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Abstract:  “Rich-get-richer” and “homophily” are two essential phenomena in
evolving social networks. “Rich-get-richer” means people with greater followings are
more likely to attract new followers, and “homophily” means people prefer to bond
with others of the same social group, or who have some other attribute in common.
To formalize these phenomena simultaneously in the context of an evolving social
network, we consider a K-group preferential attachment (KPA) model, which is
helpful for social network recommender systems. Our primary contribution is to
propose a new evolving social network model that incorporates the mechanisms of
rich-get-richer and homophily. We show that the proposed KPA model exhibits a
power-law degree distribution for each group, and prove the central limit theorem
for the maximum likelihood estimation of the parameters in the model. In addition,
we verify the robustness of the proposed parameter estimation methods, and apply
them to simulated data and to real-data examples.

Key words and phrases: Evolving network, homophily, preferential attachment,

recommender system.

1. Introduction

The “rich-get-richer” (or preferential attachment) mechanism has been stud-
ied by numerous researchers. In preferential attachment models, new edges in
evolving networks are attached to older nodes, chosen according to a probability
distribution that is an affine function of the older nodes’ degrees. This way,
nodes with high degrees are more likely to attract edge connections and attain
higher degrees, which explains why they are called rich-get-richer models. A
basic introduction to the preferential attachment model can be found in [Easley
and Kleinberg| (2010) and Barabasi and Albert| (1999)). To further understand the
statistical properties of this model, Chung and Lu| (2006), |[Durrett| (2007), and
Van Der Hofstad (2024) show the limit theories and asymptotic characteristics.

The “homophily” mechanism has a profound effect on individuals and groups
in society (Lazarsfeld and Merton, [1954)). This well-documented phenomenon
appears in social networks, and describes how people often prefer to connect
with others who have similar characteristics (McPherson, Smith-Lovin and
Cookl, 2001). For example, people are more likely to build social relations,
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such as marriage, friendship, and colleagues, with someone of the same age or
education, or who has similar hobbies. In other words, homophily influences
the connection structure in human society. Furthermore, many studies show
that homophily affects not only society’s static structures, but also its dynamic
operations. Jackson (2008]) and|Jackson and Lopez-Pintado, (2013) show the effect
of homophily on the welfare of individuals and diffusion patterns of information
in social networks.

On social network platforms (e.g., Twitter, TikTok, and Sina Weibo), rich-
get-richer and homophily often co-occur. This study supposes that it takes two
steps for a person to connect with another in a social network: (1) become
aware of someone through a referral or a social media feed, and (2) decide
whether to follow or connect with that person. Internet celebrities are more
likely to be introduced to others (the first step), implying that the rich-get-richer
phenomenon affects the celebrity’s followers. In the second step, a person prefers
to follow somebody with, for example, the same hobby, which means homophily is
also involved. Moreover, homophily can work contrary to the influence of rich-get-
richer. For example, Lebron James is a basketball superstar with a huge following.
His popularity makes it easy for him to get more followers, but someone with no
interest in basketball will not follow him, even if friends recommend him. Thus, it
is meaningful to study evolving networks, while considering interactions of rich-
get-richer and homophily. Unfortunately, most previous studies typically consider
rich-get-richer and homophily separately. Some recent papers (Lee et al., |2019;
Avin et al., |2020; [Hajek and Sankagiri, 2019) have tried to combine these ideas.
However, they do not focus on statistical problems, such as estimators and central
limit theorems. Hajek and Sankagiri (2019) concentrated on the community
recovery problem of the preferential attachment model without edge-steps, which
greatly inspired our research. Compared with their work, ours estimates the
homophily parameter and our model considers edge-steps, which are common in
evolving social networks.

In this paper, we propose the K-group preferential attachment (KPA) model,
based on the Barabdsi-Albert model (Barabasi and Albert, 1999)) and the work
of |Albert and Barabasi (2002). The unit time point of the dynamic process is
divided into two parts:

(1) Rich-get-richer: The evolving network tries to connect a chosen older node
to the new node. The higher the degree of the older node, the higher the
probability that it will be chosen.

(2) Homophily: The new node will accept the connection with a probability
dependent on the similarity of the two nodes.

We divide all nodes into K groups according to a specific feature. Homophily
states that nodes in the same group are more easily connected. We introduce a
parameter 0 to the classic Barabdsi—Albert model to represent the influence of
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homophily on the generation of evolving networks. Using the KPA model, we
obtain theoretical results about degrees. Then, we propose the estimators of
the homophily and the other parameters in an evolving network featuring both
rich-get-richer and homophily. We also give the joint asymptotic distribution of
these estimators. It is commonly acknowledged that recommender systems play
a vital role in big data (|Jannach et al., [2010; Ricci, Rokach and Shapiral 2015)).
Accurate estimation of the effects of homophily helps improve the recommender
system of any social network platform. If the homophily is strong, recommending
connections from other groups (i.e., groups to which recommended node does
not belong) is inefficient. In contrast, when the homophily is not strong,
recommending nodes with high degrees from different groups is meaningful.

The remainder of the paper is organized as follows. In Section 2, we introduce
the specific construction process of the KPA model and the meaning of each
random variable. The main asymptotic results are presented in Section 3. The
parameter estimation methods are given in Section 4. Section 5 focuses on
the change point, and Section 6 discusses the robustness of the estimations.
Section 7 contains simulations to illustrate the theoretical results. In Section
8, we apply our methods to real-life data. Simulations showing the robustness of
the estimators and the proofs of the lemmas and theorems are provided in the
Supplementary Material.

Notation

In this paper, for a set M, | M| means the number of elements in M, and
for a constant = € R, |z| means the absolute value of z. We use [n] := {1,...,n},
for some n € Z*, and 1{-} denotes the indicator function.

We use the graph G(t) = (V(¢),E(t),G(t)) to record the state of an evolving
network at time ¢ € Z, where V(t) is the set of nodes, £(t) is the set of edges, and
G(t) is the set of node group labels. Furthermore, ¢ is discrete, and if the network
structure changes, t changes (t — t+ 1, G(t) — G(t +1)). An evolving network
on the time range [0,7] means the discrete process {G(t)}_,, where T € Z™.
The graph G(0) is the initial state of the dynamic process, and the graph G(T')
is the final stage.

2. Model

According to the classic Barabdsi—-Albert model, an initial graph G(0) has an
isolated node with one loop, and its degree is one (Chung and Lu, [2006). There
are two operations on the evolving network:

e Vertex-step: A new node w is added to the network, and connects to node
u with the edge (w,u).

e Edge-step: No new node arrives, but a new edge (w,u) is added to the
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(a) v(t) = 1 (b) v(t) =

. e . -
0

Figure 1. The dotted circle shows the graph G(¢t —1); the node outside the circle
represents the new one, and the arrow represents the new edge at time ¢.

network. Nodes w, u are pre-existing in the network.

Here, V(t) is the node set in graph G(t). Let v(t) := |V(¢)| — |[V(t — 1)|. For
t >0, G(t) is formed from G(¢ — 1) by performing a vertex-step when v(t) = 1, or
an edge-step when v(t) = 0. Assume there are K groups of nodes in the network,
where K is a fixed known constant. Let g; € [K] be the group label of node i.
We make the following assumptions:

Assumption 1. Group label g; is known (or observed) for each node i.

Assumption 2. The new node comes from group k with unknown probability p;
at the vertex-step, for k € [K], where py € [0,1] and 31, pp = 1.

Assumption 3. {v(t)}{_, are independent and identically distributed (i.i.d.)
random wvariables with a Bernoulli distribution B(1,q), where ¢ € (0,1] is an
unknown constant.

Assumption 3 implies that ¢t is an approximation for [V(¢)].

Assumption 4. In the initial graph G(0), the number of nodes from group k is
png. We assume that ng is a constant large enough for pyng to be an integer,
for k € [K]. Each node is isolated and has a loop (the node’s degree is one).

Next, we discuss the process of generating network data by using a KPA
model in detail. Beginning with the initial graph G(0), with ng (ng > K) isolated
nodes (each node has a loop) from K groups, v(t) is generated randomly at time
t. Let d;(t) be the degree of node i in G(t). Next, the two operations are as
follows:

e Vertex-step:

Step 1. A new node w comes to the network at time t + 1.

Step 2. An older node u; in G(t) is chosen to connect to w with probability
duy () /{2 ey di(®)}. If ug and w are from the same group, w accepts
the connection without hesitation. Otherwise, w rejects the connection
with probability 1 —~, v € (0, 1].
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Step 3. If w successfully connects to u; in Step 2, the vertex-step process
stops. Otherwise, the network chooses another node in G(t) to connect
with w in Step 4, after w rejects u;.

Step 4. Another node wu, in G(t) is chosen with probability ad,,(t)/
{ZiEV(t),gi:gw d;(t)}, for a € (0,1], if up and w are from the same group.
Otherwise, the chosen probability is (1 — a)du, (t) /{3 icv 1) giz. 4i(t)}-
Furthermore, if u; and w are from the same group, w accepts the
connection without hesitation. Otherwise, w rejects u, with probability

1—7.
Step 5. If w successfully connects to uy in Step 4, the vertex-step process

stops. Otherwise, the network chooses another node to connect to w,
and goes back to Step 4.

e Edge-step: This process is identical to the vertex-step, except for Step 1.

Step 1. No new node arrives at time t. Randomly select a node w in the
network with probability d.,(t)/{> ey« di(t)}

Remark 1. We allow multiple edges between any two nodes in the edge-step.
The first edge between the two nodes denotes following to become a friend,
and subsequent edges denote liking, commenting, and other interactions after
becoming friends. Both following and interactions increase the degrees of the
nodes.

Remark 2. In the vertex-step, both the number of nodes and the number of
edges increase by one. In contrast, only the number of edges increases by one in
the edge-step. When ¢ is away from zero and t tends to infinity, the number of
nodes and the number of edges have the same order. From page 128 of Newman!
(2018)), the connectance or density p of the present network is |E|/{(|V|—1)|V|},
where |£] is the number of edges, and |V| is the number of nodes. Thus, p tends
to zero, and the network is sparse.

Remark 3. The case v = 1 means connections form all groups are accepted
without hesitation, which implies there is no homophily effect on the network. If
~v < 1, then connections from other groups are rejected with a certain probability,
which implies that nodes of the same group are more easily connected, and
homophily exists in the network. To illustrate the meaning and role of the
parameter v in dynamic networks, we present three examples.

1. Groups with different political orientations form different communities on
Twitter. After observation, people with different political orientations follow
each other very little. At this point, the dynamic network parameter - is
close to zero.
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2. On TikTok, users can follow each other. Users who like different ball games
come from different communities. Users who like basketball tend to follow
other users who like basketball, or who post about basketball. However,
they sometimes also follow or know about other popular sports-related users,
such as football or tennis players. Here, the dynamic network parameter ~y
is away from zero.

3. Some groups in social networks overlap significantly. For example, Chinese
young people who are interested in an animation also pay close attention to
the game. In this case, v may be close to one.

If v = 1, the recommender should recommend older nodes with high
degrees from different groups to the new node to construct a large network with
centralized nodes. If v is small, recommending nodes from the same group is
safer. As a result, many sub-networks of different groups are generated.

We suppose that people do not refuse to make friends with people who
share their interests, so nodes must accept connections from the same group.
Furthermore, we assume that if a person refuses to be friends with a celebrity
because their interests do not match, he or she will pay more attention in future to
people with the same interests, rather than simply because the person is famous.
Thus, if the new node rejects connections from other groups the first time, the
older nodes in the same group will be chosen with probability « next time, where
« is large. If we know information about a connection rejection, we can infer
and estimate y. However, general network data shows only information about
successful connections. Thus, we introduce the following discussion and a new
parameter 6.

Using the above details for the KPA model, we can calculate the conditional
probability of the edge e(t + 1) := (ey(t + 1), ea(t + 1)) connected at time ¢ + 1,
where e (t + 1), e2(t + 1) are the two nodes of the edge e(t + 1):

Ple(t +1) = (w, w)|gu, gu, G(1)}

du(t) a(l —v) Zi,gﬁﬁgw di(t) du(t) case 1:

Eiev(t) di(t)  v+a(l—7) Ziey(t) di(t) Zi,gi:gw dz‘(t)’ ’

7 du(?) case 2;

)yt al =) Yieve di(t)’ ’
a du(t) { du () + (1= 1) Zi’gz‘#gw d;i(t) du () } case 3;
2di(t) | idi(t)  y+all—v) Xdit) X, di) ]’ ’

du (1) i du(?) case 4

Yievny di(t) v+ (1 =) Xy dit)’ '
(2.1)

where case 1: g, = gu, v(t +1) = 1; case 2: g, # gu, v(t +1) = 1; case 3:
Jw = Gu, v(t+ 1) = 0; case 4: g, # gu, v(t+1) =0.
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(a) 6 =0.1 (b) 6 =05 (¢) =09

Figure 2. The network generated by the KPA model with the time range [0,100] and
parameters K =2, ¢ = 0.5, p; = py = 0.5.

Let 6 := v/{v+ a(l —~)} € (0,1]. We find that @ is the parameter that
ultimately determines the influence of homophily on the network structure.
Figure 2 shows the influence of 6 on the network structure. Although ~ is
unobservable, we can infer the homophily by estimating # and testing whether
0 = 1, using the methods described in Section 4. We can see that § = 1 infers
v =1, and 0 > ~ implies that § < 1 can infer v < 1. Then, we can recommend
older users to new users using a strategy based on @, as follows. If the result of
statistical inference is # = 1 and there is no homophily, we recommend older users
with high degrees in different groups. This process contributes to constructing a
large network. Otherwise, when the result of the statistical inference is § < 1 and
there is homophily, we recommend older users from the same group to ensure the
new users can connect to the network quickly. Thus, in this study, we foucus on
how to obtain information about the parameter 6.

In the following sections, we focus on 6 instead of v and «.

3. Asymptotic Results

Theorem 1. Under Assumptions 1 to 3, let d;(t) be the degree of node i in graph
G(t). Let Di(t) = > ey di(t)1{gi = k} be the total degrees from group k in
G(t), for k € [K]. When t tends to infinity,

D
2t

Pk-

2

Here, Dy(t)/2t is the ratio of the degrees from group k, the sum of the nodes
degrees from group k divided by the total degrees at time t.

Consider the edge added at time ¢, e(t) = (ei(t),e2(t)). Let X(t) =
1{ger(t) = Geatry} and S(t) = >°i_, X(i). Here, S(t) is the number of edges when
two nodes are from the same group in graph G(t).
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Corollary 1. Under the conditions of Theorem 1, for any node i in graph G(t),
we have when t tends to infinity,

0) i, g
21

Corollary 1 coincides with the sparsity in Remark 2.

Corollary 2. Under the conditions of Theorem 1, we have that when t tends to
mnfinity,

K
Silf)gl—i-Q(Zpi—l).
k=1

Theorem 1 implies a limit of the ratio of nodes’ degrees from group k.
However, the limit might differ from what we get at a particular time ¢t. We
give a probabilistic estimate of the difference in the following theorem.

Theorem 2. Under Assumptions 1 to 4, for some time point t, we have:

> 1
P{|Dy(t) — pr(2t +ng)| > 2¢,(t)t/?} < Cre~ta®} if 54 <¢sk
2 1
P{|Di(t) = pr(2t +no)| 2 2e5(t)log"*(1)} < Coe 2OV if g = 5,
2 /,2—q(2—6 . 1
P{’Dk(t) —pk(2t + TL())’ > 203(t)} < Cge_{c3(t)} feem ), Zf 0< qg < m,

where ¢1(t), ca(t), and c3(t) are strictly monotonically increasing positive func-
tions of t, and C, Cy, and Cs are constants greater than zero.

Remark 4. The phase transition phenomenon in Theorem 2 is because of
Z;Zl §12=9-2 with different g, which is described in detail in Section S5 of the
Supplementary Material.

Remark 5. To better understand the convergence rate of the group degree, let

cr(t) = log'*(t), es(t) = {tlog(t)}'/?, and cs(t) = {#*~%=") log()}'/%. Then,

1
P{|Dy(t) — pe(2t + no)| > 2t/21og"*(t)} < Oyt if 55 <a<l,
P{|Dy(t) — pr(2t + ng)| > 2t%og(t)} < Cut ™1, if = ——
1
P{|Dy(t) — pi(2t + ng)| > 2t192=0/210g"2(1)} < C5t~1, if 0 < ¢ < T
The degree distribution obeying the power law is an attractive property of

the classic preferential attachment model. For the KPA model, the nodes are
from K groups. We now have the power-law degree distribution for each group.

Theorem 3. Under the conditions of Theorem 2, let my 4(t) denote the number
of nodes with degree d from group k in graph G(t). Note that my 1(0) = pyno and
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(a) 8,p1,9 = (0.1,0.5,0.5) (b) 0,p1,9 = (0.5,0.5,0.5) (c) 8,p1,9 =(0.9,0.5,0.5)

(d) 0,p1,9 = (05701a 05) (e) 0,p1,9 = (057 05705)

(g) 0,p1,9 = (0.5,0.5,0.1) (h) 0,p1,9 = (0.5,0.5,0.5) (i) 0,p1,9 = (0.5,0.5,0.9)

Figure 3. The z-axis is log(d) and the y-axis is log{my, «(T)/T'}.

myo(t) =0. For k € [K], letting My 4 = lim; oo E{my. q(t)}/t, we have

d .
_ 2qps H U-1E2-9q)  d—{+2/2-9}

Cd—qi 2+(2-9q)

k,d
=2

Figure 3 shows the power-law degree distribution of a simulated network data
set where T' = 100000, and K = 2. Hollow nodes and solid nodes come from two
groups, and the solid line is y = —{1+2/(2 —q)}z + C.

Theorem 3 implies that the rich-get-richer mechanism leads to a degree
distribution following the power law. For network data with a power-law
degree distribution, stochastic block models (SBMs) cannot explain the signif-
icant difference between the nodes’ degrees, and degree correction block models
(DCBMs) cannot explain the existence of nodes with enormous or tiny degrees.
In contrast, our KPA model is suitable for interpreting network data with a
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power-law degree distribution. We show the significant difference in the degree
distributions between the SBM model and the rich-get-rich model in Section S1
of the Supplementary Material.

4. Parameter Estimation
4.1. With historical information

The parameters involved in the KPA model are (0, {py}i_,, q), where
S ok =1 Let ¥ = (6, {px}55',¢)7. Then, {G(t)}T, is an evolving network
process generated by a KPA model with the time range [0, T]. Based on {G(¢)},,
we can obtain the MLE of the parameters:

S o) = Lgaw =K} _ XL, ()

For k € [K], = ST o) 1 T
0 = argmaxlog Ly(0{G(t) }izo),
where
log Lo (0{G(t) }—o)
N tTl ki]l{ (8) = 1, ges) = Geaty = K} log [Pi(t) + (1 = 0) {1 — Pe(1)}]

+Z L{o(t) =0, gey (1) = Geary = k}log (Pi(t) [Pe(t) + (1 — 0) {1 — Pu(t)}])
+D ) o) = 0,0e,1) = ks Geary # K} log [Pi(t) {1 — Pi(1)} 0] (4.1)

e(t) = (ew(t), ex(t)), € = mingep{min{P(t)/(1 — Fi(t)) : t € [1,T],ge,) =
Gea(ty = k}}, Pri(t) = Dyt — 1)/[2(E — 1) + no).

Definition 1. To avoid confusion of symbols, let ¢* = (6", {pp ! ,q “)T be the
vector of true parameters of the KPA model. Let 1) = (9 P} 4) T be the
MLE based on {G(¢)},.

Theorem 4. Assume the evolving network {G(t)}_, is generated by a KPA
model under Assumptions 1 to 3. Then, when T tends to infinity,

Theorem 4 guarantees the convergence of the MLE, and we can obtain the
asymptotic normality.
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Theorem 5. Under the conditions of Theorem 4, when T tends to infinity,
T2 () —4*) % N(0, 27,
S {p;t(l — Pi) pi(1 —pi)? } 0 0

o p;+ (1 —pp)(1—0%)
> = 0 Sos 0 ,
(1 —q*)

where p = 1 — S0 ' pi and oy is a (K — 1) x (K — 1) symmetric matriz

satisfying

. q"/ Pk T J;
zm(m:{/f B
a(0; + i)/ (pipk), i=j=1

Corollary 3. Under the conditions of Theorem 4, when T tends to infinity,
TSV — ") % N(0. Iis),

where I,y is the (K 4+ 1) x (K + 1) identity matriz, and 3 is the estimator of

> ) )
pr(1 — P pr(1 — pp)?
2521 {pk( A pk) ¥ - Pk( APk) i } 0 0
. 0 e+ (1 —pe)(1-0) )
Y= 0 Yoo O )
1
0 0 ——
L 41 —4)

where pg =1 — ZkK;ll P and

S = {@/ﬁK, i j:
(D + pK)/(DiPK), i=j=L.

Theorems 4 and 5 exhibit the excellent asymptotic properties of the MLE.
We can construct a confidence interval for 8 with level «,

CL= [0 — ftaj2D, 0 + 1024l (4.2)

where A = (T 32, [pr(1 = pi) /0 + pr(1 — pr)?/{px + (1 — pr)(1 — 6)}])7"/2, and
Pay2 is the o/2 upper-quantile of the standard normal distribution. Corollary 3
implies limr_, o, P(0* € CI) =1 — « if the null hypothesis is valid.

For the case 6* = 1, there is no homophily in the evolving network.
Whether an evolving network has homophily is a significant issue for researchers.
Therefore, we construct a hypothesis test as follows:
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The validity of the null hypothesis indicates that there is no homophily in
the network. Note that if #* = 1, then Y1, [pr(1 — p}) /0" + pr(1 — p1)?/{p; +
(1 —p;)(1—6*)}] = K — 1. Construct the rejection region:

D=1{0:0¢c(0,0.)}

O =1— p{T(K — 1)} 2 (44)

Theorem 5 implies that limg_ . P(é € D) = « under the null hypothesis
Hy : 6 = 1. Thus, when we have # by the MLE, the criterion for homophily
existing is as follows:

if 6> 0., there is no homophily effect in the evolving network; (4.5)
if 6< 0., the evolving network has a homophily structure. .
Corollary 3 also allows us to test the hypothesis:
HO : 07 :90<—>H1 : 0" #90, (46)
where 0, € (0,1), and
D={6:10—0o > ca},
12 (4.7)

Co —

5 [ pe(1 = pr) Pe(1 — py)?
TZ_:{ 7 +ﬁk+<1—ﬁk)<1—eo>}]

Theorem 5 implies that limz_, P(é € D) = « under the null hypothesis
H() : 9* = 9(].

4.2. Snapshot

A snapshot of an evolving network refers to the present state of the network
without historical information. In our work, the snapshot is the graph G(7T') of
an evolving process {G(¢)}1,.

We propose a parameter estimation procedure based on G(T').

o . v
For ke KL 2e="yep* 1= g0

f = argmax L (0|G(T)),

0€(0,1+€)

(4.8)

where Vi (T) is the set of nodes from group k in G(T'), and &, 1(T) = {(e1,€2) €
S(T) Gy = e = k}, gk,O(T) = {(61,€2> S 8(T) D e = ks es # k} And
L1 (0|G(T)) satisfies
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LT(9|G( )
= Z |E.1(T)| log (mgé ))y {215((;))! (=0 {1 - 21\);((;))\ }D

o [ 00 - 2] =

where & = minge s [{ Du(T) 21T} /{1 — Du(T)/2ET)}).

Theorem 6. Let the evolving network {G(t)}L, be generated by a KPA model
under Assumptions 1 to 3. Let ¢* = (6%, {pk}k 5q")T be the vector of true
parameters of the KPA model. The parameter estimator 1 = (0, Bt g)r
based on G(T) satisfies the following: when T tends to infinity,

P =5y,

Theorems 4-6 provide consistent estimations of the homophily parameter —
0*. The absence of homophily can be viewed as the case §* = 1.

In the real world, most evolving network data sets are in the form of a
snapshot. Thus, Theorem 6 alone cannot infer whether an evolving network has
homophily. However, when we have obtained 6 from the snapshot estimation
method, we can use the following algorithm to test whether the evolving network
has a homophily structure:

Algorithm 1 Homophily structure test on the snapshot.

Input: A snapshot graph G(T'); the number of randomized trials R; the statistical
significance level a.
Output: 1 or 0.
“1”: this evolving network has a homophily structure;
“0”: there is no homophily effect on this evolving network.

1: Estimate v by to get ¢ = (57 {ﬁk}f 11,6) and &(T);

2: Assuming ¢* = (1, {ﬁk}fgf, d) ", generate an evolving network with the time range
[0, |E(T)|] by G(0) with ng nodes satisfying Assumption 4 and the KPA model in R
trials;

3: Estimate 6 using the snapshot estimation method in the rth trial, and record the
estimator as 0, for r € [R];

4: Let 0, r be the a-quantile of {6, }2_,;

5: return 1{0 < 6, r};

The effectiveness of Algorithm 1 is demonstrated in Simulation 7.4.

5. Location of the Change Point

A change point 7* € [2,T] means the parameter 6* of a KPA model changes
at time 7%, which implies that the influence of homophily on the network structure
has changed. Assume that the network follows a KPA model with parameter 67
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in the time range [0, 7*], and follows a KPA model with parameter € in the time
range [7* + 1, T}, such that 65 # 0.

Assumption 5. 7% € [ty, T — to], where to/T = ¢y, ¢y € (0,1) is a constant.

Assumption 6. There is no difference in the parameters ({p;}i_', q*) before
and after the change point 7*.

Assumption 5 guarantees that we have enough information before and after
the change to locate the point 7*. Assumption 6 excludes the influence of other
factors.

We estimate the change point 7* by using the maximum likelihood method:

7 = argmax max log Ly(61[{G(t)};_,) + max )long(Hg\{G(t)}tT:T) ;

to<T<T—to | 01€(0,14€1) 02€(0,14€3
0, = argmax log L,(0,[{G(t)}_,);
01€(0,14€1)
0> = argmax log Ly(6:[{G(1)}/_,), (5.1)

02€(0,14€2)

where €; = mingeg)(ming[Py(¢) /{1 — Pu(t)} : t € [1,7], gert) = Geary = kJ), and
€2 = Minge g (ming [Py (t) /{1 — Pp(t)} : t € [T + 1, T, Gey(t) = Geatry = KJ)-
Here, log Ly(0|{G(t)}) is defined by (4.1)).

Theorem 7. Under Assumptions 1 to 6, we have when T tends to infinity,

|7A_ - T*| a.s.
— — 0.
T

6. Robustness of the Estimation and the Group Label Recovery

This section discusses the robustness of the proposed estimators from various
perspectives. The KPA model’s estimation accuracy is influenced by several
factors: the incorrect or missing assignment of group labels to nodes; unobserved
edge connections in the network generation process; and the instability of the
distribution parameter ¢ of the vertex-steps.

Based on our research and simulations, we conclude the following about the
robustness of our estimators:

e The absence of group labels for nodes can be considered a special case of
erroneous group labels, because a random label can be assigned to each
node without a label. When 6* = 1, the CLT of T"/2(f — 1) still works, even
though the nodes are labeled as wrong groups with a probability away from
one. When 0* < 1, the effect on the estimation is slight when nodes are
assigned to incorrect groups with a small probability. However, if the nodes
with erroneous group labels have high degrees, they can severely affect the
parameter estimation, even in small and finite numbers. To address this
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issue, we propose a method for recovering group labels, following Hajek and
Sankagiri (2019). Note the following:

e Our estimators still perform well, even if edges added to the network are
unobserved with a certain probability.

e The convergence of our estimation method is proved both theoretically and
experimentally, even if the parameter ¢ has undergone a finite number of
changes.

Therefore, our estimators are robust. Details of the methods, theoretical
results, and proofs and simulations related to the robustness can be found in
Sections S2 and S3 of the Supplementary Material.

7. Simulations

This section verifies the theorems in Sections 3 to 5 by randomly generating
an evolving network from the KPA model in B trials. We design the simulations
as follows:

e The evolving network’s time range is [0, 7], and the number of groups is K.

e The initial graph has ng isolated nodes with loops, and ny x p, nodes are
from group k, for k € [K].

e For each time ¢, a vertex-step occurs with probability ¢q. In a vertex-step,
the node from group k arrives with probability py..

e Record {v(t), e(t) = (e1(t), ex(t))} and {Dy ()}, at each time ¢t € [1,T] in
each trial.

Set

(0.5,0.3,0.2), = 3;
p(K) = { (0:4,0.2,0.2,0.1,0.1), K =5; (71)
(0.2,0.2,0.1,0.1,0.1,0.06,0.06,...), K = 10.
| —

5

7.1. Performance of Dy (T)

This subsection verifies Theorems 1 and 2. Set B = 500, T' = 10000, K €
{3,5,10}, ng = 100, 0 € {0.8,0.5,0.2}, ¢ € {0.9,1/(1 — 0),0.1}, and p = p(K) in
1.

Table 1 shows the convergence of Dy(T)/2T and the effect of ¢ on the
convergence rate. “Bias” records the absolute sum of the bias from B trials:
S IS U Des(T) /2T —pi]/B|. “MSE” records the sum of the mean squared
error from B trials: Sr , S°F  [{Dyo(T)/2T} — pi]?/B.
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Table 1. Behavior of Dy (T)/2T with T = 10000.

Bias MSE
q=09 g=1/(2-0) qg=0.1 q=09 g=1/(2-90) ¢=0.1
K=3 6=08 11564e—03 1.4024e —03 1.844e —03 1.5215e —04 1.8449e¢ —04 4.3004e — 03
0 =0.5 3.526de — 04 4.6249e — 04 3.7849¢ — 03 1.070le — 04 2.2359e — 04 4.4340e — 03
# =02 1.3015e —04 9.8866e —04 1.9522¢ —04 8.6749¢ — 05 2.9715e¢ —04 5.6653¢ — 03
K=5 6=08 14314e—03 1.6414e —03 7.5471le —03 1.9349¢ —04 2.3103e — 04 5.5345e — 03
0 =0.5 9.2040e — 04 1.7393e —03 7.9041e — 03 1.2686e —04 2.8392e — 04 5.4508e — 03
0 =02 6.3920e —04 1.6032e —03 3.4957¢ —03 1.0529¢ —04 3.7104e — 04 6.2910e — 03
K=10 6=0.8 1.7843¢ —03 2.7916e —03 0.0102 2.2084e — 04 2.8741e — 04 5.9235¢ — 03
0=0.5 1.2434e—03 1.3576e —03 7.7375e¢ —03 1.5407e —04 3.4378¢ — 04 6.7235¢ — 03
0 =02 1.6965¢—03 3.850le —03 8.6197e —03 1.2460e —04 4.1959e¢ — 04 7.1033e — 03

7.2. Estimators of parameters with historical information

This subsection verifies Theorems 4 and 5 and Corollary 3. We test the
convergence of § in B simulation trials. Set B = 500, T'= 10000, K € {3,5,10},
ny = 100, 6 € {0.8,0.5,0.2}, ¢ € {0.9,0.1}, and p = p(K) in (7.1

{Dk ()11, v(t), Gey(t)s Gea () }1—1 are used to construct the maximum likeli-
hood equation and record the estimators of # and X; in the bth trial:- éb, ZA]H,I,,
b e [B].

For é, we have the following. “Bias” records the absolute sum of the bias
from B trials: Y20 (6, —0)/B. “MSE” records the sum of the mean square
error from B trials: 31, (8, — 0)?/B. “Cover rate” records the percentage of B
trials that  fall in the confidence interval: 31, 1{# € CI(b)}/B, where CI(b) =
[0y — taj2 D, 0y + 2], @ = 0.05,

= Pe(1 —pr) pk(l_pk)2
TZ{ : +pk+<1—pk><1—e>}]

For (6 — 6)/%1/%, “Bias” records S22 (6, — 9)/(2}{2,73), “MSE” records
P (8,—0)2/(311.,B), and “Cover rate” records b 1{(6 — éb)/iiﬁ € CI}/B,
where CI = [—ptq/2, fla/2), & = 0.05.

The results of 6, and (6, — 6)/ ﬁ)}ﬁ are recorded in Table 2.

—1/2
A =

7.3. Snapshot

This subsection verifies Theorem 6, the convergence of the snapshot estima-
tion based on graph G(T'). Set B = 500, T = 10000, K € {3,5,10}, no = 100,
qg=0.5, and p = p(K) in .

{{Dr(t) }re1, v(t), Ger(t)s Gear) }1—1 are used to construct the maximum likeli-
hood equation and record the estimator of 0 as f,,.(b) in the bth trial, b €
[B]. {Dw(T),Ex1(T),Ero(T)HE, are used to construct the snapshot estimation
and record the estimator of 6 as 4., (b) in the bth trial, for b € [B].
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Table 2. Performance of § and (6 — 9)/2}{2

6 q=09 ¢=0.1

Bias MSE Cover rate Bias MSE Cover rate
K=3 0=0.8 2.9744e — 05 5.6869¢ — 05 0.956 3.8720e — 04 5.9814e — 05 0.958

0=0.5 —29054e —04 5.2692¢ — 05 0.95 —3.0766e — 05 5.6951e — 05 0.94
0=0.2 2.3003e — 05  3.0974e — 05 0.952 1.5615e — 04  2.9925e — 05 0.946
K=5 0=0.8 —1.6917e —04 3.9761e — 05 0.96 2.7934e — 04  3.6486e — 05 0.962

0 =05 —8.6336ec—05 4.0488¢ — 05 0.95 1.5401e — 04 3.9474e — 05 0.96

0 =02 -1.6008c—04 2.2379¢ — 05 0.956 —2.0367e¢ — 04 2.1806e — 05 0.96
K=10 6=0.8 1.8203e — 05 2.6514e — 05 0.954 6.8822¢ — 05 2.5242e¢ — 05 0.956
0=0.5 —1.6593¢ —04 3.3950e — 05 0.96 2.3263e — 05 3.5618e — 05 0.944
0=0.2 -—1.2789¢ —04 1.8692¢— 05 0.958 —2.3689e — 04 2.0406e — 05 0.942
(A — 9)/2}{2 Bias MSE Cover rate Bias MSE Cover rate
K=3 0=0.38 —0.0306 1.0564 0.946 0.0366 1.0159 0.944
0=0.5 0.0274 0.9302 0.96 —0.0248 0.9675 0.956
0=0.2 0.0237 0.9094 0.964 —0.0457 0.9996 0.958
K=5 0=0.8 —0.0478 1.0184 0.948 —0.0236 0.9684 0.962
0=0.5 —9.3054e — 04 1.0922 0.94 0.0407 0.9865 0.952
0=0.2 —0.0229 0.9492 0.96 0.0563 0.9652 0.958
K=10 6=08 0.0262 0.9633 0.966 —0.0834 0.9840 0.954
0 =0.5 —0.0724 0.9287 0.958 —0.0288 1.0255 0.942
0=0.2 —0.0923 1.0773 0.95 0.0378 0.9487 0.958

Table 3. Comparison of the MLE and snapshot estimations.
Bias MAE MSE

K 0 d 0 by 6 i \észpw) -0 T \éx;ew) —0 T {émgw) —0)? Zzil{én,;(b) - 0)?
3 0.8 —1.2620c — 04 —3.9170¢ — 05 6.1264¢ — 03 6.1511¢ — 03 5.9312¢ — 05 5.9918¢ — 05
0.5 —4.4441c — 04 —5.7596¢ — 04 6.0634¢ — 03 6.1599¢ — 03 5.7998¢ — 05 5.7998¢ — 05
0.2 —4.6652 — 04 —4.7906¢ — 04 4.1808e — 03 4.2455¢ — 03 2.8312¢ — 05 2.8898¢ — 05
5 0.8 —1.2516e — 04 —1.0208¢ — 04 4.9228¢ — 03 4.9908¢ — 03 3.8822¢ — 05 3.9828¢ — 05
0.5 —8.7830¢ — 05 —1.6979% — 04 5.0875¢ — 03 5.1120e — 03 4.0902¢ — 05 4.1537¢ — 05
0.2  24947¢ — 04  2.4115¢ — 04 3.6752¢ — 03 3.6703¢ — 03 2.1145¢ — 05 2.1027¢ — 05
10 0.8 —3.8862c — 05 —4.8347¢ — 05 4.185¢ — 03 4.1786¢ — 03 2.6769¢ — 05 2.6822¢ — 05
0.5 6.696le —05  5.3035¢ — 05 4.3469¢ — 03 4.3455¢ — 03 2.9281e — 05 2.9428¢ — 05
0.2 —1.4646e — 04 —1.8334e — 04 3.7049¢ — 03 3.7002¢ — 03 2.1952¢ — 05 21979 — 05

We calculate the mean absolute error (MAE) and the mean squared error
(MSE) for e = 320, Oie(b)/B and Oupap = b Onap(b)/ B, for b € [B].
Table 3 compares the results of the two methods.

7.4. Homophily structure test on the snapshot

This subsection verifies Algorithm 1. Set B = 500, no = 10, T €
{200,500,1000}, K € {3,5,10}, 6 € {1,0.9,0.95}, ¢ € {0.9,0.5}, and p = p(K)
in if K € {3,5}, and p = (0.1,0.1,...) if K = 10.

10

{Di(T),Exo(T), Exa(T) ., are used to construct the snapshot estimation

and record the estimator of (6, {p;}*',q) in the bth trial: (6, {pr,}E5, db),
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Table 4. The effect of Algorithm 1.

=1 0 =0.95 #=0.9
5 {0, > 0arp} B {0y < Ourp} —p {0 <Ours}
b=1 B b=1 B b=1 B
q=0.9 q=0.5 q=0.9 q=0.5 q=20.9 q=0.5

K=3 T =200 0.946 0.956 0.256 0.286 0.622 0.616

T =500 0.956 0.942 0.452  0.506 0.922  0.932

T =1000 0.958 0.94 0.722 0.736 1 0.996

K=5 T=200 0.956 0.954 0.428 0.396 0.872  0.858

T =500 0.938 0.942 0.724  0.736 0.99 0.994
T =1000 0.944 0.95 0.894 0.926 1 1

K =10 T =200 0.946 0.948 0.712  0.652 0.986  0.976
T =500 0.95 0.94 0.93 0.922 1 1
T =1000 0.948 0.948 0.998 1 1 1

b e [B].

Using Algorithm 1, we obtain 6, , based on the parameters (1, {pr.s}1—;', Gs)
in the bth trial, where o = 0.05 and R = 500. Table 4 records the percentage
of B trials that accept the null hypothesis — >, 1{f, > a.gs}/B — when
0 = 1, and the percentage of B trials that reject the null hypothesis —
S 1{0, < 0aps}/B — when 0 < 1.

7.5. Change point

This subsection verifies Theorem 7, the method of locating the change point
7. Set B = 500, T" € {10000,20000}, K = 10, no = 100, ¢ = 0.5, and p =
(0.2,0.2,0.1,0.1,0.1,0.06, 0.06, . . .).
N—— —

Set ¢ = to/T = 0.1,57'/T € {0.25,0.5,0.75}. The homophily parameter
is 0; before the change point, and 6, after the change point, with (0,6,) €
{(0.4,0.6),(0.1,0.9)}.

D) 11, v(t), Gey(t)s Gea () }1—1 are used to construct the maximum likeli-
hood equation ([4.1)), and to obtain the estimator 7(b), 6,(b) and 6,(b) from
in the bth trial, b € [B]. Table 5 shows the results for # = 3.7, 7(b)/B and

b1 =3, 0:(b)/B, 6, =32, 62(b)/B.

8. Data Application

We selected two real network data sets to test our KPA model and the
estimation methods. Both have group labels for nodes, and one has timestamp
information about edges. The data sets are as follows:
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Table 5. Accuracy of change point location.

Estimator MSE
N B s~ 2 B (4 2 B [, 2
T =1000 (01,05) 4 T ; T 6, 6, Zb:l[{‘r(]g - 71}/T]? Zb:l{ell(;’) 6.} Zb:1{92g’) — 6>}
7=250 (0.1,0.9) 250.092 9.2e — 05 0.0989 0.9008 2.132e — 06 3.7703e — 04 2.6951e — 04
(0.4,0.6) 255.1 0.0051 0.3928 0.6051 2.0025e¢ — 03 1.3744e — 03 5.0610e — 04
7=>500 (0.1,0.9) 500.22 2.2e — 04 0.1008 0.9028 2.548e — 06 1.8752e — 04 4.6358¢ — 04
(0.4,0.6)  500.4 4e — 04 0.3942 0.6056 2.5436e — 03 6.036e — 04 8.1849¢ — 04
T=750 (0.1,0.9) 750.264 2.64e — 04 0.0997 0.9002 2.328¢ — 06 1.4643e — 04 7.7421e — 04
(0.4,0.6)  749.58 —4.2e — 04 0.3967 0.6098 2.5096e — 03 3.897e — 04 1.7278e — 03
N B s~ B 4 : B [,
T =2000 (61,02) IS T ; T él 92 Zb:l [{T(bB) - T}/T]Z Zb:l{gléb) - 91}2 20:1{92;@ - 02}2
7=500 (0.1,0.9)  500.028 1.4e — 05 0.0996 0.9001 6.53e — 07 1.8623e — 04 1.3056e — 04
(0.4,0.6)  494.156 —2.922¢ — 03 0.3931 0.5993 5.5524e — 04 7.4999e — 04 2.2043e — 04
7=1000 (0.1,0.9) 999.996 —2e—06 0.0996 0.9016 9.19¢ — 07 1.0328e — 04 2.1915e — 04
(0.4,0.6)  998.892 —5.54e — 04 0.3961 0.6007 4.6902e — 04 3.5954e — 04 3.5254e — 04
7=1500 (0.1,0.9) 1,500.04 2e — 05 0.0993 0.9026 4.6e — 07 7.2221e — 05 4.3321e — 04
(0.4,0.6) 1,499.3 —3.5e — 04 0.3980 0.6042 3.8961e — 04 1.8925¢ — 04 8.2859%¢ — 04

o CL-10K-1d8-L5 is a network data set with group information, but without a
timestamp from the Network Repository (Rossi and Ahmed| [2015) available
at https:/ /networkrepository.com/CL-10K-1d8-L5.php.

e Soc-political-retweet is a network data set with group information and
timestamp information from the Network Repository (Rossi and Ahmed,
2015|) available at https://networkrepository.com /soc-political-retweet.php.

The basic information about these network data sets is in Table S10 of the
Supplementary Material.

The ésnap of CL-10K-1d8-L5 by the snapshot estimation is 0.9999, and the
émle of soc-political-retweet is 0.0413.

For the snapshot estimation of CL-10K-1d8-L5, the estimated parameters are
(P1, D2, D3, Pas D5, 4) = (0.2,0.2,0.2,0.2,0.2,0.2227). Based on (p1, P2, Ps, Pa, D5, q)
and 6* = 1, with the time range [0,44896], we can test the homophily by
using Algorithm 1. Letting the statistical significance level be a = 0.05 and
the number of randomized trials be R = 500, we have 0,z = 0.9963 and
1{0.9999 < 0.9963} = 0. These results imply there is no homophily in CL-
10K-1d8-L5.

For the MLE of soc-political-retweet, the estimated parameters are (py, pa, ) =
(0.3852,0.6148,0.3020), T = 61157, and K = 2. By , we get 6, = 0.9933,
where a = 0.05 and 6 < 0., which means the evolving network has a homophily
structure.

Tables S1 and S2 in the Supplementary Material show that our estimations
are robust when the nodes are mislabeled with a small probability. Furthermore,
consider the mislabeling that arose with probability, as specified in Assumption
S.1. Theorem S.1 implies that the rejection region is the same, regardless of any
mislabeling. Thus, is still valid. We can still infer that soc-political-retweet
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Figure 4. Degree distribution of CL-10K-1d8-L5.
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Figure 5. Degree distribution of soc-political-retweet.

has a homophily structure, because it rejects the null hypothesis.
Rich-get-richer is another essential mechanism of the KPA model. Figures

4 and 5 show the power-law degree distribution of the data sets. Each group’s

power-law degree distribution is provided in the Supplementary Material.

Supplementary Material

In the supplementary material, we discuss the applicability of the KPA
model. We also give proofs of the theoretical results presented in Sections 3
to 6 and the basic information of datasets in Section 8. More simulations for the
estimations’ robustness and the group label recovery in Section 6 are also listed.
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