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This supplementary material contains: i) the proofs of Theorem 1, Proposition 1, Proposition
2, Theorem 2, Proposition 3 and Proposition 4; ii) details on the derivation of the asymptotic
equivalence between D,, (1) and D, (I;.pp); iii) additional application results.
Let X, = (Xi,...,Xn) be a sample from a Gibbs-type RPM Qn. Recall that, due to
the discreteness of Qp, the sample X, features K, = kn species, labelled by X7,..., X} ,
with corresponding frequencies (N1 n, ..., Nk, ,n) = (R1,n,- .., Nk, ,n). Furthermore, let M; ,, =
my,n be the number of species with frequency [/, namely M;, = Zl<i<Kn Tin; =13 such that
Doicicn Min = Ky and >, o, iM;in =n. For any o € (0,1) let fa_be_z the density function of
a p(;sigive o-stable random V;r;able. According to Proposition 13 in Pitman (2003), as n — +o0
% 22 Son (S0.1)

and o )
I,n 28 0'( _U)lfl

- 2 S, (S0.2)

where S, 1, is a random variable with density function fs, , (s) = otV p (s £ (s ).
Note that by the fluctuation limits displayed in (S0.1) and (S0.2), as n tends to infinity the
number of species with frequency [ in a sample of size n from @) becomes, almost surely, a
proportion o(1—o0);—1/l! of the total number of species in the sample. All the random variables
introduced in this web appendix are meant to be assigned on a common probability space
(Q, Z,P).
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S1 Proofs

PrOOF OF THEOREM 1. We proceed by induction. Note that the result holds for » = 1, and
obviously for any sample size n > 1. Let us assume that it holds for a given r» > 1, and also for

any sample size n > 1. Then, the (r + 1)-th moment of Qx(A)| X, can be written as follows

E[QR(A) | X
- / o / P[Xn+7‘+1 € A | Xnan+1 =Tn+41y.-- 7Xn+'r = xn+r]
A A

X P Xntr € dZTntr | Xny, Xnt1 = Tnt1ye oy Xngr—1 = Tntr—1]

- X ]P)[XnJrQ c dZEnJrQ ‘ Xn,Xn+1 = l'nJrﬂIP[anLl S dl‘n+1 | Xn]

= AE[Q;(A) | Xn7Xn+1 == .’Kn+1]

Vi (n+1,kp+1) Vi Vh,(nt+1,kn)
X %Vo dx +1 = i — 0’ 5)(* dx 1 .
< Vit T Y Zl )

Further, by the assumption on the r-th moment and by dividing A into (A \ X,) U (AN X,),

one obtains

E[Q}(4)] X,
= Z L ) s (4) 1)
r+l ;
t2 W[mux)r*“un,kn (A)Rrimt (. (A) + 1),

where we defined R.i(1) == > o< <. .<ji<rilici<i(tt + 51(1 — o) + 1 —1). The proof is
completed by noting that, by means of simple algebraic manipulations, Rry1,i(¢) = Rri(u +
1—0)4+pRyi—1(u+1). Note that when v9(A) = 0 and i = , the convention vp(A)"  =0° =1
is adopted. O

PROOF OF PROPOSITION 1. Let us consider the Borel sets Ag := X\ {X7,..., Xk } and
Ay :={X] : Nyn =1}, for any I = 1,...,n. The two parameter PD prior is a Gibbs-type prior
with h(t) = p(t;0,0) := oT(0)t~?/T'(8/0), for any o € (0,1) and 6 > —o. Therefore one has
Vikn = Vi (nken) = [(0)n] [To<i<k, 1(0 +io). By a direct application of Theorem 1 we can

write

_ 0+ ckn)r
o (9+0kn+n_0kn)r7
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which is r-th moment of a Beta random variable with parameter (0 + ok, n — k). Let us define

the random variable Y = Z, R, z,. Then, it can be easily verified that Y has density function

Pe) = [ Lm0

g

_ v < 27 —y—27 O+4ckn—2
= F(0/0+kn)/0 e z fo(y/2)dz

o g O+okn—1 —vy /oo —(0+0cky)

= = e U - (u)du
T(0/0 + kn)” o fo(w)

where, by Equation 60 in Pitman (2003), [, w” Ok £ (w)du = T(0/0 + kn)/oT(0 + k).

Hence Y is a Gamma random variable with parameter (6 + ck,,1). Accordingly, we have

Wh—oky,2, 4 Bo+oky, n—ok, . Similarly, by a direct application of Theorem 1, for any [ > 1 we

can write

EQh(A) | X0] = D% (1~ ymy0),

(0)n+r
_ (= U)ml,n)r
(I=a)ymin)r+0+n—(1—0)mi,’

which is the r-th moment of a Beta random variable with parameter ((I — o)myn,0 +n — (I —
. .- d

o)y, ). Finally, the decomposition B—sym, ,, ,0+n—(1-0)ym;.,, = B—ocymy nn—okn—(1-cym; , (1=

Wh—okn, zp) follows from a characterization of Beta random variables in Theorem 1 in Jam-

bunathan (1954). It can be also easily verified by using the moments of Beta random vari-

ables. O

PROOF OF PROPOSITION 2. Let us consider the Borel sets Ag := X\ {X7,..., Xk } and
Ay :={X] : Ny =1}, for any I = 1,...,n. The two parameter PD prior is a Gibbs-type prior
with h(t) = g(t;0,7) := exp{7? — 7t}, for any 7 > 0. By a direct application of Theorem 1 we

can write
E[Q}(40) | X sL1)
O'F(n) /1 T n—1—ok /+oo —oky —Tt
= 1 —_ n t ne ' t dtd ,
CormmnD(n —ckn) Jo (1= w) A fo(wt)dtdw
where
ol'(n) /+<><> ok /1 L
Corrmbn = e [ (1 =) T L (wt)dwdt
I'(n—oky) Jo 0

n—1

- (” A 1) (=1)'T(k —i/o; 7).

=0

Hereafter we show that (S1.1) coincides with the r-th moment of the random variable Wn_gkn,zg.

Given Z, = z it is easy to find that the distribution of W, _s,, . has the following density func-

o} ket [T ko (W0
) = Pyt [T, (4

tion
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By randomizing over z with respect to the distribution of Zy; provides the distribution of
Wo—okn,z,- Specifically,

g
an*Ukn:Zy (U}) - C(r,r,n,kn,r(n - Ukn)

o k I e k uw
X / PR "_1(2 —7)"" / w7 e f, (—) dudz
T 0 z

(o2 n—okp—1
— 1— n
Cormi, I'(n — ok) ( w)
X / (z—7)"! / t"m ke £ (wt) dtdz
T 0

O'F(’I’L) n—oky,—1 /oo —ok —Tt
= 1-— " t " - (wt) dt.
CO',T,TL,IC”F(TL - Uk:n) ( w) 0 ¢ f (w )

(1 _ w)nfaknfl

Therefore,

E[ 7:.‘7crkn,Zg}

O'F(’I’L) /1 T n—okp—1 /oo —okn —Tt
= 1-— " t o - (wt) dtd
Cormn D — o) Jy ) , 1o

which coincides with (S1.1). We complete the proof by determining the distribution of the

random variable Qg4(A;) | Xy, for any I > 1. Again, by a direct application of Theorem 1 we

can write

E[Qy (A1) [ Xn]

(1 oy, T [ exp ot} [0 = 2 et
7 f‘(n+;kn) 0 ©t=okn exp{—7t} fo (1 = z)n=1=ckn f_(2t)dtdz
T'(n— okn)

L'(( = o)mun) F(Z1gi¢zgn iMin —0 219‘;5191 Min)

1
></ xU*U)mL,n*T*l(l _x)zls#zgni"bi,n*UElgi#zgn min—1
0

f0+°° t=7Fn exp{—7t} fol(l — Z)Hrol=oka £ (t)dtdz
X
f;oo t=okn exp{—7t} fol(l — z)n1=ckn f_(2t)dtdz
I'(n — okn)
I'((l = o)mun) F(Z1g¢¢zgn iMin — 0 Z1gi¢z§n Mi.n)

1
~ / m(l—v)mz,n—l(l _ x)21§¢¢1§n, iMin—0 1 <igi<n Min—1
0

F(ZF(:Iz ) erOOt okn exp{ Tt} fO 1 _ Z) (1-— Z)n—lfakn L (2t)dtdz
>< n
F(n Jkn) fo t=okn exp{—7t} fo (1 — z)n—1=ckn f (2t)dtdz

which is the r-th moment of the scale mixture B(Z*U)Mz,n»nfffkn*(lfc)mz,n (1—anokng), where
Whn—ok,,z, is the random variable characterized above, and where the Beta random variable
B(i—o)my p,n—okp—(1—0)m, , 15 independent of the random variable (1 - Wn-ok,,2,). The proof

is completed. O
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PROOF OF THEOREM 2. According to the fluctuation limit (S0.1) there exists a non-
negative and finite random variable S, such that n™ 7K, 25 So.n as n — +oo. Let

= {w € Q : limpsteen “Kn(w) = Son(w)}. Furthermore, let us define gon(n,kn) =
Vh (et 1k +1)/ Vi (niken) s Where Vi o iy = 0™ ' T(kn)E[R(So,k,, /Boky,n—okn)]/T'(n). Then we
can write the following expression

ok B[ (o))
PO )]

oknp,n—ockn

(S1.2)

We have to show that the ratio of the expectations in (S1.2) converges to 1 as n — +oo. For
this, it is sufficient to show that, as n — +o0, the random variable Ty n k,, = So,k,./Bokn,n—ockn
converges almost surely to a random variable T, . This is shown by computing the moment of
order r of T, » ., , i.€.,

I'(n) T(kn—r1/0) n”

E(T, = ~ .
( o',n,k:n) F('I’L — T‘) F(kn) kr/o-

n

For any w € Qo the ratio n/K,'" (w) = n/k:/° converges to S;}l/g (w) = To,n(w) = ¢t. Accord-
ingly, n"/ky/® converges to E[Ty (w)] = t" for any w € Q. Since P[] = 1, the almost sure
limit, as n tends to infinity, of the random variable T, , k,, is identified with the nonnegative

random variable T} 5, which has density function fr_, (¢t) = h(t)fs(t). The proof is completed.

PROOF OF PROPOSITION 3. Let h(t) = p(t; 0,0) := oT'(0)t~? /T(8/0), for any o € (0,1) and
6 > —o. Furthermore, let us define gop(n, kn) = Vp (nt1,kn+1)/ Vp,(nokn) a0d g1p(n, k) =1 —
Vo, (n+1,kn+1)/ Vo, (n,kn)» S0 that we have go(n, kn) = (0 +0k,)/(0+n) and g1(n, kn) = 1/(0+n).
Then,

okn, 0 1
go.p(n, kn) = o + o +o (E) (S1.3)
and
1 0 1
g1,p(n, kn) = s +o0 (ﬁ) (S1.4)

follow by a direct application of the Taylor series expansion to go(n, k,) and g1(n, k» ), respec-
tively, and then truncating the series at the second order. The proof is completed by combining
(S1.3) and (S1.4) with the Bayesian nonparametric estimator D,,(I) under a two parameter PD
prior. O

PROOF OF PROPOSITION 4. The proof is along lines similar to the proof of Proposition
3.2. in Ruggiero et al. (2015), which, however, considers a different parameterization for the
normalized GG prior. Let h(t) = g(¢;0,7) := exp{7? — 7t}, for any o € (0,1) and 7 > 0, and
let go,g(n, kn) = Vg (nt1,kn+1)/ Vg, (nkn) a0d G101, kn) =1 — Vg i1,k +1)/ Vg, (n k), Where we
have

okn o 400 i
th,(n,kn) exp{T }/ - T+.’E) n+o‘kne—(7—+z) de.
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Note that, by using the triangular relation characterizing the nonnegative weight Vy (n 1,.), we

can write
9o.g(n, kn) = .(nkn) — (0= 0kn) Vg (n41k,) —1_ (1_ o )w(n,kn),
Va.(n.kn) n
where
Sy " exp{=[(r +2)° = 7]}z +2)F " de
w(n, kn) =

[ e expl—[(r + 2)7 — ]} (r + @)he o da
Let us denote by f(z) the integrand function of the denominator of 1 — w(n,k,), and let

fn(x) = 7f(x)/(7 + x). That is, fn(z) is the denominator of 1 — w(n, k,). Therefore we can

write

fooo 7f(z)/ (T + z)dz
f0°° f(z)dx ’

Since f(x) is unimodal, by means of the Laplace approximation method it can be approximated

1—w(n,kn) =

okn—n

with a Gaussian kernel with mean z* = argmax,. 2" " exp{—[(7+2)° —77|}(7 + =) and

with variance —[(log of)”(z*)] . The same holds for fa (x). Then, we obtain the approximation

1—wn, k) ~

In(zy)C(ak, —[(log ofn)" (xx)] )
f@p)C(xp, —[(logof)"(zp)]7)

where z3y and z} denote the modes of fn and f, respectively, and where C(z,y) denotes the
normalizing constant of a Gaussian kernel with mean x and variance y. Specifically, this yields
to

o ) ~ L3025 (g ofN>”(x7v>)‘”2. (sL.5)
f(zp) \ (ogof)"(z])

The mode z} is the only positive real root of the function G(z) = cz(7 + z)° — (n — 1)7 —

(0kn — 1)z. A study of G shows that z}, is bounded by below by a positive constant times

n'/ (%) which implies that the terms involving 7 are negligible in the following renormalization

of G(zp)

(o

n n

xh (7 H\T n-1 okn, —1zp
e R r——=_-D
n notl n° n
The same calculation holds for z73. According to the fluctuation limit (S0.1) there exists a
nonnegative and finite random variable S, , such that n K, % S,, as n — 4oco. Let
Qo :={w € N :limp 0o n TKy(w) = Son(w)}, and let So g(w) = s for any w € Qo. Then,
we have . .

IN L TD . gl/e (S1.6)

n n

In order to make use of (S1.5), we also need an asymptotic equivalence for 7, — . Note that

G(zp) =0 and G(xzy) = —xn allow us to resort to a first order Taylor bound on G at 3 and
shows that x7, — x} has a lower bound equivalent to sgl_”)/cnlf"/or? The same argument

applied to G(z) +x at ] provides an upper bound with the same asymptotic equivalence, thus

l1—0o)/o
Th — TN s§t=/

e (SL.7)



S2. DETAILS ON THE DERIVATION OF Dy (L) ~ Dy (L; Sp)

By studying f and fn, as well as the second derivative of their logarithm, together with
asymptotic equivalences (S1.6) and (S1.7), we can write f(z}p) ~ f(zx) and (logof)”(zh) ~
(logof)”(xx) =~ (logofn)"(zn). Hence, from (S1.5) one obtains 1 — w(n, kn) ~ 7/(T + z}) =~

ngl/a/n, which leads to

go,g(n,kn) =1— <1_ %) (1_7—8;1/014—0(1))7
n n n

= %—&—75;1/”1—&—0(1) , (S1.8)
n n

and

—1/0 1
1-— s kn 1 TSo n+ol(s;
gra(n k) = L= S0slbn) L <1 T Tntoly) )> ,

n —oky, 1—‘;—’“

:Tll(1—75"n1/a+o(i)). (S1.9)

Expressions (S1.8) and (S1.9) provide second order approximations of go,q (1, kn) and g1,4(n, k»n),
respectively. Recall that for any w in Qo we have n™ %k, ~ s,, namely we can replace s, with
n~%k,. This is because of the fluctuation limit displayed in (S0.1). The proof is completed
by combining (S1.8) and (S1.9) with the Bayesian nonparametric estimator D, (l) under a
normalized GG prior. O

S2 Details on the derivation of D, ({) ~ D,(l;-%pp)

Let us define ¢o; = o(1 — ¢);—1/I' and recall that D, (0) = Vig1,k,+1/Vak, and Dyp(l) =
(I — o)minVit1,kn/Vn,k,- The relationship between the Bayesian nonparametric estimator
f)n(l) and the smoothed Good-Turing estimator T)n(l;YpD) follows by combining Theorem
2 with the fluctuation limits (S0.1) and (S0.2). For any w € 2, a version of the predictive
distributions of Q.. is

K (w)

Vn+1 Ky (w)+1 Vn+1 Ky (w)
= vo(-) + = Nin(w) —0)0x* ) (+)-
Voo o(") T ; (Nin(w) = 0)dx7 () ()

According to (S0.1) and (S0.2), limp— 400 CoiMin/Kyn = 1 almost surely. See Lemma 3.11 in
Pitman (2006) for additional details. By Theorem 2 we have Vot1 k,,+1/Va, K., i~ oKyn/n, and

a.s.

My, ~ oK,, asn — +oco. Then, a version of the Bayesian nonparametric estimator of the

0-discovery coincides with

Vn+17Kn(W)+1 ~ UKn(w) (82 1)
‘/n,K,,L(w) n
~ Mlyn(w)

— )

n
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a.s. a.s.
as n — +oo. By Theorem 2 we have V11 Kk, /Va.k,, = 1/n, and M, =~ c51Kn, as n — +00.

Accordingly, a version of the Bayesian nonparametric estimator of the I-discovery coincides with

VTL w n
(I — o) M (w) LK) (g U)M (S2.2)
Vi, K (@) n
Kn(w)
~ co1(l
Coa(l —o)—>
~ (l + 1)Ml+17"(w)’

as n — 4o00. Let Qo := {w € Q : limy 1 00n™ "Kn(w) = Zs 9/ (), limn s yoo 0”7 M n(w) =
Co1Z50/0(w)}. From (S0.1) and (S0.2) we have P[Qo] = 1. Fix w € Qo and denote by k, =
Kn(w) and my, = Min(w) the number of species generated and the number of species with

frequency I generated by the sample X, (w). Accordingly, D,(l) ~ D,(l;.-%p) follows from
(S2.1) and (S2.2).

S3 Additional illustrations

In this Section we provide additional illustrations accompanying those of Section 4 in the main
manuscript. Specifically, we consider a Zeta distribution with parameter s = 1.5. We draw 500
samples of size n = 1000 from such distribution, we order them according to the number of
observed species k,,, and we split them in 5 groups: for i = 1,2,...,5, the i-th group of samples
will be composed by 100 samples featuring a total number of observed species k, that stays
between the quantiles of order (¢ — 1)/5 and /5 of the empirical distribution of k,,. Then we
pick at random one sample for each group and label it with the corresponding index ¢. This
procedure leads to five samples. As shown in Table S1, the choice of s = 1.5 leads to samples
with a smaller number of distinct values if compared with the case s = 1.1 (see also Table 1 in
the main manuscript). Table S2, under the two parameter PD prior and the normalized GG
prior, shows the estimated [-discoveries, for [ = 0,1, 5,10, and the corresponding 95% posterior
credible intervals. Finally, Figure S1 shows how the average ratio 71,2, evolves as the sample

size increases (see Section 4.2 in the main manuscript).

Table S1: Simulated data with s = 1.5. For each sample we report the sample size n, the

number of species k, and the maximum likelihood values (6,6) and (6, 7).

PD GG
sample n kn 1 0 1o T

1 1000 128 | 0.624 1.207 | 0.622 3.106
1000 135 | 0.675 0.565 | 0.673 0.957
1000 138 | 0.684 0.487 | 0.682 0.795
1000 146 | 0.656 1.072 | 0.655 2.302
1000 149 | 0.706 0.377 | 0.704 0.592

Simulated data

T W N
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Table S2: Simulated data with s = 1.5. We report the true value of the probability D, () and

the Bayesian nonparametric estimates of Dy (1) with 95% credible intervals.

Good-Turing PD GG

I sample D,(l) | D.(l) 95%-c.i. Dn(l) 95%-c.i. Da(l) 95%-c.i.
1 0.099 | 0.080  (0.010, 0.150) | 0.081  (0.065, 0.098) | 0.081  (0.065, 0.098)
2 0.103 | 0.092 (0.012,0.172) | 0.092 (0.075, 0.110) | 0.091  (0.075, 0.110)

0 3 0.095 | 0.096  (0.014, 0.178) | 0.095 (0.078, 0.114) | 0.095 (0.076, 0.113)
4 0.096 | 0.096  (0.015,0.177) | 0.097 (0.079, 0.116) | 0.097  (0.080, 0.115)
5 0.093 | 0.108  (0.019, 0.197) | 0.106  (0.087, 0.126) | 0.105 (0.087, 0.124)
1 0.030 | 0.038 (0.031, 0.045) | 0.030 (0.020, 0.042) | 0.030  (0.021, 0.042)
2 0.037 | 0.030  (0.024, 0.036) | 0.030 (0.021, 0.041) | 0.030  (0.020, 0.042)

1 3 0.034 | 0.034  (0.028, 0.040) | 0.030 (0.021, 0.042) | 0.031  (0.021, 0.042)
4 0.029 | 0.040  (0.033,0.047) | 0.033  (0.023, 0.045) | 0.033  (0.022, 0.044)
5 0.040 | 0.026  (0.021, 0.031) | 0.032 (0.022, 0.044) | 0.032  (0.023, 0.043)
1 0.013 | 0.012  (0.008, 0.016) | 0.013  (0.007, 0.021) | 0.013  (0.007, 0.021)
2 0.011 | 0.006  (0.003, 0.009) | 0.004 (0.001, 0.009) | 0.004 (0.001, 0.009)

5 3 0.010 | 0.012  (0.007, 0.017) | 0.009  (0.004, 0.015) | 0.009  (0.004, 0.016)
4 0.010 | 0.036  (0.024, 0.048) | 0.009 (0.004, 0.015) | 0.009  (0.004, 0.015)
5 0.012 0 (0, 0) 0.013  (0.007,0.021) | 0.013  (0.006, 0.021)
1 0.019 0 (0, 0) 0.019  (0.011, 0.028) | 0.019  (0.011, 0.028)
2 0 0.011 n.a. 0 (0, 0) 0 (0,0)

10 3 0.011 | 0.011  (0.006, 0.016) | 0.009  (0.004, 0.016) | 0.009  (0.004, 0.016)
4 0 0 n.a. 0 (0,0) 0 (0,0)
5 0.006 0 (0, 0) 0.009  (0.004, 0.016) | 0.009  (0.004, 0.017)
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771.2,/L

0 1 1 1 1
10° 10° 10* 10°

Figure S1: Average ratio 71,2,» of sums of squared approximation errors for different sample

sizes n = 102,10%,10%,10°. For the z-axis a logarithmic scale was used.
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