific problem of
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testing symmetry (for wild bootstrap procedures, see Wu (1986), Liu (1988) and
Härdle and Mammen (1993), among many others).

For this let v1, . . . , vn be Rademacher variables, independent identically dis-
tributed with P (vi = 1) = P (vi = −1) = 1/2, independent of the sample (Xj , Yj),
j = 1, . . . , n. Note that whether the underlying error distribution Fε is symmet-
ric or not the distribution of the random variable viεi is symmetric with density
and distribution functions

gε(t) =
1

2
(fε(t) + fε(−t)), Gε(t) =

1

2
(Fε(t) + 1 − Fε(−t)), (10)

respectively. Define bootstrap residuals as follows,

ε∗i = vi(Yi − m̂(Xi)) = viσ̂(Xi)ε̂i (i = 1, . . . , n),

where ε̂i is given in (5). Now we build new bootstrap observations (i = 1, . . . , n)

Y ∗
i = m̂(Xi) + ε∗i

= viσ(Xi)εi + m̂(Xi) + vi(m(Xi) − m̂(Xi)),

and estimated residuals

ε̂ ∗
i =

Y ∗
i − m̂∗(Xi)

σ̂∗(Xi)
, (11)

where the regression and variance estimates m̂∗ and σ̂∗2 are defined analogously
to m̂ and σ̂2 in (3) and (4), but are based on the bootstrap sample (Xi, Y

∗
i ),

i = 1, . . . , n. In generalization of (6) the bootstrap version of the empirical
symmetry process is

Ŝ∗
n(t) = F̂ ∗

n,ε(t) − F̂ ∗
n,−ε(t) =

1

n

n∑

i=1

(
I{ε̂ ∗

i ≤ t} − I{−ε̂ ∗
i ≤ t}

)
.

The asymptotic behaviour of the bootstrap process conditioned on the initial
sample is stated in the following theorem. Note that the result is valid under the
hypothesis of symmetry fε = f−ε and under the alternative of a non-symmetric
error distribution.

Theorem 4.1. Under the assumptions of Theorem 3.1 the bootstrap process

{
√

n(Ŝ∗
n(t) − h2B(t))}t∈IR,

conditioned on the sample Yn = {(Xi, Yi) | i = 1, . . . , n}, converges weakly to a
centered Gaussian process {S(t)}t∈IR with covariance

Cov(S(s), S(t)) = 2Gε(−(|s| ∨ |t|)) + 4gε(s)gε(t) + 4gε(s)

∫ t

−∞
xgε(x) dx

+4gε(t)

∫ s

−∞
xgε(x) dx
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in probability, where the bias term is

B(t) =

∫
K(u)u2 du gε(t)

∫
1

σ(x)

(
(mfX)′′(x) − (mf ′′

X)(x)
)

dx.

Here gε and Gε are given by (10) and, under the null hypothesis of symmetry, we

have gε = fε, Gε = Fε and Cov(S(s), S(t)) = H(s, t), where the kernel H(s, t) is

defined in Corollary 3.2.

The proof of Theorem 4.1 is deferred to the Appendix.

From the theorem, the consistency of a test for symmetry based on the

wild bootstrap procedure can be deduced as follows. Let Tn denote the test

statistic based on a continuous functional of the process Ŝn, and let T ∗
n denote the

corresponding bootstrap statistic based on Ŝ∗
n. If tn is the realization of the test

statistic Tn based on the sample Yn, then a level α–test is obtained by rejecting

symmetry whenever tn > c1−α, where PH0
(Tn > c1−α) = α. The quantile c1−α

can now be approximated by the bootstrap quantile c∗1−α defined by

P (T ∗
n > c∗1−α | Yn) = α. (12)

From Theorem 4.1 and the Continuous Mapping Theorem we obtain a consistent

asymptotic level α–test by rejecting the null hypothesis if tn > c∗1−α. We illustrate

this approach in a finite sample study in Section 5.

5. Finite Sample Properties

In this section we investigate the finite sample properties of the bootstrap

procedure proposed in Section 4 by means of a simulation study. Consider the

statistic

Tn =

∫
Ŝ2

n(t)dĤn(t), (13)

where Ĥn(t) = (1/n)
∑n

i=1 I{|ε̂i| ≤ t} denotes the empirical distribution function

of the absolute residuals |ε̂1|, . . . , |ε̂n|. If

T ∗
n =

∫
(Ŝ∗

n)2(t) dĤ∗
n(t)

is the bootstrap version of Tn, where Ĥ∗
n denotes the empirical distribution func-

tion of |ε̂ ∗
1 |, . . . , |ε̂ ∗

n |, the consistency of the bootstrap procedure follows from

Theorem 4.1, the Continuous Mapping Theorem and the fact that for all τ > 0

we have

P
(

sup
t∈IR

|Ĥ∗
n(t) − H(t)| > τ

∣∣∣Yn

)
= op(1).
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For the bandwidth in the regression and variance estimator defined by (3)

and (4), respectively, we used

h =
( ŝ2

n

) 3

10

, (14)

where

ŝ2 =
1

2(n − 1)

n−1∑

i=1

(
Y[i+1] − Y[i]

)2
(15)

is an estimator of the integrated variance function
∫ 1
0 σ2(t)fX(t)dt, and Y[1], . . .,

Y[n] denotes the ordered sample of Y1, . . . , Yn according to the X values (see Rice

(1984)). The same bandwidth was used in the bootstrap step for the calculation

of ε∗1, . . . , ε
∗
n and the corresponding estimators m̂∗, σ̂∗.

B = 200 bootstrap replications based on one sample Yn = {(Xi, Yi) | i =

1, . . . , n} were performed for each simulation, where 1,000 runs were used to

calculate the rejection probabilities. The quantile estimate c∗1−α defined in (12)

from the bootstrap sample T ∗,1
n , . . . , T ∗,B

n was estimated by ĉ ∗
1−α = T

∗,(⌊B(1−α)⌋)
n ,

where T
∗,(i)
n denotes the ith order statistic of T ∗,1

n , . . . , T ∗,B
n . The null hypothesis

H0 of a symmetric error distribution was rejected if the original test statistic Tn

based on the sample Yn exceeded ĉ ∗
1−α.

The model under consideration was

Yi = sin(2πXi) + σ(Xi)εi , i = 1, . . . , n, (16)

for the sake of comparison with the results of Dette, Kusi–Appiah and Neumeyer

(2002), who proposed a test for symmetry in a nonparametric homoscedastic

regression model with a fixed design. Table 5.1 shows the approximation of the

nominal level for the uniform design on the interval [0, 1]. The error distribution is

a normal distribution, a convolution of two uniform distributions and a logistic

distribution standardized such that E[ε] = 0, E[ε2] = 1, while σ(x) ≡ 1. We

observe an accurate approximation of the nominal level for sample sizes n ≥ 20.

The performance of the new test under alternatives is illustrated in Table 5.2,

where a standardized chi-square distribution with k = 1, 2, 3 degrees of freedom

is considered. The non-symmetry is detected in all cases with high probability,

the power increases with the sample size and decreases with increasing degrees

of freedom. The cases k = 1, 2 should be compared with the simulation results in

Dette, Kusi–Appiah and Neumeyer (2002), where the same situation for a fixed

design has been considered. We observe notable improvements with respect to

the probabilities of rejection in all considered cases. We note again that the

procedure of these authors requires a homoscedastic error, while the bootstrap

test proposed in Section 4 is also applicable under heteroscedasticity.
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In order to investigate the impact of heteroscedasticity on the approximation
of the level and the probability of rejection under the alternative, we conducted a
small simulation study for the case m(x) = sin(2πx), σ(x) = e−x

√
2(1−e−2)−1/2,

a normal distribution and a chi-squared distribution with k = 1, 2, 3 degrees of
freedom standardized such that E[ε] = 0, E[ε2] = 1. The explanatory variable is
again uniformly distributed on the interval [0, 1]. Note that the variance function
was normalized such that

∫ 1
0 σ2(x)dx = 1 in order to make the results comparable

with the scenario displayed in Table 5.1 and 5.2. The results are presented in

Table 5.1. Simulated level of the wild bootstrap test of symmetry in the
nonparametric regression model (16) with σ(x) ≡ 1. The error distribution
is a normal distribution (df1), a logistic distribution (df2) and a sum of two
uniforms (df3) standardized such that E[ε] = 0 and E[ε2] = 1.

α n = 20 n = 30 n = 40 n = 50 n = 100

0.025 0.029 0.033 0.029 0.029 0.027

0.05 0.057 0.060 0.051 0.057 0.052
df1 0.10 0.109 0.111 0.107 0.107 0.104

0.20 0.214 0.216 0.215 0.193 0.209

0.025 0.035 0.032 0.024 0.032 0.029

0.05 0.062 0.055 0.051 0.068 0.057
df1 0.10 0.113 0.111 0.101 0.113 0.108

0.20 0.215 0.209 0.204 0.210 0.193

0.025 0.031 0.030 0.028 0.028 0.030
0.05 0.055 0.051 0.061 0.049 0.067

df1 0.10 0.108 0.101 0.112 0.102 0.105

0.20 0.199 0.204 0.202 0.197 0.192

Table 5.2. Simulated power of the wild bootstrap test of symmetry in the
nonparametric regression model (16) with σ(x) ≡ 1. The error distribution
is a chi-square distribution with k degrees of freedom standardized such that
E[ε] = 0 and E[ε2] = 1.

k α n = 20 n = 30 n = 40 n = 50 n = 100

0.025 0.358 0.654 0.849 0.957 1.000

0.05 0.484 0.764 0.912 0.981 1.000
1

0.10 0.584 0.847 0.959 0.991 1.000

0.20 0.716 0.914 0.983 0.998 1.000

0.025 0.239 0.458 0.698 0.817 0.998

0.05 0.342 0.570 0.805 0.896 1.000
2

0.10 0.442 0.681 0.865 0.936 1.000
0.20 0.594 0.794 0.934 0.976 1.000

0.025 0.208 0.436 0.604 0.750 0.982

0.05 0.303 0.565 0.710 0.833 0.995
3

0.10 0.414 0.667 0.812 0.895 0.998

0.20 0.551 0.790 0.886 0.939 0.999
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Table 5.3. We observe no substantial differences with respect to the approxi-

mation of the nominal level (compare the first case in Table 5.1 and 5.3) and

a slight loss of power, which is caused by the heteroscedasticity (compare the

cases df1, df2 and df3 in Table 5.3 with Table 5.2). The results indicate that our

procedure has a good performance under heteroscedasticity.

Table 5.3. Simulated level and power of the wild bootstrap test of symmetry

in the nonparametric regression model (16) with σ(x) =
√

2e−x(1−e−2)−1/2.

The error distribution is a standard normal distribution (df0) and a chi-

square distribution with k degrees of freedom (dfk, k = 1, 2, 3) standardized

such that E[ε] = 0, E[ε2] = 1.

α n = 20 n = 30 n = 40 n = 50 n = 100

0.025 0.030 0.033 0.034 0.031 0.032

0.05 0.056 0.061 0.063 0.062 0.050
df0 0.10 0.094 0.113 0.107 0.101 0.106

0.20 0.185 0.211 0.191 0.211 0.202

0.025 0.308 0.610 0.838 0.941 1.000

0.05 0.419 0.715 0.902 0.969 1.000

df1 0.10 0.551 0.814 0.947 0.987 1.000

0.20 0.693 0.898 0.975 0.993 1.000

0.025 0.218 0.413 0.639 0.796 0.995

0.05 0.314 0.541 0.737 0.870 0.997
df2 0.10 0.425 0.674 0.835 0.925 0.999

0.20 0.570 0.791 0.920 0.966 0.999

0.025 0.197 0.377 0.559 0.710 0.985

0.05 0.291 0.485 0.676 0.814 0.992

df3 0.10 0.407 0.618 0.776 0.881 0.997
0.20 0.539 0.766 0.884 0.941 1.000

Appendix. Proofs

A.1. Proof of Theorem 3.1

From Theorem 1 in Akritas and Van Keilegom (2001) we obtain the follow-

ing expansion of the estimated empirical distribution function,

F̂n,ε(t) =
1

n

n∑

i=1

I{ε̂i ≤ t}

=
1

n

n∑

i=1

I{εi ≤ t} +
1

n

n∑

i=1

ϕ(Xi, Yi, t) + βn(t) + rn(t),
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where, uniformly in t ∈ IR, rn(t) = op(1/
√

n) + op(h
2) = op(1/

√
n) and

ϕ(x, z, t)

= − fε(t)

σ(x)

∫
(I{z ≤ v} − F (v|x))

(
1 + t

v − m(x)

σ(x)

)
dv

= − fε(t)

σ(x)

(
1 − tm(x)

σ(x)

)(∫ ∞

z
(1 − F (v|x)) dv −

∫ z

−∞
F (v|x) dv

)

− fε(t)

σ(x)

t

σ(x)

( ∫ ∞

z
v(1 − F (v|x)) dv −

∫ z

−∞
vF (v|x) dv

)

= −fε(t)

σ(x)

(
1− tm(x)

σ(x)

)
(m(x)−z)− fε(t)t

σ2(x)

(
1

2
(σ2(x)+m2(x))− z2

2

)

= − fε(t)

σ2(x)

(
σ(x)(m(x)−z)−tm2(x)+tm(x)z+

1

2
σ2(x)t+

1

2
m2(x)t− 1

2
tz2

)
.

This gives, for z = m(x) + σ(x)ε,

ϕ(x, z, t) = ϕ(x,m(x) + σ(x)ε, t) = fε(t)
(
ε +

t

2
(ε2 − 1)

)
.

From the proof of Theorem 1 in Akritas and Van Keilegom (2001, p.555), we also

have for the bias term

βn(t) = E
[
fε(t)

∫
m̂(x) − m(x)

σ(x)
dFX(x) + tfε(t)

∫
σ̂(x) − σ(x)

σ(x)
dFX(x)

]

=
h2

2

∫
K(u)u2 du

(
fε(t)

∫
1

σ(x)

(
(mfX)′′(x) − (mf ′′

X)(x)
)

dx

+ tfε(t)

∫
1

2σ2(x)

(
(σ2fX)′′(x) − (σ2f ′′

X)(x) + 2(m′(x))2fX(x)
)

dx
)

+o(h2) + o(
1√
n

).

An analogous expansion for the estimated empirical distribution function

F̂n,−ε(t) of the signed residuals now yields

Ŝn(t)=F̂n,ε(t) − F̂n,−ε(t)

=
1

n

n∑

i=1

(
I{ε̂i≤ t} − I{−ε̂i≤ t}

)

=
1

n

n∑

i=1

(
I{εi≤ t}−I{−εi≤ t}+εi(fε(t)+fε(−t))+(ε2

i −1)
t

2
(fε(t)−fε(−t))

)

+h2B(t) + op(
1√
n

) (17)
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uniformly with respect to t ∈ IR, where B(t) = (βn(t) + βn(−t))/h2 + o(1) is

defined in Theorem 3.1. Note that under the null hypothesis the quadratic term

in εi in (17), which is due to the estimation of the variance function, vanishes.

From the above expansion we obtain

Rn(t) =
√

n
(
Ŝn(t) − Fε(t) + (1 − Fε(−t)) − h2B(t)

)

=
1√
n

n∑

i=1

(
I{εi ≤ t} − Fε(t) − I{−εi ≤ t} + (1 − Fε(−t))

+ εi(fε(t) + fε(−t)) + (ε2
i − 1)

t

2
(fε(t) − fε(−t))

)
+ op(1)

= R̃n(t) + op(1),

uniformly with respect to t ∈ IR, where the last line defines the process R̃n. Now

a straightforward calculation gives

Cov(R̃n(s), R̃n(t))

= E
[(

I{ε1 ≤ s} − Fε(s) − I{−ε1 ≤ s} + F−ε(s)) + ε1(fε(s) + fε(−s))

+ (ε2
1 − 1)

s

2
(fε(s) − fε(−s))

)(
I{ε1 ≤ t} − Fε(t) − I{−ε1 ≤ t}

+ F−ε(t)) + ε1(fε(t) + fε(−t)) + (ε2
1 − 1)

t

2
(fε(t) − fε(−t))

)]
+ o(1)

= G(s, t) + o(1),

where G(s, t) is defined in Theorem 3.1. To prove weak convergence of the

process {Rn(t)}t∈IR we prove weak convergence of {R̃n(t)}t∈R and write R̃n(t) =√
n(Pnht − Pht), where Pn denotes the empirical measure based on ε1, . . . , εn,

that is Pnht = 1
n

∑n
i=1 ht(εi), Pht denotes the expectation E[ht(εi)] and H =

{ht | t ∈ IR} is the class of functions of the form

ht(ε) = I{ε ≤ t} − I{−ε ≤ t} + ε(fε(t) + fε(−t)) + (ε2 − 1)
t

2
(fε(t) − fε(−t)).

To conclude the proof of weak convergence in ℓ∞(H) we show that the class H is

Donsker. Applying Theorem 2.6.8 (and the remark in the corresponding proof) of

Van der Vaart and Wellner (1996, p.142)) we have to verify that H is pointwise

separable, is a VC–class and has an envelope with finite second moment.

Using the assumptions made in Section 2 we have supt∈IR |fε(t)| < ∞,

supt∈IR |tfε(t)| < ∞ and due to this the class H has an envelope of the form

H(ε) = c1 + εc2 + (ε2 − 1)c3, where c1, c2, c3 are constants. This envelope has a

finite second moment by our assumptions.

The function class G = {ht | t ∈ QI} is a countable subclass of H. For each

ε ∈ IR the function t 7→ ht(ε) is right continuous. Hence for a sequence tm ∈ QI
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with tm ց t as m → ∞, we have gm(ε) = htm(ε) → ht(ε) for m → ∞. The

convergence is also valid in the L2–sense:

P ((gm − ht)
2)

≤ 6
(
Fε(t) − Fε(tm) + F−ε(t) − F−ε(tm) + E[ε2

1](fε(t) − fε(tm))2

+ E[ε2
1](fε(−t) − fε(−tm))2 + E[(ε2

1 − 1)2]
1

4
(tfε(t) − tmfε(tm))2

+ E[(ε2
1 − 1)2]

1

4
(tfε(−t) − tmfε(−tm))2

)

−→ 0 for m → ∞.

This proves pointwise seperability of H (see Van der Vaart and Wellner (1996,

p.116)).

Sums of VC–classes of functions are VC–classes again (see Van der Vaart

and Wellner (1996, p.147)). The classes {ε 7→ I{ε ≤ t} | t ∈ IR} and {ε 7→
I{−ε ≤ t} | t ∈ IR} are VC by standard results. Finally, the function class

{ε 7→ ε(fε(t) + fε(−t)) + (ε2 − 1)
t

2
(fε(t) − fε(−t)) | t ∈ IR}

is a subclass of the VC–class {ε 7→ aε + bε2 | a, b ∈ IR}. This yields the VC–

property of H and concludes the proof of the weak convergence of the process

{Rn(t)}t∈IR.

A.2. Proof of Theorem 4.1

We decompose the residuals ε̂∗i defined in (11) as

ε̂ ∗
i = vi

σ(Xi)

σ̂∗(Xi)
εi + vi

m(Xi) − m̂(Xi)

σ̂∗(Xi)
+

m̂(Xi) − m̂∗(Xi)

σ̂∗(Xi)
.

Hence for t ∈ IR, the inequality ε̂ ∗
i ≤ t is equivalent to viεi ≤ td∗n2(Xi) +

vidn1(Xi) + d∗n1(Xi) and viε̂i ≤ t is equivalent to viεi ≤ tdn2(Xi) + vidn1(Xi),

where we introduced the definitions

dn1(x) =
m̂(x) − m(x)

σ(x)
, dn2(x) =

σ̂(x)

σ(x)
,

d∗n1(x) =
m̂∗(x) − m̂(x)

σ(x)
, d∗n2(x) =

σ̂∗(x)

σ(x)
.

In the following we need four auxiliary results which are listed in Proposition

A.1−A.4 and can be proved by similar arguments as given in Akritas and Van

Keilegom (2001). For the sake of brevity we only sketch a proof of Proposition A.1

at the end of the general proof. The verification of Proposition A.2 follows from
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a Taylor expansion as in the proof of Theorem 1 of Akritas and Van Keilegom

(2001), while the proof of Proposition A.3 follows exactly along the lines of the

proof of Lemma 1, Appendix B, in this reference. The proof of Proposition A.4

is done by some straightforward calculations of expectations and variances and

is therefore omitted.

Let (X, ε, v) denote a random variable with the same distribution as (X1, ε1,

v1), but independent from Yn and v1, . . . , vn.

Proposition A.1. Under the assumptions of Theorem 3.1 we have

1

n

n∑

i=1

(
I{ε̂ ∗

i ≤ t} − P (vε ≤ td∗n2(X) + vdn1(X) + d∗n1(X) | Yn)

−I{viε̂i ≤ t} + P (vε ≤ tdn2(X) + vdn1(X) | Yn)
)

= op(
1√
n

)

uniformly in t ∈ IR.

Proposition A.2. Under the assumptions of Theorem 3.1 we have

P (vε≤ td∗n2(X)+vdn1(X)+d∗n1(X) | Yn)−P (vε ≤ tdn2(X)+vdn1(X) | Yn)

−P (−vε≤ td∗n2(X)−vdn1(X)−d∗n1(X) | Yn)+P (−vε≤ tdn2(X)−vdn1(X) | Yn)

= 2gε(t)

∫
m̂∗(x) − m̂(x)

σ(x)
dFX(x) + op(

1√
n

)

uniformly in t ∈ IR, where gε is defined in (10).

Proposition A.3. Under the assumptions of Theorem 3.1 we have

1

n

n∑

i=1

(
I{viε̂i≤ t}−I{viεi≤ t}−P (vε≤ tdn2(X)+vdn1(X) | Yn)+P (vε≤ t)

)

= op(
1√
n

)

uniformly in t ∈ IR.

Proposition A.4. Under the assumptions of Theorem 3.1 we have

∫
m̂∗(x) − m̂(x)

σ(x)
dFX(x) = h2 B(t)

2gε(t)
+

1

n

n∑

j=1

εjvj + op(
1√
n

),

where B(t) is defined in Theorem 4.1.

From Proposition A.1, an analogous result for the empirical distribution

function F̂ ∗
n,−ε(t) = (1/n)

∑n
i=1 I{−ε̂ ∗

i ≤ t}, and Proposition A.2, we have uni-

formly with respect to t ∈ IR (see (17) in the proof of Theorem 3.1 and note that
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gε is symmetric),

Ŝ∗
n(t) − h2B(t)

=
1

n

n∑

i=1

(
I{ε̂ ∗

i ≤ t} − I{−ε̂ ∗
i ≤ t}

)
− h2B(t)

=
1

n

n∑

i=1

(
I{viε̂i ≤ t} − I{−viε̂i ≤ t}

)
+ 2gε(t)

∫
m̂∗(x) − m̂(x)

σ(x)
dFX(x)

−h2B(t) + op(
1√
n

).

Now an application of Proposition A.3, an analogous result for F̂ ∗
n,−ε(t), and

Proposition A.4 yields

Ŝ∗
n(t) − h2B(t)

=
1

n

n∑

i=1

(
I{viεi ≤ t} − I{−viεi ≤ t}

)
+ P (vε ≤ tdn2(X) + vdn1(X) | Yn)

− P (vε ≤ t) − P (−vε ≤ tdn2(X) − vdn1(X) | Yn) + P (−vε ≤ t)

+ 2gε(t)
1

n

n∑

j=1

εjvj + op(
1√
n

)

=
1

n

n∑

i=1

(
I{viεi ≤ t} − I{−viεi ≤ t} + 2gε(t)εivi

)
+ op(

1√
n

)

=
1

n

n∑

i=1

vi

(
I{εi ≤ t} − I{−εi ≤ t} + 2gε(t)εi

)
+ op(

1√
n

),

where in the last two equalities we have used P (vi = 1) = P (vi = −1) = 1/2.

By an application of Markov’s inequality we obtain, conditional on Yn, that the
processes

√
n(Ŝ∗

n(t) − h2B(t)) and

R∗
n(t) =

1√
n

n∑

i=1

vi

(
I{εi ≤ t} − I{−εi ≤ t} + 2gε(t)εi

)
,

are asymptotically equivalent with respect to weak convergence, that is, for all

τ > 0

P
(

sup
t∈IR

∣∣∣
√

n
(
Ŝ∗

n(t) − h2B(t)
)
− R∗

n(t)
∣∣∣ > τ

∣∣∣ Yn

)
= op(1).

To prove weak convergence we rewrite the process R∗
n as follows,

R∗
n(t) =

1√
n

n∑

i=1

viht(εi),



792 NATALIE NEUMEYER AND HOLGER DETTE

where the function class F = {ht(ε) = I{ε ≤ t} − I{−ε ≤ t} + 2gε(t)ε | t ∈
IR} is Donsker. Conditionally on the sample Yn, the finite dimensional dis-

tributions converge to normal distributed random vectors on account of Lin-

deberg’s Central Limit Theorem, for almost every sequence ε1, ε2 . . . (compare

Van der Vaart and Wellner (1996, Lemma 2.9.5, p.181)). To evaluate the covari-

ance of the limit process, calculate the conditional covariance

Cov(R∗
n(s), R∗

n(t) | Yn)

= E[R∗
n(s)R∗

n(t) | Yn] =
1

n

n∑

i=1

hs(εi)ht(εi)

=
1

n

n∑

i=1

(
I{εi ≤ s ∧ t} + I{−εi ≤ s ∧ t} − I{εi ≤ t,−εi ≤ s}

− I{−εi ≤ t, εi ≤ s} + 4gε(s)gε(t)ε
2
i + 2gε(s)εi(I{εi ≤ t}

− I{−εi ≤ t}) + 2gε(t)εi(I{εi ≤ s} − I{−εi ≤ s})
)
.

This conditional covariance converges almost surely to

Fε(s ∧ t) + F−ε(s ∧ t) + Fε((−s) ∧ t) + F−ε((−s) ∧ t) − Fε(t) − F−ε(t)

+4gε(s)gε(t) + 2gε(s)
( ∫ t

−∞
xfε(x) dx −

∫ ∞

−t
xfε(x) dx

)

+2gε(t)
( ∫ s

−∞
xfε(x) dx −

∫ ∞

−s
xfε(x) dx

)

= Cov(S(s), S(t)),

which is the covariance kernel claimed in Theorem 4.1. Conditional weak con-

vergence in probability of the process R∗
n to a Gaussian process with the above

covariance structure now follows from an imitation of the proof of the Condi-

tional Multiplier Central Limit Theorem of Van der Vaart and Wellner (1996,

Thm. 2.9.6, p.182). Note that under the null hypothesis of symmetry the afore-

mentioned theorem is directly applicable, because in this case we have E[ht(ε1)] =

0.

Proof of Proposition A.1

The proof of Proposition A.1 is similar to the proof of Lemma 1, Appendix B,

of Akritas and Van Keilegom (2001) and we only explain the main differences.

The idea is to consider the process quoted in Proposition A.1 as an empirical

process of the form

1

n

n∑

i=1

(
f(vi, εi,Xi) − E[f(vi, εi,Xi)]

)
, (18)
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indexed by a class of functions F given by

F =
{
f(v, ε, x) = I{vε≤ td∗2(x)+vd1(x)+d∗1(x)}−I{vε≤ td2(x) + vd1(x)}

∣∣∣

t ∈ IR, d1, d
∗
1 ∈ C1, d2, d

∗
2 ∈ C2

}
.

The function classes C1 and C2 are defined by

C1 =
{

d : [0, 1] → IR
∣∣∣ d differentiable , ||d||δ ≤ 1

}

C2 =
{

d : [0, 1] → IR
∣∣∣ d differentiable , ||d||δ ≤ 2, inf

x∈[0,1]
d(x) ≥ 1

2

}
,

where δ is defined in Section 2 and

||d||δ = max
{

sup
x∈[0,1]

|d(x)|, sup
x∈[0,1]

|d′(x)|
}

+ sup
x,y∈[0,1]

|d′(x) − d′(y)|
|x − y| δ

2

.

The function class F is Donsker and we have

lim
n→∞

P
(
dn1 ∈ C1 and dn2 ∈ C2

)
= 1

(see the proof of Lemma 1, Appendix B, Akritas and Van Keilegom (2001)).

Similarly, in order to show

lim
n→∞

P
(
d∗n1 ∈ C1 and d∗n2 ∈ C2

)
= 1

we have to verify the conditions,

sup
x∈[0,1]

|m̂∗(x) − m̂(x)| = o(1) a. s., (19)

sup
x∈[0,1]

|σ̂∗(x) − σ̂(x)| = o(1) a. s., (20)

sup
x∈[0,1]

|(m̂∗)′(x) − m̂′(x)| = o(1) a. s., (21)

sup
x∈[0,1]

|(σ̂∗)′(x) − σ̂′(x)| = o(1) a. s., (22)

sup
x,y∈[0,1]

|(m̂∗)′(x) − m̂′(x) − (m̂∗)′(y) + m̂′(y)|
|x − y| δ

2

= o(1) a. s., (23)

sup
x,y∈[0,1]

|(σ̂∗)′(x) − σ̂′(x) − (σ̂∗)′(y) + σ̂′(y)|
|x − y| δ

2

= o(1) a. s.. (24)

The condition (19) is valid due to the following decomposition

m̂∗(x) − m̂(x) =
1

f̂X(x)

1

nh

n∑

i=1

K
(x−Xi

h

)
(Y ∗

i −m̂(x)) = M1(x)+· · ·+M4(x),
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where f̂X(x) = (1/(nh))
∑n

i=1 K((x − Xi)/h) is the kernel estimator for the de-

sign density fX and

M1(x) = m(x) − m̂(x),

M2(x) =
1

f̂X(x)

1

nh

n∑

i=1

K
(x − Xi

h

)
(m(Xi) + σ(Xi)viεi − m(x)),

M3(x) =
1

f̂X(x)

1

nh

n∑

i=1

K
(x − Xi

h

)
(m̂(Xi) − m(Xi)),

M4(x) =
1

f̂X(x)

1

nh

n∑

i=1

K
(x − Xi

h

)
vi(m̂(Xi) − m(Xi)).

We directly obtain supx∈[0,1] |M1(x)| = o(1) and supx∈[0,1] |M2(x)| = o(1), almost

surely, because M2(x) is equivalent to m̃(x)−m(x) where m̃(x) is the Nadaraya–

Watson estimator for m(x) in the regression model Ỹi = m(Xi) + σ(Xi)viεi. We

straightforwardly estimate

sup
x∈[0,1]

|M3(x)| ≤ sup
x∈[0,1]

|m̂(x) − m(x)| = o(1)

almost surely and the same estimation is valid for supx∈[0,1] |M4(x)|. Conditions

(20)−(24) can be shown in a similar manner.

Now the result of Proposition A.1 follows analogously to the proof of Lemma

1 of Akritas and Van Keilegom (2001) with an application of Corollary 2.3.12 of

Van der Vaart and Wellner (1996, p.115) and Var (f(vi, εi,Xi)) → 0 for

f(vi, εi,Xi) = I{viεi ≤ td∗n2(Xi) + vidn1(Xi) + d∗n1(Xi)}
−I{viεi ≤ tdn2(Xi) + vid

∗
n1(Xi)}.
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