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Abstract: In this article, we assume that categorical data are distributed according
to a multinomial distribution whose probabilities follow a loglinear model. The
inference problem we consider is that of hypothesis testing in a loglinear-model set-
ting. The null hypothesis is a composite hypothesis nested within the alternative.
Test statistics are chosen from the general class of φ-divergence statistics. This
article collects together the operating characteristics of the hypothesis test based
on both asymptotic (using large-sample theory) and finite-sample (using a designed
simulation study) results. Members of the class of power divergence statistics are
compared, and it is found that the Cressie-Read statistic offers an attractive alter-
native to the Pearson-based and the likelihood ratio-based test statistics, in terms
of both exact and asymptotic size and power.
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1. Introduction

Categorical data analysis is an essential tool when the data are nominal.
Even when the data are ordinal, it sometimes makes sense to categorize them
into a discrete number k > 1, of classes (e.g., for stratification purposes or for
assessing goodness of fit to a parametric family of distributions). In this article,
we consider statistical models for categorical data whose parameter space Θ has
dimension t < k − 1.

Let Y1, . . . , Yn be a sample of size n ≥ 1, with realizations from X ={1, . . . , k}
and independent and identically distributed (i.i.d.) according to a probability
distribution P (θ0). This distribution is assumed to be unknown, but belong-
ing to a known family, P ={P (θ) = (p1(θ), . . . , pk(θ))T : θ ∈ Θ}, of distri-
butions on X with Θ ⊆ Rt, t < k − 1. Thus the true value θ0 of parameter
θ = (θ1, . . . , θt)T ∈ Θ ⊆ Rt is fixed but unknown. We denote P = (p1, . . . , pk)T

and P̂ = (p̂1, . . . , p̂k)T , with

p̂j =
Xj

n
and Xj =

n∑
i=1

I{j}(Yi), j = 1, . . . , k. (1)
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Here and in the sequel,
“T ”

denotes vector or matrix transpose. The statistic
(X1, . . . ,Xk) is obviously sufficient for the statistical model under consideration
and is multinomially distributed:

P (X1 = x1, . . . ,Xk = xk) =
n!

x1! · · · xk!p1(θ)
x1 × · · · × pk(θ)xk , (2)

for integers x1, . . . , xk ≥ 0 such that x1 + · · · + xk = n.

A class of models often used in (2) is the family of loglinear models:

pu(θ) = exp
(
wTu θ

)
/

k∑
v=1

exp
(
wTv θ

)
; u = 1, . . . , k, (3)

where the k × t matrix W = (w1, . . . , wk)T is assumed to have full column rank
t < k−1 and columns linearly independent of the k×1 column vector (1, . . . , 1)T .
This will be the model we consider for the theoretical results in Sections 2 and
3, and for the simulation in Section 4.

The problem that has motivated our research involves a nested sequence of
hypotheses,

Hl : P = P (θ); θ ∈ Θl; l = 1, . . . ,m, m ≤ t < k − 1, (4)

where Θm ⊂ Θm−1 ⊂ · · · ⊂ Θ1 ≡ Θ ⊆ Rt; t < k − 1 and dim(Θl) = dl;
l = 1, . . . ,m, with

dm < dm−1 < · · · < d1 = t. (5)

In this framework, there is an integer m∗ (1 ≤ m∗ ≤ m) for which Hm∗ is true
but Hm∗+1 is not true. A common strategy for making inference on m∗ (e.g.,
Read and Cressie (1988), p.42) is to test successively,

HNull : Hl+1 against HAlt : Hl; l = 1, . . . ,m− 1, (6)

where we continue to test as long as the null hypothesis is accepted, and we infer
m∗ to be the first l for which Hl+1 is rejected as a null hypothesis. The full
operating characteristics of this sequence of tests of nested hypotheses are not
known. Our goal in this paper is to give comparative size and power results for
individual tests in the sequence based on a general class of φ−divergence test
statistics.

Since the parameter values in {Θl : l = 1, . . . ,m} are generally unknown,
most tests require their estimation. For example, if

∑k
j=1 p̂j log pj(θ) is almost

surely (a.s.) maximized over Θl at some θ̂ (l), then θ̂ (l) is the point maximum
likelihood estimator (MLE). The MLE can equivalently be defined by the condi-
tion,

θ̂ (l) = arg min
θ∈Θl

D
(
P̂ , P (θ)

)
a.s., (7)
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where D(P,Q) =
∑k
j=1 pj log

pj

qj
is the Kullback-Leibler divergence and P =

(p1, . . . , pk)T , Q = (q1, . . . , qk)T . The definition (7) hints at a much more general
inference framework based on divergence measures, which was investigated by
Cressie and Pardo (2000). In the next several paragraphs, we give the essential
details of the framework for estimation and hypothesis testing there.

Consider the φ−divergence defined by Csiszár (1963) and Ali and Silvey
(1966):

Dφ(P,Q) ≡
k∑
j=1

qjφ

(
pj
qj

)
;φ ∈ Φ∗, (8)

where Φ∗ is the class of all convex functions φ(x), x > 0, such that at x = 1,
φ(1) = 0, φ′′(1) > 0, and at x = 0, 0φ(0/0) = 0 and 0φ(p/0) = limu→∞ φ(u)/u.
For every φ ∈ Φ∗ that is differentiable at x = 1, the function ψ(x) ≡ φ(x) −
φ′(1)(x − 1) also belongs to Φ∗. Then we have Dψ(P,Q) = Dφ(P,Q), and ψ has
the additional property that ψ′(1) = 0. Because the two divergence measures are
equivalent, we can consider the set Φ∗ to be equivalent to the set Φ ≡ Φ∗ ∩ {φ :
φ′(1) = 0}. In what follows, we give our theoretical results for φ ∈ Φ, but we
often apply them to choices of functions in Φ∗.

For example, an important family of φ−divergences in statistical problems
is the power-divergence family:

φ(λ)(x) = (λ(λ+ 1))−1(xλ+1 − x); λ �= 0, λ �= −1,

φ(0)(x) = limλ→0 φ(λ)(x), φ(−1)(x) = limλ→−1 φ(λ)(x),
(9)

introduced and studied by Cressie and Read (1984). We observe that the func-
tions φ(λ)(x) and ψ(λ)(x) ≡ φ(λ)(x) − (x − 1)(λ + 1)−1 define the same diver-
gence measure. In the following, we denote the power-divergence measures by
Iλ(P,Q) ≡ Dφ(λ)

(P,Q) = Dψ(λ)
(P,Q).

Cressie and Read (1984) defined the minimum power-divergence estimator
of θ ∈ Θ ⊆ Rt as

θ̂(λ) ≡ argmin
θ∈Θ

Iλ
(
P̂ , P (θ)

)
a.s., (10)

and they studied its properties. Notice that θ̂(0) is the MLE, as observed at (7).
Other estimators (less well known than the MLE) that are members of the family
of minimum power-divergence estimators are the minimum chi-squared estima-
tor (Neyman (1949)) for λ = 1; the minimum modified chi-squared estimator
(Neyman (1949)) for λ = −2; the modified MLE or minimum discrimination
information estimator (Kullback (1985)) for λ = −1; the minimum Matusita dis-
tance (or Hellinger distance) estimator (Matusita (1954)) for λ = −1/2; and the
minimum Cressie-Read distance estimator (Cressie and Read (1984)) for λ = 2/3.
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Later, Morales, Pardo and Vajda (1995) considered the minimum φ-diver-
gence estimator

θ̂φ ≡ argmin
θ∈Θ

Dφ

(
P̂ , P (θ)

)
a.s., (11)

and studied its properties. Furthermore, they showed that to test HNull : P =
P (θ); θ ∈ Θ ⊆ Rt, a natural (suitably normalized) test statistic, is

Qφ1,φ2 ≡ 2n
φ′′1(1)

Dφ1

(
P̂ , P

(
θ̂φ2

))
; φ1, φ2 ∈ Φ,

with HNull rejected if this statistic is too large.
Cressie and Pardo (2000, 2002) extended this framework to test HNull : Hl+1

against HAlt : Hl; l = 1, ...,m − 1, given by (4). To test Hl+1 against Hl, they
suggested using the test statistic

Q
(l)
φ1,φ2

=
2n
φ′′1(1)

Dφ1

(
P
(
θ̂
(l)
φ2

)
, P
(
θ̂
(l+1)
φ2

))
; φ1, φ2 ∈ Φ, (12)

where θ̂ (l+1)φ2
and θ̂ (l)φ2

are defined by (11), and the null hypothesis HNull : Hl+1

is rejected if Q(l)φ1,φ2
is too large.

In the rest of this section and in the simulations of Section 4, we choose
φ2 ≡ φ(0), which corresponds to estimation of unknown parameters by maximum

likelihood. Notice that Q(l)φ1,φ2
is one of a number of possible test statistics chosen

by Cressie and Pardo (2000); (12) seems the most natural in this context because
it generalizes the test statistic Qφ1,φ2, which in turn generalizes the log-likelihood-
ratio test.

The two most commonly used test statistics in (12) are the Pearson statis-
tic, corresponding to φ1 ≡ φ(1) given by (9), and the log-likelihood-ratio statistic,
corresponding to φ1 ≡ φ(0) given by (9) (e.g., Christensen (1997, p.338)). The
asymptotic null distribution of both of these statistics is a central chi-squared
distribution with dl−dl+1 degrees of freedom. Regarding the alternative, Haber-
man (1974) was the first to study the asymptotic distribution of the two previous
statistics under contiguous alternative hypotheses (Section 3), establishing that
the asymptotic distribution is non-centrally chi-squared distributed with dl−dl+1
degrees of freedom. Oler (1985) presented a systematic study of the contiguous
alternative hypothesis in multinomial populations, obtaining as a particular case
the asymptotic distribution for the loglinear models. Through simulations, she
also studied how closely the noncentral chi-squared distributions agree with the
exact sampling distributions. Fenech and Westfall (1988) presented an interesting
analytic study of the noncentrality parameter in the case of loglinear models.

In what is to follow, we use the general inference framework based on diver-
gence measures to make a coherent study of testing a composite null hypothesis
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against a composite alternative hypothesis, where the alternative can be con-
tiguous or not. One of our goals is to determine which divergence measures have
better size and power properties in small samples under different types of alterna-
tives. In Section 2, we review some of the results obtained by Cressie and Pardo
(2000) under the null hypothesis. In Section 3, we generalize the results of Oler
(1985) for contiguous alternatives, to tests based on the φ−divergence statistic
(12). A sequence of loglinear models is the basis of a simulation given in Section
4. There, we use φ1 = φ(λ) and φ2 = φ(0) in tests based on (12), and compare
various values of λ (−2,−1,−1/2, 0, 2/3, 1, 2) for small to moderate values of n.

2. A Review of Distributional Properties Under the Null Hypothesis

For testing the nested hypotheses {Hl : l = 1, . . . ,m} given by (4), we test
HNull : Hl+1 against HAlt : Hl, using test statistic Q(l)φ1,φ2

given by (12); if it is

too large, HNull is rejected. When Q(l)φ1,φ2
> c, we reject HNull in (6), where c is

specified so that the size of the test is α :

Pr
(
Q
(l)
φ1,φ2

> c | Hl+1

)
= α; α ∈ (0, 1). (13)

Cressie and Pardo (2000) show that under (2), (3), (4), and HNull : Hl+1, the
test statistic Q(l)φ1,φ2

converges in distribution to a chi-squared distribution with
dl − dl+1 degrees of freedom (χ2dl−dl+1

); l = 1, . . . ,m− 1. Thus

c = χ2dl−dl+1
(1 − α), (14)

where Pr(χ2f ≤ χ2f (p)) = p. Notice that when φ1 = φ2 = φ(0), given by (9), we
obtain the usual likelihood-ratio test, and that when φ1 = φ(1) and φ2 = φ(0), we
obtain the Pearson test statistic (e.g., Agresti (1990), Ch.6). It should be noted
at this point that the asymptotic distribution theory of Q(l)φ(λ),φ(0)

under the null
hypothesis, due to Cressie and Pardo (2000), can be generalized to a result under
a sequence of contiguous alternative hypotheses. This theoretical result is proved
in Section 3 and its accuracy is assessed in Section 4.

The choice of (14) in (13) only guarantees an asymptotic size-α test. In the
case of the Pearson and loglikelihood ratio statistics, some corrections to (14)
have been proposed. These have been discussed by Read and Cressie (1988),
Ch.5, in the context of power-divergence statistics for testing goodness-of-fit.
Here we use (14) but ask, in the finite-sample simulations given in Section 4, for
what choices of λ in Q(l)φ1,φ2

is the relation (13) most accurately attained?
The asymptotic chi-squared approximation, c = χ2dl−dl+1

(1 − α), is checked
for a sequence of loglinear models in the simulation given in Section 4. We give
a small illustration of those results now. Figure 1 shows departures of the exact
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size from the nominal size of α = 0.05 for one particular choice (specified in
Section 4) of Hl+1 and Hl, for various choices of λ in φ1 = φ(λ), and for small
to large sample sizes (n = 15, 20, 25, 35, 50, 100, 200). Figure 1a represents
nonpositive choices of λ, and Figure 1b represents nonnegative choices of λ. The
positive values of λ perform the best.

Figure 1a. (Exact size−Nominal size of
0.05) as a function of x = logn. Shown
are λ = −2 (dashed line), λ = −1 (dot-
ted line), λ = −1/2 (dash-dotted line),
and λ = 0 (solid line).

Figure 1b. (Exact size−Nominal size of
0.05) as a function of x = logn. Shown
are λ = 0 (solid line), λ = 2/3 (dashed
line), λ = 1 (dotted line), and λ = 2
(dash-dotted line).

To test the nested sequence of hypotheses {Hl : l = 1, . . . ,m} referred to in
Section 1, we need an asymptotic independence result for the sequence of test
statistics Q(1)φ1,φ2

, Q
(2)
φ1,φ2

, . . . , Q
(m∗)
φ1,φ2

, where m∗ is the integer 1 ≤ m∗ ≤ m for
which Hm∗ is true but Hm∗+1 is not true. This result was not given by Cressie
and Pardo (2000); we give it in the theorem below.

Theorem 1. Suppose that data (X1, . . . ,Xk) are multinomially distributed ac-
cording to the loglinear model (3). We first test, HNull : Hl against HAlt : Hl−1,
followed by HNull : Hl+1 against HAlt : Hl. Then, under the hypothesis Hl, the
statistics Q(l−1)φ1,φ2

and Q
(l)
φ1,φ2

are asymptotically independent and chi-squared dis-
tributed on dl−1 − dl and dl − dl+1 degrees of freedom, respectively.

Proof. See the Appendix.

3. Contiguous Alternative Hypotheses

In this section, we derive results for testing one of the HNull, HAlt pairs.
Our ultimate goal in this paper is to compare various φ−divergence statistics
and give recommendations for those that are the most accurate and powerful.
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The expectation is that a superior test statistic for individual tests in the sequence
of nested hypotheses, leads to superior inference for (6) and its associated m∗

(e.g., Oler (1985); Fenech and Westfall (1988); Christensen (1977)). However, to
establish this is beyond the scope of this paper.

In general, theoretical results for the test statistic Q(l)φ1,φ2
under alternative

hypotheses are not easy to obtain. An exception to this is when there is a
contiguous sequence of alternatives that approach the null hypothesis Hl+1 at
the rate of O(n−1/2). In Section 1, we reviewed early contributions of Haberman
(1974), Oler (1985), and Fenech and Westfall (1988) to this theory. In this
section, we generalize their results to tests based on the φ− divergence statistic
Q
(l)
φ1,φ2

given by (12); the results below mirror those of Section 2, but under a
sequence of contiguous alternatives.

Consider the multinomial probability vector

Pn(θ) ≡ P (θ) + s/
√
n, θ ∈ Θl+1, n ≥ n0 > 0, (15)

where s ≡ (s1, . . . , sk)T is a fixed k×1 vector such that
∑k
j=1 sj = 0, and n is the

total-count parameter of the multinomial distribution. As n→ ∞, the sequence
of multinomial probabilities {Pn(θ)}n∈N converges to a multinomial probability
in Hl+1 at the rate of O(n−1/2). We call

Hl+1,n : P = Pn(θ) = P (θ) + s/
√
n, θ ∈ Θl+1, n ≥ n0 > 0, (16)

a sequence of contiguous alternative hypotheses, here contiguous to the null hy-
pothesis Hl+1.

Now consider testing HNull : Hl+1 against HAlt : Hl+1,n, using the test
statistic Q(l)φ1,φ2

given by (12). The power of this test is,

π(l)n ≡ Pr
(
Q
(l)
φ1,φ2

> c |Hl+1,n

)
. (17)

In what is to follow, we show that under the alternative Hl+1,n, and as n → ∞,

Q
(l)
φ1,φ2

converges in distribution to a non-central chi-squared random variable
with non-centrality parameter µ, where µ is given in Theorem 2, and dl − dl+1
degrees of freedom (χ2dl−dl+1,µ

). Consequently, as n→ ∞,

π(l)n → Pr
(
χ2dl−dl+1,µ

> c
)
. (18)

One way to prove these results is to use Le Cam’s lemmas, in particular the
third lemma (Hájek and Sidák (1967)). However, in the case of multinomial
sampling, the results can be proved directly. The technique of the proof has
already been used in Menéndez, Morales, Pardo and Zografos (1999), Pardo,
Pardo and Zografos (2001), and for loglinear models by Oler (1985).
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In Remark 1 of Cressie and Pardo (2000), it was established that the asymp-
totic expansion of the minimum φ−divergence estimator about θ0 ∈ Θl+1 is given
by

θ̂
(l+1)
φ = θ0 +

(
W T
(l+1)ΣP (θ0)W(l+1)

)−1
W T
(l+1)ΣP (θ0) diag(P (θ0)−1)

(
P̂ − P (θ0)

)
+o
(∥∥∥P̂ − P (θ0)

∥∥∥) , (19)

where Wl+1 is the loglinear-model matrix of explanatory variables under the null
hypothesis Hl+1, and ΣP (θ0) = diagP (θ0)− P (θ0)P (θ0)T .

Under the hypothesis given in (16), we have
√
n(P̂ − P (θ0)) =

√
n(P̂ −

Pn(θ0)) +s, and hence
√
n(P̂ − P (θ0))

L−→
n→∞N(s,ΣP (θ0)), so o(‖P̂ − P (θ0)‖) =

o(Op(n−1/2)) = op(n−1/2). Therefore, we have established that under the con-
tiguous hypothesis given in (16), and for θ0 ∈ Θl+1,

θ̂
(l+1)
φ = θ0 + (W T

(l+1)ΣP (θ0)W(l+1))
−1W T

(l+1)ΣP (θ0) diag(P (θ0)−1)(P̂ − P (θ0))

+op(n−1/2). (20)

This result will be important in the following theorem.

Theorem 2. Suppose that (X1, . . . ,Xk) is multinomially distributed accord-
ing to (2) and (3). The asymptotic distribution of the statistic Q

(l)
φ1,φ2

, un-
der the contiguous alternative hypotheses (16), is chi-squared with dl − dl+1 de-
grees of freedom and non-centrality parameter µ = sT diag(P (θ0)−1/2)(A(l) −
A(l+1)) diag(P (θ0)−1/2)s, where s = (s1, . . . , sk)T is defined in (16) and satisfies
k∑
i=1

si = 0, and

A(i) = diag(P (θ0)−1/2)ΣP (θ0)W(i)(W T
(i)ΣP (θ0)W(i))−1W T

(i)ΣP (θ0) diag(P (θ0)−1/2);

i = l, l + 1.

Proof. By Theorem 3 in Cressie and Pardo (2000), we know that

Q
(l)
φ1,φ2

= ZtZ + n× o

(∥∥∥P (θ̂ (l+1)φ2

)
− P (θ0)

∥∥∥2 +
∥∥∥P (θ̂ (l)φ2

)
− P (θ0)

∥∥∥2) ,
where Z =

√
n diag(P (θ0)−1/2)(P (θ̂ (l+1)φ2

) − P (θ̂ (l)φ2
)). But P (θ̂ (l+1)φ2

) − P (θ0) =

P (θ̂ (l+1)φ2
)−Pn(θ0)+Pn(θ0)−P (θ0), and

√
n(P (θ̂ (l+1)φ2

−P (θ0)) =
√
n(P (θ̂ (l+1)φ2

)−
Pn(θ0)) + s. Now it is clear that

√
n(P (θ̂ (l+1)φ2

)− P (θ0)) =
√
n
∂Pn(θ0)
∂θ

(
θ̂
(l+1)
φ2

− θ0
)
+ s+ op(1),
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and by (20),
√
n∂Pn(θ0)

∂θ (θ̂ (l+1)φ2
− θ0) = Op(1). Then we have P (θ̂ (l+1)φ2

)−P (θ0) =

Op(n−1/2), and ‖P (θ̂ (l+1)φ2
) − P (θ0)‖2 = Op(n−1). In a similar way, it can be

obtained that ‖P (θ̂ (l)φ2
)− P (θ0)‖2 = Op(n−1). Then Q(l)φ1,φ2

= ZTZ + op(1).
From (20), we have, under the contiguous alternative hypotheses (16), that

Z =
√
n(A(l+1) −A(l)) diag

(
P (θ0)−1/2

) (
P̂ − P (θ0)

)
+ op(1).

Now
√
n(P̂−P (θ0)) =

√
n(P̂−Pn(θ0))+s, so that

√
n(P̂−P (θ0))

L−→
n→∞N(s,ΣP (θ0)),

and hence Z L−→
n→∞N(δ,Σ∗), where δ = (A(l+1) −A(l)) diag(P (θ0)−1/2)s and

Σ∗ = (A(l+1) −A(l)) diag
(
P (θ0)−1/2

)
ΣP (θ0) diag

(
P (θ0)−1/2

)
(A(l+1) −A(l))

= (A(l+1) −A(l))
(
I −

√
P (θ0)

√
P (θ0)T

)
(A(l+1) −A(l)).

Using the results in the proof of Theorem 1 (Appendix), it can be shown that
Σ∗ = (A(l) −A(l+1)), and it is a projection of rank (dl − dl+1).

If we establish that Σ∗δ = δ, the theorem follows from the lemma on p.63
of Ferguson (1996), because in this case the non-centrality parameter is given by
µ = δT δ.

Applying (i) and (ii) given in the proof of Theorem 1 (Appendix), we have

Σ∗δ = (A(l) −A(l+1))δ = A(l)δ −A(l+1)δ

= A(l)(A(l+1)−A(l)) diag
(
P (θ0)−1/2

)
s−A(l+1)(A(l+1)−A(l)) diag

(
P (θ0)−1/2

)
s

= δ.

Then the non-centrality parameter is µ = δT δ = sT diag(P (θ0)−1/2)(A(l) −
A(l+1)) diag(P (θ0)−1/2)s.

Remark 1. Theorem 2 can be used to obtain an approximation to the power
function of (6), as follows. Write P (θ(l)) = P (θ(l+1))+ 1√

n
(
√
n(P (θ(l))−P (θ(l+1)))),

and define Pn(θ(l)) ≡ P (θ(l+1))+ 1√
n
s, where s = (

√
n(P (θ(l))−P (θ(l+1)))). Then

substitute s into the definition of µ, and finally µ into the right side of (18).

The asymptotic non-central chi-squared approximation for power is checked
for finite samples in the simulation given in Section 4. Figure 2 shows departures
of the exact power from the asymptotic power for one particular choice (specified
in Section 4) of Hl+1 and Hl, for various choices of λ in φ1 = φ(λ), and for small
to large sample sizes (n = 15, 20, 25, 35, 50, 100, 200). Figure 2a represents
nonpositive choices of λ and Figure 2b represents nonnegative choices of λ. These
figures need to be interpreted in light of associated exact sizes; see Section 4.
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However, it is immediately apparent that from an asymptotic-approximation
point of view, λ = 2/3 seems to perform the best, particularly for small and
moderate sample sizes.

Figure 2a. (Exact power−Asymptotic
power) as a function of x = log n. Shown
are λ = −2 (dashed line), λ = −1 (dot-
ted line), λ = −1/2 (dash-dotted line),
and λ = 0 (solid line).

Figure 2b. (Exact power−Asymptotic
power) as a function of x = logn. Shown
are λ = 0 (solid line), λ = 2/3 (dashed
line), λ = 1 (dotted line), and λ = 2
(dash-dotted line).

Remark 2. If we consider the statistic Q(l)φ1,φ2
with φ2(x) = ψ(0)(x) = x log x−

x + 1 and φ1(x) = ψ(1)(x) = (1 − x)2, we obtain the classical Pearson statistic
for testing loglinear models (e.g., Christensen (1997, p.338)). If we consider the
statistic Q(l)φ1,φ2

with φ2(x) = ψ(0)(x) = x log x − x + 1 and φ1(x) = ψ(0)(x) =
x log x−x+1, we obtain the classical likelihood ratio statistic for testing loglinear
models (e.g., Christensen (1997, p.338)). In this latter case, the result given by
Theorem 2 was obtained for the first time by Oler (1985).

4. Simulation Study

We now describe briefly the finite-sample simulation study from which Fig-
ures 1 and 2 were obtained, and give new results that compare the powers of
tests based on {Q(l)φ(λ),φ(0)

: λ = −2, −1, −1/2, 0, 2/3, 1, 2}. Further details of
the study can be found in an Ohio State University Technical Report by Cressie,
Pardo, and Pardo (2001).

Consider a 2×2×2 contingency table, so k = 8. We simulate data X1, . . . ,Xk

from a multinomial distribution with sample size n and probability vector P =
(p1, . . . , pk)T , where n and P are specified. The motivation for our simulation
study comes from a similar one carried out by Oler (1985). For the moment, fix l
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and consider the statistic Q(l)φ(λ),φ(0)
for testing HNull : Hl+1 against HAlt : Hl+1,n,

and let P0 ∈ HNull and P1,n ∈ HAlt, where P1,n is subscripted with n because its
entries may depend on n. The essence of our simulation study is to obtain the
exact probabilities,

α
(l)
n ≡ Pr

(
Q
(l)
φ(λ),φ(0)

> c | P0
)

π
(l)
n ≡ Pr

(
Q
(l)
φ(λ),φ(0)

> c | P1,n
)
.

(21)

In fact, α(l)n and π
(l)
n are estimated using N = 100, 000 simulations from the

multinomial sampling schemes (n, P0) and (n, P1,n), respectively. For a given
P0 (see below), the various choices of n and P1,n represent the design of our
simulation study. We choose n = 15, 20, 25, 35, 50, 100, 200, to represent small,
moderate, and large sample sizes.

We simulate multinomial random vectors (X1, . . . ,Xk) and compute proba-
bilities α(l)n for (n, P0) and π(l)n for (n, P1,n). To see what happens for contiguous
alternatives, we fix P1 ∈ Hl (see below) and define

P ∗
1,n ≡ P0 + (25/n)1/2(P1 − P0). (22)

Notice that P ∗
1,25 = P1 and, as n increases, P ∗

1,n converges to P0 at the rate
n−1/2; that is, {P ∗

1,n} is a sequence of contiguous alternatives. Our design for
the simulation study is to choose (n, P1,n) as both a fixed and a contiguous
alternative, which we now give.
Contiguous alternatives: {(n, P ∗

1,n) : n = 15, 20, 25, 35, 50, 100, 200}, where P ∗
1,n

is given by (22) and P1 is specified below.
Fixed alternatives: {(n, P1) : n = 15, 20, 25, 35, 50, 100, 200}, where P1 is specified
below.

Notice that for n < 25, the contiguous alternatives are further from HNull

than are the fixed alternatives and that the two sequences share the alternative
(25, P1). These choices allow reasonable coverage of the space of alternatives.

In the simulation study, we considered the same nested sequence of loglinear
models considered by Oler (1985), and we chose what Oler called a “moderate
value” for each main effect and a “small value” for the interactions. The four
hypotheses we considered were:

H1 : pijk(θ) = exp{u+θ1(i)+θ2(j)+θ3(k)+θ12(ij)+θ13(ik)+θ23(jk)}; i, j, k = 1, 2

H2 : pijk(θ) = exp{u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik)}; i, j, k = 1, 2

H3 : pijk(θ) = exp{u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij)}; i, j, k = 1, 2

H4 : pijk(θ) = exp{u+ θ1(i) + θ2(j) + θ3(k)}; i, j, k = 1, 2,
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where exp(θ1(1)) = exp(θ2(1)) = exp(θ3(1)) = 5/6 and exp(θ12(11)) = exp(θ13(11))
= exp(θ23(11)) = 9/10. Here, exp(−u) is the normalizing constant and the sub-
scripted θ−terms add to zero over each of their indices.

In Section 2, we showed Figure 1 (Exact size − Nominal size of 0.05) for
HNull : H4, using the test statistic Q(3)φ(λ),φ(0) and c = χ21(0.95). In Section 3, we
showed Figure 2 (Exact power − Asymptotic power) for HNull : P0 ∈ H4 and
HAlt : P ∗

1,n, with P1 ∈ H3, using the test statistic Q(3)φ(λ),φ(0) and c = χ21(0.95).
In the simulation study, we compare members of the power-divergence family

of test statistics. We use two basic criteria for a good performance. The first
is good exact power and size for small to moderate sample sizes. For this, we
consider HNull : P0 ∈ Hl+1 versus HAlt : (n, P1), where P1 ∈ Hl and n = 15,
20, 25, 35; l = 1, 2, 3. The second is good agreement of exact and asymptotic
probabilities for small to moderate sample sizes. For this, we consider HNull :
P0 ∈ Hl+1 versus HAlt : (n, P ∗

1,n), where P ∗
1,n is given by (22), P1 ∈ Hl, and

n = 15, 20, 25, 35; l = 1, 2, 3. The complete results of the simulation study are
given in Cressie, Pardo and Pardo (2001).

We have chosen to concentrate below on tests associated with HNull : P0 ∈
H3, to illustrate the type of results obtained; see Table 1.

Table 1. Entries show results from the simulation study as a function of
multinomial sample-size parameter (n) and power-divergence parameter (λ).
The notation (a) corresponds to (Exact size) for testing HNull : P0 ∈ H3.

The notation (b) corresponds to (Exact power-Asymptotic power) for testing
HNull : P0 ∈ H3 versus HAlt : P ∗

1,n, where P1 ∈ H2. The notation (c)
corresponds to (Exact power-Exact size) for testing HNull : P0 ∈ H3 versus
HAlt : P1 ∈ H2.

λ

n −2 −1 −1/2 0 2/3 1 2
15 0.15232 0.14335 0.10416 0.08450 0.05575 0.04479 0.04620
20 0.11111 0.08752 0.07375 0.06645 0.06017 0.05290 0.05661

(a)
25 0.08060 0.06277 0.06065 0.05690 0.05005 0.04743 0.04727
35 0.07112 0.06039 0.05498 0.05217 0.04961 0.04633 0.04658
15 0.10853 0.09573 0.06041 0.03651 -.00233 -.01807 -.01643
20 0.06595 0.03407 0.02055 0.01431 0.00659 -.00399 -.00203

(b)
25 0.04227 0.02056 0.01811 0.01385 -.00096 -.00519 -.00652
35 0.02614 0.00575 0.00199 -.00178 -.00741 -.01211 -.01189
15 0.01810 0.01672 0.01978 0.01629 0.01354 0.01152 0.01113
20 0.02771 0.02043 0.02361 0.02418 0.02313 0.02004 0.01807

(c)
25 0.04384 0.03996 0.03963 0.03912 0.03116 0.02955 0.02838
35 0.05895 0.05198 0.05361 0.05031 0.04721 0.04557 0.04557
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First of all, we study the closeness of the exact size to the nominal size
α = 0.05. Following Dale (1986), consider the inequality,

|logit(1 − α(l)n ) − logit(1 − α)| ≤ e, (23)

where logit(p) ≡ ln(p/(1−p)). The two probabilities are considered to be “close”
if they satisfy (23) with e = 0.35 and “fairly close” if they satisfy (23) with
e = 0.7. Note that for α = 0.05, e = 0.35 corresponds to α(l)n ∈ [0.0357, 0.0695],
and e = 0.7 corresponds to α

(l)
n ∈ [0.0254, 0.0959]. From Table 1, the statistics

that satisfy (23) for e = 0.35 are those corresponding to λ = 2/3, 1, 2. For
e = 0.7, only one extra statistic, that corresponding to λ = 0, is added.

Now consider the comparison of exact power and asymptotic power under a
contiguous alternative. From Table 1, the test statistic corresponding to λ = 2/3
has the best behavior. We also consider the difference between exact power
and exact size as a measure of how quickly the power curve increases from its
probability of type I error. From Table 1, the increase in power is a little more
for tests based on negative λ than for positive λ. This should be tempered with
the fact that for negative λ the exact size is considered not even “fairly close”.
This trade-off between size behavior and power behavior is a classical problem
in hypothesis testing.

The results given in Table 1 are illustrative of what happens for the null
hypotheses H2 and H4. Due to space considerations, we cannot present them all
here, however the interested reader can consult Figures 3, 4, 5, and 6 in Cressie,
Pardo and Pardo (2001) for the complete results.

In what follows, we consider only the statistics that satisfy (23) with e = 0.7,
and to discriminate between them we calculate

g1(λ) ≡
∣∣∣AP (l)i,n(λ) − SEP

(l)
i,n(λ)

∣∣∣ and g2(λ) ≡
(
SEP

(l)
i,n(λ) − STS

(l)
i,n(λ)

)−1
,

where AP (l)i,n(λ) is the asymptotic power, SEP (l)i,n(λ) is the simulated exact power,

and STS(l)i,n(λ) is the simulated test size of the statistic Q(l)φ(λ),φ(0); l = 1, 2, 3, under
the alternative i = F (fixed), C(contiguous), and n = 15, 20, 25, 35. Then, for a
given l, we consider a statistic Q(l)φ(λ1),φ(0)

to be better than a statistic Q(l)φ(λ2),φ(0)

iff
g1(λ1) < g1(λ2) and g2(λ1) < g2(λ2). (24)

In Figure 3, we plot y = g2(λ) versus x = g1(λ), for l = 2; from (24), we look for
values of λ that are as close to (0, 0) as possible in the (x, y) plane.

The points (g1(λ), g2(λ)) far away from (0, 0) are those corresponding to
smallest sample size n = 15, as expected. For this sample size, Table 1 shows
that the exact size of the tests based on Q(l)φ(0),φ(0) is too large in relation to that
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of Q(l)φ(λ),φ(0), for λ = 2/3, 1, 2. For n = 15, the points (g1(2/3), g2(2/3)) are
closer to (0, 0) than the points (g1(1), g2(1)) and (g1(2), g2(2)). Thus, according

to the criterion (24), the test based on Q
(l)
φ(2/3),φ(0) is best for n = 15.

Figure 3. y = g2(λ) versus x = g1(λ) for Q(2)
φ(λ),φ(0). Shown are λ = 0

(Square), λ = 2/3 (Cross), λ = 1 (Diamond), and λ = 2 (Circle).

For n = 20, 25, 35, it can be seen that Q(l)φ(2/3),φ(0) is better than Q
(l)
φ(λ),φ(0),

λ = 1, 2, according to (24). However, Q(l)φ(2/3),φ(0) is not obviously better than

Q
(l)
φ(0),φ(0), since g1(2/3) < g1(0) but g2(0) < g2(2/3). Similar conclusions hold for

l = 1 and l = 3; see Figure 6 in Cressie, Pardo and Pardo (2001).
From the simulation studies we have carried out, our conclusion is that the

test based on Q(l)φ(2/3),φ(0) is a very good, and often better, alternative to the tests

based on the classical statistics Q(l)φ(λ),φ(0) with λ = 0, 1.
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Appendix

Proof of Theorem 1. In a derivation similar to that given in Theorem 3
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of Cressie and Pardo (2000), it can be established that Q
(l)
φ1,φ2

=
√
n(P̂ −

P (θ0))TMT
l Ml

√
n(P̂−P (θ0))+op(1) and Q(l−1)φ1,φ2

=
√
n(P̂−P (θ0))TMT

l−1Ml−1
√
n

(P̂ − P (θ0)) + op(1), where Mi = (A(i+1) − A(i)) diag(P (θ0)−1/2) for i = l − 1, l,
A(i) ≡ diag(P (θ0)−1/2)ΣP (θ0)W(i)(W T

(i)ΣP (θ0)W(i))−1W T
(i)ΣP (θ0) diag(P (θ0)−1/2)

for i = l− 1, l, l+1, ΣP (θ0) = diag(P (θ0))−P (θ0)P (θ0)T , and W(i) is the matrix
associated with the i-th loglinear model for i = l − 1, l, l + 1.

Now, because
√
n(P̂ − P (θ0))

L−→
n→∞N(0,ΣP (θ0)), from Theorem 4 in Searle

(1971, p.59), Q(l)φ1,φ2
and Q

(l−1)
φ1,φ2

, are asymptotically independent if MT
l−1Ml−1

ΣP (θ0)M
T
l Ml = 0. We have

MT
l−1Ml−1ΣP (θ0)M

T
l Ml

=MT
l−1(A(l) −A(l−1))

(
I −

√
P (θ0)

√
P (θ0)T

)
(A(l+1) −A(l))Ml

=MT
l−1(A(l) −A(l−1))(A(l+1) −A(l))Ml,

since A(i)
√
P (θ0) = 0 for i = l − 1, l, l + 1.

But {A(i) : i = l − 1, l, l + 1} are orthogonal projection operators, and the
column space of W(i+1) is a subspace of the column space of W(i). Thus (i)
A(i)A(i+1) = A(i+1)A(i) = A(i+1) for i = l − 1, l, and (ii) A(i)A(i) = A(i) for
i = l − 1, l, l + 1.

We have MT
l−1Ml−1ΣP (θ0)M

T
l Ml = 0.

References

Agresti, A. (1990). Categorical Data Analysis. John Wiley, New York.

Ali, S.M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution

from another. J. Roy. Statist. Soc. Ser. B 286, 131-142.

Christensen, R. (1997). Log-Linear Model and Logistic Regression. Springer-Verlag, New York.

Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. J. Roy. Statist. Soc.

Ser. B 46, 440-464.

Cressie, N. and Pardo, L. (2000). Minimum φ−divergence estimator and hierarchical testing in
loglinear models. Statist. Sinica 10, 867-884.

Cressie, N. and Pardo, L. (2002). Model checking in loglinear models using φ-divergences and

MLEs. J. Statist. Plann. Inference 103, 437-453.

Cressie, N., Pardo, L. and Pardo, M.C. (2001). Size and power considerations for testing log-

linear models using φ−divergence test statistics. Technical Report No. 680. Department
of Statistics, The Ohio State University, Columbus, OH.

Csiszár, I. (1963). Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Be-

weis der Ergodizität von Markoffschen Ketten. Publications of the Mathematical Institute

of Hungarian Academy of Sciences A 8, 85-108.

Dale, J. R. (1986). Asymptotic normality of goodness-of-fit statistics for sparse product multi-

nomials. J. Roy. Statist. Soc. Ser. B 41, 48-59.

Fenech, A. P. and Westfall, P. H. (1988). The power function of conditional log-linear model

tests. J. Amer. Statist. Assoc. 83, 198-203.



570 NOEL CRESSIE, LEANDRO PARDO AND MARIA DEL CARMEN PARDO

Ferguson, T. S. (1996). A Course in Large Sample Theory. John Wiley, New York.

Haberman, S. J. (1974). The Analysis of Frequency Data. University of Chicago Press, Chicago.

Hájek, J. and Z. Sidák (1967). Theory of Rank Tests. Academic Press, New York.

Kullback, S. (1985). Kullback information. In Encyclopedia of Statistical Sciences 4 (Edited by

S. Kotz and N. L. Johnson), 421-425. John Wiley, New York.

Matusita, K. (1954). On the estimation by the minimum distance method. Ann. Inst. Statist.

Math. 5, 59-65.

Menéndez, M. L., Morales, D., Pardo, L. and Zografos, K. (1999). Statistical inference for finite

Markov chains based on divergences. Statist. Probab. Lett. 41, 9-17.

Morales, D., Pardo, L. and Vajda, I. (1995). Asymptotic divergences of estimates of discrete

distributions. J. Statist. Plann. Inference 48, 347-369.

Neyman, J. (1949). Contribution to the theory of the χ2 test. Proceedings of the First Berkeley

Symposium on Mathematical Statistics and Probability, 239-275.

Oler, J. (1985). Noncentrality parameters in chi-squared goodness-of-fit analyses with an ap-

plication to log-linear procedures. J. Amer. Statist. Assoc. 80, 181-189.

Pardo, L., Pardo, M. C. and Zografos, K. (2001). Minimum phi-divergence estimator for homo-

geneity in multinomial populations. Sankhyā, A 63, 72-92.
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