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Let Xn = (X1, . . . , Xn) be a sample from a Gibbs-type RPM Qh. Recall that, due to

the discreteness of Qh, the sample Xn features Kn = kn species, labelled by X∗1 , . . . , X
∗
Kn ,

with corresponding frequencies (N1,n, . . . , NKn,n) = (n1,n, . . . , nkn,n). Furthermore, let Ml,n =

ml,n be the number of species with frequency l, namely Ml,n =
∑

1≤i≤Kn 1{Ni,n=l} such that∑
1≤i≤nMi,n = Kn and

∑
1≤i≤n iMi,n = n. For any σ ∈ (0, 1) let fσ be the density function of

a positive σ-stable random variable. According to Proposition 13 in Pitman (2003), as n→ +∞

Kn

nσ
a.s.−→ Sσ,h (S0.1)

and
Ml,n

nσ
a.s.−→ σ(1− σ)l−1

l!
Sσ,h, (S0.2)

where Sσ,h is a random variable with density function fSσ,h(s) = σ−1s−1/σ−1h(s−1/σ)fσ(s−1/σ).

Note that by the fluctuation limits displayed in (S0.1) and (S0.2), as n tends to infinity the

number of species with frequency l in a sample of size n from Qh becomes, almost surely, a

proportion σ(1−σ)l−1/l! of the total number of species in the sample. All the random variables

introduced in this web appendix are meant to be assigned on a common probability space

(Ω,F ,P).
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S1 Proofs

Proof of Theorem 1. We proceed by induction. Note that the result holds for r = 1, and

obviously for any sample size n ≥ 1. Let us assume that it holds for a given r ≥ 1, and also for

any sample size n ≥ 1. Then, the (r + 1)-th moment of Qh(A) |Xn can be written as follows

E[Qrh(A) |Xn]

=

∫
A

· · ·
∫
A

P[Xn+r+1 ∈ A |Xn, Xn+1 = xn+1, . . . , Xn+r = xn+r]

× P[Xn+r ∈ dxn+r |Xn, Xn+1 = xn+1, . . . , Xn+r−1 = xn+r−1]

× · · · × P[Xn+2 ∈ dxn+2 |Xn, Xn+1 = xn+1]P[Xn+1 ∈ dxn+1 |Xn]

=

∫
A

E[Qrh(A) |Xn, Xn+1 = xn+1]

×

(
Vh,(n+1,kn+1)

Vh,(n,kn)

ν0(dxn+1) +
Vh,(n+1,kn)

Vh,(n,kn)

kn∑
i=1

(ni − σ)δX∗i (dxn+1)

)
.

Further, by the assumption on the r-th moment and by dividing A into (A \Xn) ∪ (A ∩Xn),

one obtains

E[Qr+1
h (A) |Xn]

=

r∑
i=0

Vn+r+1,kn+r+1−i

Vh,(n,kn)

[ν0(A)]r+1−iRr,i(µn,kn(A) + 1− σ)

+

r+1∑
i=1

Vn+r+1,kn+r+1−i

Vh,(n,kn)

[ν0(A)]r+1−iµn,kn(A)Rr,i−1(µn,kn(A) + 1),

where we defined Rr,i(µ) :=
∑

0≤j1≤···≤ji≤r−i
∏

1≤l≤i(µ + jl(1 − σ) + l − 1). The proof is

completed by noting that, by means of simple algebraic manipulations, Rr+1,i(µ) = Rr,i(µ +

1−σ)+µRr,i−1(µ+1). Note that when ν0(A) = 0 and i = r, the convention ν0(A)r−i = 00 = 1

is adopted.

Proof of Proposition 1. Let us consider the Borel sets A0 := X \ {X∗1 , . . . , X∗Kn} and

Al := {X∗i : Ni,n = l}, for any l = 1, . . . , n. The two parameter PD prior is a Gibbs-type prior

with h(t) = p(t;σ, θ) := σΓ(θ)t−θ/Γ(θ/σ), for any σ ∈ (0, 1) and θ > −σ. Therefore one has

Vn,kn = Vp,(n,kn) = [(θ)n]−1∏
0≤i≤kn−1(θ + iσ). By a direct application of Theorem 1 we can

write

E[Qrh(A0) |Xn] =

r∑
i=0

(
r

i

)
(−1)i

(θ)n
(θ)n+i

(n− σkn)i

= (θ)n
(θ + σkn)r

(θ)n(θ + n)r

=
(θ + σkn)r

(θ + σkn + n− σkn)r
,
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which is r-th moment of a Beta random variable with parameter (θ+σk, n−σk). Let us define

the random variable Y = ZpRσ,Zp . Then, it can be easily verified that Y has density function

fY (y) =

∫ ∞
0

1

z
fRσ,z (y/z)fZp(z)dz

=
σ

Γ(θ/σ + kn)

∫ ∞
0

ez
σ−y−zσzθ+σkn−2fσ(y/z)dz

=
σ

Γ(θ/σ + kn)
yθ+σkn−1e−y

∫ ∞
0

u−(θ+σkn)fσ(u)du

where, by Equation 60 in Pitman (2003),
∫∞

0
u−(θ+σkn)fσ(u)du = Γ(θ/σ + kn)/σΓ(θ + σkn).

Hence Y is a Gamma random variable with parameter (θ + σkn, 1). Accordingly, we have

Wn−σkn,Zp
d
= Bθ+σkn,n−σkn . Similarly, by a direct application of Theorem 1, for any l > 1 we

can write

E[Qrh(Al) |Xn] =
(θ)n

(θ)n+r
((l − σ)ml,n)r

=
((l − σ)ml,n)r

((l − σ)ml,n)r + θ + n− (l − σ)ml,n
,

which is the r-th moment of a Beta random variable with parameter ((l − σ)ml,n, θ + n− (l −
σ)ml,n). Finally, the decomposition B(l−σ)ml,n,θ+n−(l−σ)ml,n

d
= B(l−σ)ml,n,n−σkn−(l−σ)ml,n(1−

Wn−σkn,Zp) follows from a characterization of Beta random variables in Theorem 1 in Jam-

bunathan (1954). It can be also easily verified by using the moments of Beta random vari-

ables.

Proof of Proposition 2. Let us consider the Borel sets A0 := X \ {X∗1 , . . . , X∗Kn} and

Al := {X∗i : Ni,n = l}, for any l = 1, . . . , n. The two parameter PD prior is a Gibbs-type prior

with h(t) = g(t;σ, τ) := exp{τσ − τt}, for any τ > 0. By a direct application of Theorem 1 we

can write

E[Qrg(A0) |Xn] (S1.1)

=
σΓ(n)

Cσ,τ,n,knΓ(n− σkn)

∫ 1

0

wr(1− w)n−1−σkn
∫ +∞

0

t−σkne−τtfσ(wt)dtdw,

where

Cσ,τ,n,kn :=
σΓ(n)

Γ(n− σkn)

∫ +∞

0

t−σkne−τt
∫ 1

0

(1− w)n−1−σknfσ(wt)dwdt

=

n−1∑
i=0

(
n− 1

i

)
(−τ)iΓ(k − i/σ; τσ).

Hereafter we show that (S1.1) coincides with the r-th moment of the random variableWn−σkn,Zg .

Given Zg = z it is easy to find that the distribution of Wn−σkn,z has the following density func-

tion

fWn−σkn,z (w) =
exp{zσ}

zΓ(n− knσ)
(1− w)n−knσ−1

∫ +∞

0

un−knσe−ufσ
(uw
z

)
du.
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By randomizing over z with respect to the distribution of Zg provides the distribution of

Wn−σkn,Zg . Specifically,

fWn−σkn,Zg (w) =
σ

Cσ,τ,n,knΓ(n− σkn)
(1− w)n−σkn−1

×
∫ ∞
τ

z−n+σkn−1(z − τ)n−1

∫ ∞
0

un−σkne−ufσ
(uw
z

)
dudz

=
σ

Cσ,τ,n,knΓ(n− σk)
(1− w)n−σkn−1

×
∫ ∞
τ

(z − τ)n−1

∫ ∞
0

tn−σkne−tzfσ (wt) dtdz

=
σΓ(n)

Cσ,τ,n,knΓ(n− σkn)
(1− w)n−σkn−1

∫ ∞
0

t−σkne−τtfσ (wt) dt.

Therefore,

E[W r
n−σkn,Zg ]

=
σΓ(n)

Cσ,τ,n,knΓ(n− σkn)

∫ 1

0

wr(1− w)n−σkn−1

∫ ∞
0

t−σkne−τtfσ (wt) dtdw

which coincides with (S1.1). We complete the proof by determining the distribution of the

random variable Qg(Al) |Xn, for any l > 1. Again, by a direct application of Theorem 1 we

can write

E[Qrg(Al) |Xn]

= ((l − σ)ml,n)r

σkn

Γ(n−σkn+r)

σkn
Γ(n−σkn)

∫ +∞
0

t−σkn exp{−τt}
∫ 1

0
(1− z)n+r−1−σknfσ(zt)dtdz∫ +∞

0
t−σkn exp{−τt}

∫ 1

0
(1− z)n−1−σknfσ(zt)dtdz

=
Γ(n− σkn)

Γ ((l − σ)ml,n) Γ(
∑

1≤i6=l≤n imi,n − σ
∑

1≤i6=l≤nmi,n)

×
∫ 1

0

x(l−σ)ml,n+r−1(1− x)
∑

1≤i6=l≤n imi,n−σ
∑

1≤i6=l≤nmi,n−1

×
∫ +∞

0
t−σkn exp{−τt}

∫ 1

0
(1− z)n+r−1−σknfσ(zt)dtdz∫ +∞

0
t−σkn exp{−τt}

∫ 1

0
(1− z)n−1−σknfσ(zt)dtdz

dx

=
Γ(n− σkn)

Γ ((l − σ)ml,n) Γ(
∑

1≤i6=l≤n imi,n − σ
∑

1≤i6=l≤nmi,n)

×
∫ 1

0

x(l−σ)ml,n−1(1− x)
∑

1≤i6=l≤n imi,n−σ
∑

1≤i6=l≤nmi,n−1

×
σΓ(n)

Γ(n−σkn)

∫ +∞
0

t−σkn exp{−τt}
∫ 1

0
xr(1− z)r(1− z)n−1−σknfσ(zt)dtdz

σkn
Γ(n−σkn)

∫ +∞
0

t−σkn exp{−τt}
∫ 1

0
(1− z)n−1−σknfσ(zt)dtdz

dx,

which is the r-th moment of the scale mixture B(l−σ)ml,n,n−σkn−(l−σ)ml,n(1−Wn−σkn,Zg ), where

Wn−σkn,Zg is the random variable characterized above, and where the Beta random variable

B(l−σ)ml,n,n−σkn−(l−σ)ml,n is independent of the random variable (1−Wn−σkn,Zg ). The proof

is completed.



S1. PROOFS

Proof of Theorem 2. According to the fluctuation limit (S0.1) there exists a non-

negative and finite random variable Sσ,h such that n−σKn
a.s.−→ Sσ,h as n → +∞. Let

Ω0 := {ω ∈ Ω : limn→+∞ n
−σKn(w) = Sσ,h(ω)}. Furthermore, let us define g0,h(n, kn) =

Vh,(n+1,kn+1)/Vh,(n,kn), where Vh,(n,kn) = σkn−1Γ(kn)E[h(Sσ,kn/Bσkn,n−σkn)]/Γ(n). Then we

can write the following expression

g0,h(n, kn) =
σkn
n

E
[
h
(

Sσ,kn+1

Bσkn+1,n+1−σ(kn+1)

)]
E
[
h
(

Sσ,kn
Bσkn,n−σkn

)] . (S1.2)

We have to show that the ratio of the expectations in (S1.2) converges to 1 as n → +∞. For

this, it is sufficient to show that, as n→ +∞, the random variable Tσ,n,kn = Sσ,kn/Bσkn,n−σkn

converges almost surely to a random variable Tσ,h. This is shown by computing the moment of

order r of Tσ,n,kn , i.e.,

E(T rσ,n,kn) =
Γ(n)

Γ(n− r)
Γ(kn − r/σ)

Γ(kn)
' nr

k
r/σ
n

.

For any ω ∈ Ω0 the ratio n/K
1/σ
n (ω) = n/k

1/σ
n converges to S

−1/σ
σ,h (ω) = Tσ,h(ω) = t. Accord-

ingly, nr/k
r/σ
n converges to E[T rσ (ω)] = tr for any ω ∈ Ω0. Since P[Ω0] = 1, the almost sure

limit, as n tends to infinity, of the random variable Tσ,n,Kn is identified with the nonnegative

random variable Tσ,h, which has density function fTσ,h(t) = h(t)fσ(t). The proof is completed.

Proof of Proposition 3. Let h(t) = p(t;σ, θ) := σΓ(θ)t−θ/Γ(θ/σ), for any σ ∈ (0, 1) and

θ > −σ. Furthermore, let us define g0,p(n, kn) = Vp,(n+1,kn+1)/Vp,(n,kn) and g1,p(n, kn) = 1 −
Vp,(n+1,kn+1)/Vp,(n,kn), so that we have g0(n, kn) = (θ+σkn)/(θ+n) and g1(n, kn) = 1/(θ+n).

Then,

g0,p(n, kn) =
σkn
n

+
θ

n
+ o

(
1

n

)
(S1.3)

and

g1,p(n, kn) =
1

n
− θ

n2
+ o

(
1

n2

)
(S1.4)

follow by a direct application of the Taylor series expansion to g0(n, kn) and g1(n, kn), respec-

tively, and then truncating the series at the second order. The proof is completed by combining

(S1.3) and (S1.4) with the Bayesian nonparametric estimator D̂n(l) under a two parameter PD

prior.

Proof of Proposition 4. The proof is along lines similar to the proof of Proposition

3.2. in Ruggiero et al. (2015), which, however, considers a different parameterization for the

normalized GG prior. Let h(t) = g(t;σ, τ) := exp{τσ − τt}, for any σ ∈ (0, 1) and τ > 0, and

let g0,g(n, kn) = Vg,(n+1,kn+1)/Vg,(n,kn) and g1,p(n, kn) = 1− Vg,(n+1,kn+1)/Vg,(n,kn), where we

have

Vg,(n,kn) =
σkn exp{τσ}

Γ(n)

∫ +∞

0

xn−1(τ + x)−n+σkne−(τ+x)σdx.
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Note that, by using the triangular relation characterizing the nonnegative weight Vg,(n,kn), we

can write

g0,g(n, kn) =
Vg,(n,kn) − (n− σkn)Vg,(n+1,kn)

Vg,(n,kn)

= 1−
(

1− σkn
n

)
w(n, kn),

where

w(n, kn) =

∫∞
0
xn exp{−[(τ + x)σ − τσ]}(τ + x)σkn−n−1 dx∫∞

0
xn−1 exp{−[(τ + x)σ − τσ]}(τ + x)σkn−n dx

.

Let us denote by f(x) the integrand function of the denominator of 1 − w(n, kn), and let

fN (x) = τf(x)/(τ + x). That is, fN (x) is the denominator of 1 − w(n, kn). Therefore we can

write

1− w(n, kn) =

∫∞
0
τf(x)/(τ + x) dx∫∞

0
f(x) dx

.

Since f(x) is unimodal, by means of the Laplace approximation method it can be approximated

with a Gaussian kernel with mean x∗ = arg maxx>0 x
n−1 exp{−[(τ+x)σ−τσ]}(τ+x)σkn−n and

with variance−[(log ◦f)′′(x∗)]−1. The same holds for fN (x). Then, we obtain the approximation

1− w(n, kn) ' fN (x∗N )C(x∗N ,−[(log ◦fN )′′(x∗N )]−1)

f(x∗D)C(x∗D,−[(log ◦f)′′(x∗D)]−1)
,

where x∗N and x∗D denote the modes of fN and f , respectively, and where C(x, y) denotes the

normalizing constant of a Gaussian kernel with mean x and variance y. Specifically, this yields

to

1− w(n, kn) ' fN (x∗N )

f(x∗D)

(
(log ◦fN )′′(x∗N )

(log ◦f)′′(x∗D)

)−1/2

. (S1.5)

The mode x∗D is the only positive real root of the function G(x) = σx(τ + x)σ − (n − 1)τ −
(σkn − 1)x. A study of G shows that x∗D is bounded by below by a positive constant times

n1/(1+σ), which implies that the terms involving τ are negligible in the following renormalization

of G(x∗D)

σ
x∗D
n

(
τ

n
+
x∗D
n

)σ
− n− 1

nσ+1
τ − σkn − 1

nσ
x∗D
n
.

The same calculation holds for x∗N . According to the fluctuation limit (S0.1) there exists a

nonnegative and finite random variable Sσ,g such that n−σKn
a.s.−→ Sσ,g as n → +∞. Let

Ω0 := {ω ∈ Ω : limn→+∞ n
−σKn(w) = Sσ,h(ω)}, and let Sσ,g(ω) = sσ for any ω ∈ Ω0. Then,

we have
x∗N
n
' x∗D

n
' s1/σ

σ . (S1.6)

In order to make use of (S1.5), we also need an asymptotic equivalence for x∗D − x∗N . Note that

G(x∗D) = 0 and G(x∗N ) = −x∗N allow us to resort to a first order Taylor bound on G at x∗N and

shows that x∗D − x∗N has a lower bound equivalent to s
(1−σ)/σ
σ n1−σ/σ2. The same argument

applied to G(x)+x at x∗D provides an upper bound with the same asymptotic equivalence, thus

x∗D − x∗N
n1−σ ' s

(1−σ)/σ
σ

σ2
. (S1.7)



S2. DETAILS ON THE DERIVATION OF D̂N (L) ' ĎN (L; SPD)

By studying f and fN , as well as the second derivative of their logarithm, together with

asymptotic equivalences (S1.6) and (S1.7), we can write f(x∗D) ' f(x∗N ) and (log ◦f)′′(x∗D) '
(log ◦f)′′(x∗N ) ' (log ◦fN )′′(x∗N ). Hence, from (S1.5) one obtains 1− w(n, kn) ' τ/(τ + x∗N ) '
τs
−1/σ
σ /n, which leads to

g0,g(n, kn) = 1−
(

1− σkn
n

)(
1− τs−1/σ

σ
1

n
+ o

(
1

n

))
,

=
σkn
n

+ τs−1/σ
σ

1

n
+ o

(
1

n

)
, (S1.8)

and

g1,g(n, kn) =
1− g0,g(n, kn)

n− σkn
=

1

n

(
1−

τs
−1/σ
σ /n+ o

(
1
n

)
1− σk

n

)
,

=
1

n

(
1− τs

−1/σ
σ

n
+ o

(
1

n

))
. (S1.9)

Expressions (S1.8) and (S1.9) provide second order approximations of g0,g(n, kn) and g1,g(n, kn),

respectively. Recall that for any ω in Ω0 we have n−σkn ' sσ, namely we can replace sσ with

n−σkn. This is because of the fluctuation limit displayed in (S0.1). The proof is completed

by combining (S1.8) and (S1.9) with the Bayesian nonparametric estimator D̂n(l) under a

normalized GG prior.

S2 Details on the derivation of D̂n(l) ' Ďn(l; SPD)

Let us define cσ,l = σ(1 − σ)l−1/l! and recall that D̂n(0) = Vn+1,kn+1/Vn,kn and D̂n(l) =

(l − σ)ml,nVn+1,kn/Vn,kn . The relationship between the Bayesian nonparametric estimator

D̂n(l) and the smoothed Good-Turing estimator Ďn(l; SPD) follows by combining Theorem

2 with the fluctuation limits (S0.1) and (S0.2). For any ω ∈ Ω, a version of the predictive

distributions of Qσ,h is

Vn+1,Kn(ω)+1

Vn,Kn(ω)

ν0(·) +
Vn+1,Kn(ω)

Vn,Kn(ω)

Kn(ω)∑
i=1

(Ni,n(ω)− σ)δX∗i (ω)(·).

According to (S0.1) and (S0.2), limn→+∞ cσ,lMl,n/Kn = 1 almost surely. See Lemma 3.11 in

Pitman (2006) for additional details. By Theorem 2 we have Vn+1,Kn+1/Vn,Kn
a.s.' σKn/n, and

M1,n
a.s.' σKn, as n → +∞. Then, a version of the Bayesian nonparametric estimator of the

0-discovery coincides with

Vn+1,Kn(ω)+1

Vn,Kn(ω)

' σKn(ω)

n
(S2.1)

' M1,n(ω)

n
,
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as n→ +∞. By Theorem 2 we have Vn+1,Kn/Vn,Kn
a.s.' 1/n, and Ml,n

a.s.' cσ,lKn, as n→ +∞.

Accordingly, a version of the Bayesian nonparametric estimator of the l-discovery coincides with

(l − σ)Ml,n(ω)
Vn+1,Kn(ω)

Vn,Kn(ω)

' (l − σ)
Ml,n(ω)

n
(S2.2)

' cσ,l(l − σ)
Kn(ω)

n

' (l + 1)
Ml+1,n(ω)

n
,

as n → +∞. Let Ω0 := {ω ∈ Ω : limn→+∞ n
−σKn(w) = Zσ,θ/σ(ω), limn→+∞ n

−σMl,n(ω) =

cσ,lZσ,θ/σ(ω)}. From (S0.1) and (S0.2) we have P[Ω0] = 1. Fix ω ∈ Ω0 and denote by kn =

Kn(ω) and ml,n = Ml,n(ω) the number of species generated and the number of species with

frequency l generated by the sample Xn(ω). Accordingly, D̂n(l) ' Ďn(l; SPD) follows from

(S2.1) and (S2.2).

S3 Additional illustrations

In this Section we provide additional illustrations accompanying those of Section 4 in the main

manuscript. Specifically, we consider a Zeta distribution with parameter s = 1.5. We draw 500

samples of size n = 1000 from such distribution, we order them according to the number of

observed species kn, and we split them in 5 groups: for i = 1, 2, . . . , 5, the i-th group of samples

will be composed by 100 samples featuring a total number of observed species kn that stays

between the quantiles of order (i − 1)/5 and i/5 of the empirical distribution of kn. Then we

pick at random one sample for each group and label it with the corresponding index i. This

procedure leads to five samples. As shown in Table S1, the choice of s = 1.5 leads to samples

with a smaller number of distinct values if compared with the case s = 1.1 (see also Table 1 in

the main manuscript). Table S2, under the two parameter PD prior and the normalized GG

prior, shows the estimated l-discoveries, for l = 0, 1, 5, 10, and the corresponding 95% posterior

credible intervals. Finally, Figure S1 shows how the average ratio r̄1,2,n evolves as the sample

size increases (see Section 4.2 in the main manuscript).

Table S1: Simulated data with s = 1.5. For each sample we report the sample size n, the

number of species kn and the maximum likelihood values (σ̂, θ̂) and (σ̂, τ̂).

PD GG

sample n kn σ̂ θ̂ σ̂ τ̂

Simulated data

1 1000 128 0.624 1.207 0.622 3.106

2 1000 135 0.675 0.565 0.673 0.957

3 1000 138 0.684 0.487 0.682 0.795

4 1000 146 0.656 1.072 0.655 2.302

5 1000 149 0.706 0.377 0.704 0.592



S3. ADDITIONAL ILLUSTRATIONS

Table S2: Simulated data with s = 1.5. We report the true value of the probability Dn(l) and

the Bayesian nonparametric estimates of Dn(l) with 95% credible intervals.

Good–Turing PD GG

l sample Dn(l) Ďn(l) 95%-c.i. D̂n(l) 95%-c.i. D̂n(l) 95%-c.i.

0

1 0.099 0.080 (0.010, 0.150) 0.081 (0.065, 0.098) 0.081 (0.065, 0.098)

2 0.103 0.092 (0.012, 0.172) 0.092 (0.075, 0.110) 0.091 (0.075, 0.110)

3 0.095 0.096 (0.014, 0.178) 0.095 (0.078, 0.114) 0.095 (0.076, 0.113)

4 0.096 0.096 (0.015, 0.177) 0.097 (0.079, 0.116) 0.097 (0.080, 0.115)

5 0.093 0.108 (0.019, 0.197) 0.106 (0.087, 0.126) 0.105 (0.087, 0.124)

1

1 0.030 0.038 (0.031, 0.045 ) 0.030 (0.020, 0.042) 0.030 (0.021, 0.042)

2 0.037 0.030 (0.024, 0.036) 0.030 (0.021, 0.041) 0.030 (0.020, 0.042)

3 0.034 0.034 (0.028, 0.040) 0.030 (0.021, 0.042) 0.031 (0.021, 0.042)

4 0.029 0.040 (0.033, 0.047) 0.033 (0.023, 0.045) 0.033 (0.022, 0.044)

5 0.040 0.026 (0.021, 0.031) 0.032 (0.022, 0.044) 0.032 (0.023, 0.043)

5

1 0.013 0.012 (0.008, 0.016) 0.013 (0.007, 0.021) 0.013 (0.007, 0.021)

2 0.011 0.006 (0.003, 0.009) 0.004 (0.001, 0.009) 0.004 (0.001, 0.009)

3 0.010 0.012 (0.007, 0.017) 0.009 (0.004, 0.015) 0.009 (0.004, 0.016)

4 0.010 0.036 (0.024, 0.048) 0.009 (0.004, 0.015) 0.009 (0.004, 0.015)

5 0.012 0 (0, 0) 0.013 (0.007, 0.021) 0.013 (0.006, 0.021)

10

1 0.019 0 (0, 0) 0.019 (0.011, 0.028) 0.019 (0.011, 0.028)

2 0 0.011 n.a. 0 (0, 0) 0 (0,0)

3 0.011 0.011 (0.006, 0.016) 0.009 (0.004, 0.016) 0.009 (0.004, 0.016)

4 0 0 n.a. 0 (0,0) 0 (0,0)

5 0.006 0 (0, 0) 0.009 (0.004, 0.016) 0.009 (0.004, 0.017)
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Figure S1: Average ratio r̄1,2,n of sums of squared approximation errors for different sample

sizes n = 102, 103, 104, 105. For the x-axis a logarithmic scale was used.
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