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Abstract: We introduce a novel projection mean variance (PMV) measure to con-

struct a nonparametric test for the multisample hypothesis of equal distributions

for univariate or multivariate responses. The proposed PMV measure generalizes

the mean variance index using the projection technique. We obtain the theoretical

properties of the PMV measure and its empirical counterpart. The PMV measure

yields an analogous variance component decomposition. Using this decomposition,

an ANOVA F statistic is derived to test the multisample problem. The proposed

test is statistically consistent against the general alternatives and robust to heavy-

tailed data. The test is free of tuning parameters and does not require moment

conditions on the response. Our simulation results demonstrate that the PMV test

has higher power than the classical Wilks-type methods and DISCO test, especially

when the dimension of the response is relatively large or the moment conditions

required by the DISCO test are violated. We further illustrate our method using

empirical analyses of two real data sets.

Key words and phrases: Independence test, multivariate multisample problem, non-

parametric ANOVA extension, nonparametric tests, projection.

1. Introduction

The multisample problem, that is, testing whether the underlying distribu-

tions of two or more populations are the same, is a classical topic in statistics

and arises in many modern scientific applications. For example, in genomics re-

search, we wish to explore whether gene expression levels differ between distinct

predefined patient groups to identify gene expressions associated with a disease.

In data integration for bioinformatics, we need to know whether data sets from

different labs are distributed identically in order to synthesize information across

labs (Borgwardt et al. (2006)).

Let Fk(z) be the distribution function of the p-variate continuous random

variable Zk, for k = 1, . . . ,K. The multisample problem is concerned with testing
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the null hypothesis

H0 : F1(z) = · · · = FK(z) ≡ F (z), for all z ∈ Rp, (1.1)

against the alternative hypothesis H1 : Fk(z) 6= Fj(z), for some k 6= j ∈
{1, . . . ,K}. When the distributions Fk(z) are normal with constant variance,

two widely used methods for testing the problem (1.1) are the analysis of vari-

ance (ANOVA), for univariate data, and the multivariate analysis of variance

(MANOVA), for multivariate data. These methods effectively detect the location

difference between K independent samples. However, the normality and common

variance assumptions are usually violated in most applications. Thus, much effort

has been devoted to exploring nonparametric test approaches without specific

distribution assumptions. For example, Kruskal and Wallis (1952) proposed a

rank-based test procedure, Kiefer (1959) introduced the K-sample Kolmogorov–

Smirnov and Cramér–von Mises tests, and Scholz and Stephens (1987) extended

the Anderson–Darling test to the K-sample setting.

In general, the above nonparametric test methods are limited to dealing with

univariate data, and are not easily extendable to multivariate settings. In this

paper, we propose a novel nonparametric test for the multivariate multisample

problem. The proposed method is based on the fact that the K-sample problem

(1.1) is equivalent to an independence test between a continuous random vector

and a categorical variable. Specifically, we introduce a latent categorical variable

Y withK categories, denoted by {y1, . . . , yK}. Then, a new random vector (X, Y )

can be defined as X = Zk if Y = yk. In this way, it is easy to see that the original

variables Zk, for k = 1, . . . ,K, are one-to-one transformed to the new variables

(X, Y ). Thus, the multisample problem has the following equivalent form:

H0 : pr{X ≤ x|Y = yk} = F (x), for all x ∈ Rp and k = 1, . . . ,K,

compared with the alternative hypothesis H1 : pr{X ≤ x|Y = yk} 6= pr{X ≤
x|Y = yj}, for some k 6= j ∈ {1, . . . ,K}. Thus, (1.1) is equivalent to the following

problem:

H0 : X and Y are independent versus H1 : X and Y are dependent. (1.2)

In the following context, we mainly restrict our attention to inferring the inde-

pendence test problem (1.2).

Recently, Cui, Li and Wei (2015) proposed a mean variance (MV) index

for feature screening in high-dimensional discriminant analysis. The MV index
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quantifies the dependence between a continuous random variable and a categor-

ical variable. This measure has also been applied to test the problem (1.1) for

univariate data by Cui and Zhong (2019). In general, the above methods cannot

effectively handle the multivariate multisample problem (1.1) or the independent

test problem (1.2). The main reason is that the MV index is substantially rank-

based and computationally expensive to implement when the dimension of X is

moderate or high.

Here, we generalize the univariate MV index to an arbitrary dimension using

a projection technique. The projection method is a useful tool for multivariate

statistical inference, and can be found in Baringhaus and Franz (2004), Escan-

ciano (2006), and Zhu et al. (2017), among others. The new measure has many

nice properties. First, it is equal to zero if and only if X and Y are independent.

Second, it has a closed-form expression, and can be estimated easily from the

data. Third, it does not require any moment conditions and is easily applica-

ble in arbitrary dimensions of X. Finally, it is robust to heavy-tailed data and

outliers.

The proposed measure provides an analogous variance component decompo-

sition. Thus, we can derive nonparametric extensions of the typical ANOVA and

MANOVA tests, based on which, we obtain an analog to the ANOVA F statis-

tic to test hypothesis (1.1). A related research topic is the distance components

(DISCO) test proposed by Rizzo and Székely (2010), who use all between-sample

pairwise distances to obtain an analog to the ANOVA decomposition of distances.

An important difference between our method and the DISCO test is that the lat-

ter requires the moment condition E[‖X‖] <∞. Recently, Zhu et al. (2017) and

Kim, Balakrishnan and Wasserman (2020) demonstrated that the distance-based

statistics, distance covariance (DCOV, Székely, Rizzo and Bakirov (2007); Székely

and Rizzo (2009)), and energy statistic (Székely and Rizzo (2013b)) may suffer

from low power when the moment condition is violated or when extreme observa-

tions exist. Thus, it is not difficult to imagine that the distance-based DISCO test

may also inherit this shortcoming in certain settings. However, such data subject

to heavy-tailed errors are often encountered in various areas of science, especially

in the big data era. Examples include high-frequency financial data, fMRI data,

and gene expression data. Thus, our aim is to develop new robust methods to

tackle the multisample problem for heavy-tailed high-dimensional data.

The rest of the paper is organized as follows. In Section 2, we introduce

the projection mean variance measure and its sample counterpart, and establish

the theoretical properties of the proposed estimators. In Section 3, we present

some new interpretations of the MV index. In Section 4, we describe the PMV-
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based test. PMV decomposition for multifactor models follows in Section 5. The

results from our numerical studies are reported in Sections 6 and 7. We provide

some discussion in Section 8. All technical proofs are provided in the online

Supplementary Material.

2. Projection Mean Variance Measure

To facilitate the presentation, we first review the MV index. Let the latent

group variable Y be a categorical variable with K classes {y1, y2, . . . , yK}. When

X is univariate, Cui, Li and Wei (2015) proposed the MV index for feature

screening in high-dimensional discriminant analysis, given by

MV(X|Y ) := EX [varY (F (X|Y ))], (2.1)

where F (x|Y ) = pr{X ≤ x|Y }. Cui, Li and Wei (2015) further showed that

MV(X|Y ) =

K∑
k=1

pk

∫ ∞
−∞

[Fk(x)− F (x)]2dF (x), (2.2)

where pk=pr{Y =yk}, Fk(x)=pr{X≤x|Y =yk}, and F (x)=pr{X≤x}.
It follows from (2.2) that the MV index can be viewed as the weighted av-

erage of the Cramér–von Mises distances between conditional and unconditional

distribution functions. This indicates that MV(X|Y ) = 0 if and only if the distri-

butions of the K populations are identical. Thus, MV(X|Y ) is a natural measure

to test the independent problem (1.2).

We next extend the univariate MV index to the setting where the dimension-

ality of X is arbitrary by integrating over all one-dimensional projections. Let

Sp−1 = {β ∈ Rp : ‖β‖ = 1} be the unit hypersphere in Rp, for any p > 1. Our

approach relies on the following lemma.

Lemma 1. Let X be a p-dimensional random vector, and let Y be a categorical

variable. Then, we have that

X |= Y ⇐⇒ βTX |= Y, for any β ∈ Sp−1, (2.3)

where “⇐⇒ ” stands for “ equivalent to,” and “ |= ” indicates independence.

This result in (2.3), together with (2.1), motivates us to propose the following

projection mean variance.

Definition 1. Let X be a p-dimensional random vector, and let Y be a categorical

random variable with K classes {y1, y2, . . . , yK}. The projection mean variance
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(PMV) index between Y and X is defined by

PMV(X|Y ) := c−1p

∫
Sp−1

EβTX[varY (FβTX(βTX|Y ))]dβ, (2.4)

where FβTX(u|Y ) = pr{βTX ≤ u|Y }, cp = πp/2−1/Γ(p/2), and Γ(·) is the gamma

function.

From the definition in (2.4), we can see that PMV(X|Y ) is the integration of

the MV index between the projected random variables βTX and Y. In general,

it is difficult to compute such an integral over the p-dimensional unit sphere.

Fortunately, PMV(X|Y ) has a closed-form expression, owing to the following

lemma.

Lemma 2. (Escanciano ( 2006)) For any two nonzero vectors v1,v2 ∈ Rp, we

have that ∫
Sp−1

I(βTv1 ≤ 0)I(βTv2 ≤ 0)dβ = cp{π − ang(v1,v2)}, (2.5)

where ang(v1,v2) := arccos{vT1 v2/(‖v1‖‖v2‖)} is the angle between v1 and v2.

Let FβTX(u) = pr{βTX ≤ u} and FβTX(u|Y = yk) = pr{βTX ≤ u|Y = yk}.
Based on Lemma 2, we provide the following useful properties for PMV(X|Y ).

Theorem 1. If pk = pr{Y = yk} > 0, for k = 1, . . . ,K, then we have that

(i) PMV(X|Y )= c−1p
∑K

k=1 pk
∫
Sp−1

∫∞
−∞[FβTX(u|Y = yk)−FβTX(u)]2dFβTX(u)dβ;

(ii) PMV(X|Y ) = 0 if and only if X and Y are statistically independent;

(iii) PMV(X|Y ) = E[ang(X1 − X3,X2 − X3)] − PSW(X|Y ), where (X1, Y1),

(X2, Y2), and (X3, Y3) are independent and identically distributed (i.i.d.)

copies of (X, Y ), and

PSW(X|Y ) :=

K∑
k=1

p−1k E[I(Y1 = yk, Y2 = yk)ang(X1 −X3,X2 −X3)];

(iv) PMV(a + cAX|Y ) = PMV(X|Y ), where A ∈ Rp×p is any orthonormal

matrix, for a ∈ Rp and c ∈ R.

We present some remarks on Theorem 1. Property (i) indicates that PMV(X|
Y ) can also be represented as a weighted average of the distances, such as the

MV index in (2.2). Property (ii) implies that PMV(X|Y ) is generally applicable
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as an index to measure the dependence between a continuous random vector and

a categorical one. Property (iii) indicates that PMV(X|Y ) has a closed form,

and is thus easily estimated from the data. Property (iv) suggests that PMV is

invariant with respect to the group of orthogonal transformations.

Note that the integration over Sp−1 in (2.4) implicitly requires p > 1. Using

property (iii) of Theorem 1, we can extend the original definition of PMV in (2.4)

to the one-dimensional setting. With a slight abuse of notation, we still define

the generalized PMV index as PMV(X|Y ), given by

PMV(X|Y ) := E[ang(X1 −X3,X2 −X3)]− PSW (X|Y ). (2.6)

When p = 1, the following result establishes the relationship between MV(X|Y )

and PMV(X|Y ).

Corollary 1. Assume that X is univariate. If pk = pr{Y = yk} > 0, for all

k = 1, . . . ,K, then we have that PMV(X|Y ) = 2πMV(X|Y ).

Corollary 1 indicates that PMV(X|Y ) is proportional to MV(X|Y ) for the

one-dimensional random variable X. This property, together with Theorem 1,

suggests that PMV(X|Y ) can measure independence for any p ≥ 1.

We next develop the empirical estimate of PMV(X|Y ). Suppose that {(Xi,

Yi), i = 1, . . . , n} is a random sample of (X, Y ). To simplify the notation, we

denote

p̂k := n−1
n∑
i=1

I(Yi = yk), gnU (u) := p̂r{βTX ≤ u} = n−1
n∑
i=1

I(Ui ≤ u),

gnU,Y (u; yk) := p̂r{βTX ≤ u|Y = yk} = p̂−1k n−1
n∑
i=1

I(Ui ≤ u, Yi = yk),

where Ui := βTXi. By property (i) in Theorem 1, we can give a straightforward

plug-in estimator of PMV(X|Y ), as follows:

P̂MVn(X|Y ) :=
1

ncp

K∑
k=1

p̂k

n∑
i=1

∫
Sp−1

{
gnU,Y (βTXi; yk)− gnU (βTXi)

}2
dβ.

Note that the above plug-in estimator is intractable. To put P̂MVn(X|Y )

into practice, we present two equivalent forms in the following theorem: For

i, j, r = 1, 2, . . . , n and k = 1, 2, . . . ,K, denote
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Ãjr;i := ajri −
1

n

n∑
j=1

ajri −
1

n

n∑
r=1

ajri +
1

n2

n∑
j,r=1

ajri,

B̃ij;k := bij;k −
1

n

n∑
i=1

bij;k −
1

n

n∑
j=1

bij;k +
1

n2

n∑
i,j=1

bij;k,

where ajri := ang(Xj −Xi,Xr−Xi), bik := I(Yi = yk), and bij;k := bikbjk. Here,

define arccos{0/0} = 0. Then, we obtain the following results.

Theorem 2. For a given random sample {(Xi, Yi), i = 1, . . . , n}, we have that

P̂MVn(X|Y ) = − 1

n3

K∑
k=1

p̂−1k

n∑
i,j,r=1

Ãjr;iB̃jr;k (2.7)

=
1

n3

n∑
i,j,r=1

aijr −
1

n3

K∑
k=1

p̂−1k

n∑
i,j,r=1

bikbjkaijr. (2.8)

Using (2.7), it is easy to compute P̂MVn(X|Y ) in practice. A further discus-

sion on its implementation is given in Section 4.2. The result in (2.8) is useful

for studying the theoretical properties of P̂MVn(X|Y ). In fact, each term on the

right-hand side of (2.8) can be expressed easily in U -statistics. Then, we can es-

tablish their tail probability inequalities using the theory of U -statistics (Serfling

(1980)) and obtain the following result, the proof of which can be found in the

Supplementary Material.

Theorem 3. Assume that there exist two positive constants c1 and c2, such

that c1/K ≤ min1≤k≤K pk ≤ max1≤k≤K pk ≤ c2/K and K = O(nκ), for some

0 ≤ κ < 1/6. Then, for any α ∈ (0, 1) and sufficiently large n, there exists a

positive constant c0, such that

pr

{
|P̂MVn(X|Y )− PMV(X|Y )| ≤ c0

√
K6

n
log

(
K

α

)}
≥ 1− α.

The condition c1/K ≤ min1≤k≤K pk ≤ max1≤k≤K pk ≤ c2/K is also used

in Cui, Li and Wei (2015). When K is fixed, the condition is automatically

satisfied and |P̂MVn(X|Y )− PMV(X|Y )| = O(n−1/2). Theorem 3 suggests that

limn→∞ P̂MVn(X|Y ) = PMV(X|Y ) if K = O(nκ), with 0 ≤ κ < 1/6. However,

when X is univariate, we obtain from Lemma A.4 in Cui, Li and Wei (2015) that

limn→∞ M̂Vn(X|Y ) = MV(X|Y ) if K = o(n). Thus, the order κ in Theorem 3

may be relaxed further to 0 ≤ κ < 1. This is beyond the scope of this work, but

is an interesting topic for future research.
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3. Extension of ANOVA via MV Index

In this section, we illustrate that the MV index can provide a decomposition

similar to the variance components in the ANOVA. Then, in the next section,

we generalize this decomposition to the PMV index to construct an analogous

ANOVA F statistic for the testing problem (1.1).

Note that the definition in (2.1) is formally similar to the quantities E[var(X|
Y )] and var(E[X|Y ]), both of which appear in the basic variance decomposition

formula

var(X) = E[var(X|Y )] + var(E[X|Y ]). (3.1)

After some algebra, we obtain that

var(E[X|Y ]) =

K∑
k=1

pk(E[X|Y = yk]− E[X])2, (3.2)

E[var(X|Y )] =

K∑
k=1

pkE[(X − E[X|Y = yk])
2|Y = yk]. (3.3)

From the above two equations, we can see that E[var(X|Y )] and var(E[X|Y ])

describe the population between and within the group variation.

From (2.2) and (3.2), we can see that MV(X|Y ) and var(E[X|Y ]) have sim-

ilar forms. This motivates us to obtain a similar variance decomposition for

MV(X|Y ). This result is provided in the following theorem.

Theorem 4. If pk = pr{Y = yk} > 0, for k = 1, . . . ,K, then we have that

E[I(X1 > X3)I(X2 ≤ X3)] = MV(X|Y ) + SW(X|Y ), (3.4)

where SW(X|Y ) :=
∑K

k=1 pk
∫∞
−∞E[{I(X ≤ x)− Fk(x)}2|Y = yk]dF (x).

We next provide some intuition to explain the connection between (3.4) and

the population ANOVA decomposition in (3.1). First, MV(X|Y ) and (3.2) have

a similar form that can describe differences between groups; second, SW(X|Y )

and (3.3) enjoy a common property that can measure differences within each of

the groups. Next, consider the following decomposition: I(X ≤ x) − F (x) =

[Fk(x) − F (x)] + [I(X ≤ x) − Fk(x)], for any x ∈ R. Then, it is easy to obtain

that

var(I(X ≤ x)) =

K∑
k=1

pk[Fk(x)− F (x)]2+

K∑
k=1

pkE[{I(X ≤ x)− Fk(x)}2|Y = yk].
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Integration over x ∈ [−∞,∞] and simple calculations yield that∫ ∞
−∞

var(I(X ≤ x))dF (x) = E[I(X1 > X3)I(X2 ≤ X3)]

= MV(X|Y ) + SW(X|Y ). (3.5)

Thus, (3.5) can be viewed as a direct nonparametric extension of (3.1) by replac-

ing X and its total variation var(X) with the binary variables I(X ≤ x) and the

cumulative total variation
∫∞
−∞ var(I(X ≤ x))dF (x).

In summary, from (3.5) and Theorem 4, we obtain a nonparametric extension

of the typical ANOVA, as follows:

Total variation:
∫∞
−∞ var(I(X ≤ x))dF (x) = E[I(X1 > X3)I(X2 ≤ X3)];

Between-group variation: MV(X|Y ) =
∑K

k=1 pk
∫∞
−∞[Fk(x)− F (x)]2dF (x);

Within-group variation: SW(X|Y )=
∑K

k=1 pk
∫∞
−∞E[{I(X≤x)−Fk(x)}2|Y =

yk]dF (x).

As mentioned above, this decomposition is similar to that in an ANOVA, except

that it does not rely on assumptions on the distribution of the population. Thus,

it is a useful tool, with many statistical applications.

4. The PMV Tests of Equal Distributions

4.1. Method

We first show that the PMV index has an interpretation similar to that in

(3.5). By Lemma 2, it can be shown that

c−1p

∫
Sp−1

∫ ∞
−∞

var(I(βTX ≤ u))dFβTX(u)dβ = E[ang(X1 −X3,X2 −X3)],

c−1p

∫
Sp−1

SW(βTX|Y )dβ = PSW(X|Y ).

These, together with the definition of SW(βTX|Y ), indicate that E[ang(X1−
X3,X2−X3)] and PSW(X|Y ) can be viewed as the population total variability

and within-group variation, respectively. Thus, (2.6) suggests that E[ang(X1−
X3,X2−X3)] can be decomposed into two sources: within-group variation PSW(X|
Y ) and between-group variation PMV(X|Y ). That is, (2.6) can naturally provide

a nonparametric analysis of variance decomposition.

Note that (2.6) is a population decomposition, and its empirical counterpart
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can be obtained from (2.8). Using classical ANOVA notation, we rewrite (2.8) as

SST = SSB + SSW , (4.1)

where SST = (1/n3)
∑n

i,j,r=1 aijr, SSW = (1/n3)
∑K

k=1 p̂
−1
k

∑n
i,j,r=1 bikbjkaijr, and

SSB = P̂MVn(X|Y ). Then, an analog to the ANOVA F statistic can be derived

as follows:

Fn =
SSB/(K − 1)

SSW /(n−K)
=

P̂MVn(X|Y )/(K − 1)

(SST − SSB)/(n−K)
.

Here, a larger value of Fn presents stronger evidence in support of the alter-

native hypothesis. We call the new test the PMV test of equal distributions. In

general, Fn does not follow an F distribution. The following result presents its

asymptotic null distribution when K is fixed.

Theorem 5. Under the null hypothesis H0, we have that

Fn =
SSB/(K − 1)

SSW /(n−K)

d−→
∞∑
j=1

λjη
2
j , n→∞,

where ηj are independent standard normal random variables, and λj are nonneg-

ative constants that depend on the distribution of (X, Y ).

When X is univariate, Theorem 3.1 in Cui and Zhong (2019) suggests that

λj in Theorem 5 has a simple closed form. However, in general, λj does not

necessarily have such a good form, by the definition in (S1.17) and the Hilbert–

Schmit theory of integral equations (Kuo (1975)). This leads to the asymptotic

null distribution of Fn being computationally infeasible. To implement the PMV

test in practice, we approximate the asymptotic null distribution using a random

permutation approach. The permutation method is referred to in Section 4.2.

Next, we can further study the asymptotic performance of P̂MVn(X|Y ) un-

der the alternative hypothesis.

Theorem 6. Under the alternative hypothesis, we have that

√
n(P̂MVn(X|Y )− PMV(X|Y ))

d−→ N
(
0, σ2

)
,

where σ2 = var [Φ(Xi, Yi)] , in which Φ(X,Y ) is given in (S1.20).

From Theorem 6 and Slutsky’s theorem, we can easily obtain that Fn con-

verges weakly to a normal distribution. This result shows that the PMV test can

detect all types of differences between distributions.
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Corollary 2. The PMV test of hypothesis (1.1) is consistent against all alter-

natives.

From the above theoretical results, the main difference between the PMV

test and the DISCO test is that the PMV test does not require any moment

conditions. This advantage is demonstrated further in the numerical simulations.

4.2. Implementation

In this section, we discuss the implementation of the PMV test. For any given

i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,K}, let Ai = (ajri)n×n and Bk = (bjr;k)n×n
be n × n matrices with entries ajri and bjr;k, respectively. From the definitions

of Ãjr;i and B̃jr;k and (2.7), we obtain that

P̂MVn(X|Y ) = − 1

n2
Tr

([
1

n

n∑
i=1

Ai

]
H

[
K∑
k=1

p̂−1k Bk

]
H

)
,

SST =
1

n2
1Tn

(
1

n

n∑
i=1

Ai

)
1n,

where H = In− (1/n)1n1
T
n , In is the identity matrix and 1n is an n× 1 vector of

ones. Here, we use the property H2 = H. Thus, the PMV test statistic is easily

implemented by computing the matrices Ai and Bk.

To put the proposed test into practice, we apply the permutation method

to approach the asymptotic null distribution in Theorem 5. The permutation

approach yields a valid level-α test for a finite sample size, and has been shown

to be effective; see the DCOV test, DISCO test, and projection correlation-based

test (Zhu et al. (2017)).

The permutation test procedure is as follows:

Step 1. Compute Fn and ŜST for the observed data {(Xi, Yi), i = 1, . . . , n};

Step 2. For each replicate, indexed b ∈ {1, . . . , B}, generate a random per-

mutation πb = (πb,1, . . . , πb,n) of {1, . . . , n}, and compute the estimator

of PMV(X|Y ) using the permuted sample (X, Yπb
) := {(Xi, Yπb,i

), for i =

1, . . . , n}, denoted by P̂MVn(X|Yπb
). Calculate the test statistic

F (b)
n =

P̂MVn(X|Yπb
)/(K − 1)

(SST − P̂MVn(X|Yπb
))/(n−K)

;

Step 3. Compute the empirical p-value by
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p̂ =
1

B + 1

{
1 +

B∑
b=1

I(F (b)
n ≥ Fn)

}
.

5. The PMV Decomposition in the General Case

Following our approach to the one-way PMV decompositions in (2.8) and

(4.1), we can generalize to the general factorial design case by analogy. Here,

we focus on the full factorial two-level design. Suppose there are KA levels of

factor A and KB levels of factor B, and that R independent observations can be

observed at each of the KAKB combinations of levels.

Using the classical ANOVA formula notation from linear models, we specify

the corresponding two-way additive model as X ∼ A+B, and the two-way design

with interaction as X ∼ A+B+A∗B, where A∗B is the interaction term between

factor A and factor B. Let A : B be the crossed factors A and B, with KAKB

levels. For the above two-factor models, we have the following two-way PMV

decompositions in the population:

Theorem 7.

(i) For model X ∼ A+B, we have that

E[ang(X1 −X3,X2 −X3)] = PMV(X|A) + PMV(X|B) + σ2E,1; (5.1)

(ii) For model X ∼ A+B +A ∗B, we have that

E[ang(X1−X3,X2−X3)] = PMV(X|A)+PMV(X|B)+PMV(X|A∗B)+σ2E,2;

(5.2)

(iii) PMV(X|A ∗B) = PMV(X|A : B)− PMV(X|A)− PMV(X|B),

where σ2E,1, σ
2
E,2, and PMV(X|A∗B) are defined in (S1.26), (S1.28), and (S1.29),

respectively.

In a manner analogous to (4.1), we obtain the empirical counterparts of (5.1)

and (5.2), given by

SST = P̂MVn(X|A) + P̂MVn(X|B) + SSE,1, (5.3)

for model X ∼ A+B; and

SST = P̂MVn(X|A) + P̂MVn(X|B) + P̂MVn(X|A ∗B) + SSE,2, (5.4)
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Table 1. PMV analysis for the two-factor model with interaction.

Factor df Dispersion F-ratio

A KA − 1 P̂MVn(X|A) P̂MVn(X|A)
KA−1 /

SSE,2

KAKB(R−1)

B KB − 1 P̂MVn(X|B) P̂MVn(X|B)
KB−1 /

SSE,2

KAKB(R−1)

A*B (KA − 1)(KB − 1) P̂MVn(X|A ∗B) P̂MVn(X|A∗B)
(KA−1)(KB−1)/

SSE,2

KAKB(R−1)
Error KAKB(R− 1) SSE,2

Total KAKBR− 1 SST

for model X ∼ A+B +A ∗B, where

P̂MVn(X|A ∗B) = P̂MVn(X|A : B)− P̂MVn(X|A)− P̂MVn(X|B),

and SSE,1 and SSE,2 are the plug-in estimators of σ2E,1 and σ2E,2, respectively.

From (5.3) and (5.4), we can see that SST has similar two-way ANOVA

decompositions. In Table 1, we summarize the PMV analysis for the two-way

design with interaction. For factorial designs on three or more factors, we obtain

similar results.

6. Monte Carlo Simulations

In this section, several simulations are conducted to assess the finite-sample

performance of the proposed PMV test. We compare our results with those

of the DISCO test, Wilks’ lambda test (Wilks) in Wilks (1932), and rank-

transformed Wilks’ lambda method (RankWilks) in Nath and Pavur (1985). All

numerical studies described here have been implemented using R. The relevant

codes are available on the second author’s GitHub page: https://github.com/

Oliver9803/PMV_code.

Throughout our experiments, the p-value of the PMV or DISCO test is ob-

tained using B = 199 permutations. We repeat each setting 1,000 times, and

report the empirical power or type-I error rate of the various tests. In each ex-

ample, we consider a balanced design with four groups, where the common sample

size is denoted by n.

Example 1. Data are generated from distributions with identical independent

marginals. The following two settings are studied:

Case (i): The data are generated from Example 3 in Rizzo and Székely (2010).

Group 1 is noncentral t(4), with noncentrality parameter δ. Groups 2–4

each have central t(4) distributions.

https://github.com/Oliver9803/PMV_code
https://github.com/Oliver9803/PMV_code
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Table 2. Example 1: Empirical type-I error rate, with p = 10.

n = 30 n = 50

Setting Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

Case (i) PMV 0.015 0.050 0.097 0.012 0.049 0.093

DISCO 0.007 0.050 0.103 0.013 0.045 0.086

Wilks 0.012 0.049 0.096 0.010 0.049 0.095

RankWilks 0.009 0.050 0.103 0.012 0.055 0.102

Case (ii) PMV 0.014 0.054 0.107 0.007 0.044 0.095

DISCO 0.012 0.052 0.102 0.006 0.039 0.097

Wilks 0.002 0.042 0.097 0.010 0.043 0.095

RankWilks 0.008 0.051 0.102 0.011 0.052 0.101

Case (ii): This is identical to Case (i), except that group 1 is from the noncentral

t(2), and groups 2–4 are from the central t(2) distribution.

Table 2 reports the empirical type-I error rate of each test at significance

levels α = 0.01, 0.05, and 0.1, with p = 10 and n = 30, 50. Table 2 shows that

each test achieves approximately the three nominal significance levels under the

null hypothesis in Cases (i) and (ii).

An empirical power comparison is displayed in Figure 1. Figures 1(a) and

(c) show plots of the power curve against the noncentrality parameter δ, with

dimensions fixed at p = 10. The results from Figure 1(a) suggest that the PMV,

DISCO, and RankWilks tests exhibit similar performance and are slightly more

powerful than the Wilks test in Case (i). Figure 1(c) indicates that the DISCO

test is inferior to the PMV and RankWilks tests in Case (ii), where the data have

heavy tails. This may be because the DISCO test is sensitive to heavy-tailed

data.

Figures 1(b) and (d) show plots of the power curve against the dimension at

the significance level α = 0.05 and δ = 0.2. Figure 1(b) illustrates that the PMV

and DISCO tests perform comparably, and become increasingly superior to the

Wilks and RankWilks as the dimension increases. For the dimension p ≥ 60,

the RankWilks test fails, owing to the dimension restriction; thus, the power is

missing in Figures 1(b) and (d). Therefore, although the RankWilks test exhibits

good power when p is small, it becomes practically infeasible for large p. Figure

1(d) suggests that the PMV test is more powerful than the DISCO test in Case

(ii). Thus, from Figure 1, the PMV test is robust to heavy-tailed data, and can

be applied in arbitrary dimensions, regardless of the sample size.

Example 2. Samples 2–4 have i.i.d. marginal Cauchy(0, 1) distributions. Sample
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Figure 1. Example 1: Empirical power comparisons at the 0.05 significance level for
n = 30: (a) δ varies with p = 10 for Case (i); (b) p varies and δ = 0.2 for Case (i); (c)
and (d): As in (a) and (b), respectively, but for Case (ii).

1 is the mixture distribution 0.5Cauchy(δ, 1) + 0.5Cauchy(−δ, 1), with noncen-

trality parameter δ.

The empirical type-I error rates for Example 2 are summarized in Table 3.

The empirical type-I error rates of the PMV, DISCO, and RankWilks tests are

under reasonable control. It is also shown that the Wilks test fails to control the

type-I error, mainly because the usual assumption of normality is not satisfied.

Figure 2(a) displays power curves with respect to δ. The results illustrate

that the DISCO test has lower power than the PMV test. This may be because

the condition E[‖X‖] < ∞ required by the DISCO test is violated. The results

suggest that our test is very robust in this setting. It might be surprising that

the RankWilks test fails in the location model.

In Figure 2(b), the noncentrality parameter is fixed at δ = 8, and the power
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Table 3. Example 2: Empirical type-I error rate, with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.011 0.047 0.106 0.013 0.047 0.094

DISCO 0.014 0.048 0.095 0.010 0.045 0.093

Wilks 0.002 0.018 0.062 0.001 0.017 0.061

RankWilks 0.014 0.046 0.091 0.006 0.036 0.086
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Figure 2. Example 2: Empirical power comparisons at the 0.05 significance level for
n = 30: (a) δ varies with p = 10; (b) p varies and δ = 8.

varies with the dimension. Figure 2(b) indicates that the PMV test experiences

less power loss than the DISCO test does as the dimension increases. In contrast

to Figure 1(b), the power curve in Figure 2(b) decreases with respect to the

dimension p, supporting the finding of Zhu et al. (2017) (see their simulations).

This problem is another interesting topic in high-dimensional statistical analysis;

see Székely and Rizzo (2013a) and Kim, Balakrishnan and Wasserman (2020).

Example 3. The marginal distributions are independent of the Cauchy distri-

butions. Sample 1 is Cauchy(0, δ), with the scale parameter δ. Samples 2–4 each

have standard Cauchy(0, 1).

Example 3 is designed to evaluate the finite-sample performance of our

method for the K-sample hypothesis test of equal scale parameters. The results

in Table 4 indicate that the empirical sizes of the PMV, DISCO, and RankWilks

tests are very close to the significance levels.

From Figure 3(a), it can be seen that the PMV test still has superior per-

formance over the other three methods. As expected, the Wilks and RankWilks
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Table 4. Example 3: Empirical type-I error rate, with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.009 0.042 0.091 0.012 0.046 0.097

DISCO 0.007 0.037 0.079 0.016 0.054 0.109

Wilks 0.003 0.021 0.055 0.001 0.026 0.066

RankWilks 0.010 0.056 0.112 0.010 0.047 0.096
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Figure 3. Example 3: Empirical power comparisons at the 0.05 significance level for
n = 30: (a) δ varies with p = 10; (b) p varies and δ = 2.5.

tests lose efficiency in such a scale model. Figure 3(b) suggests that the power

of the PMV test is increasingly superior relative to the other methods as the

dimension increases. In addition, we can see that the power of the DISCO test

is increasing slowly in Figure 3(b), partly because E[‖X‖] <∞ is not satisfied.

Example 4. In Sample 1, the marginal distributions are independent of the

mixture distributions δN(0, 1) + (1− δ)Cauchy(0, 1), δ ∈ [0, 1]. Samples 2–4 each

have Cauchy(0, 1) distributions.

From Example 4, the mixing weight δ = 0 indicates that H0 is true, and

δ 6= 0 suggests that H0 is false. The simulation results are summarized in Table 5

and Figure 4. The results again indicate that the PMV test can roughly achieve

the nominal significance levels at δ = 0, and has almost the highest power at

δ 6= 0 when the dimension is fixed or increases.

Example 5. Rizzo and Székely (2010) generalized the original DISCO decom-

position to the α-DISCO decomposition by replacing the ‖ · ‖-norm with the

‖ · ‖α-norm, for α ∈ (0, 2]. For convenience, we refer to it as the α-DISCO test.
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Table 5. Example 4: Empirical type-I error rate, with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.011 0.053 0.110 0.009 0.046 0.110

DISCO 0.009 0.049 0.096 0.006 0.046 0.098

Wilks 0.001 0.021 0.058 0.001 0.011 0.045

RankWilks 0.013 0.058 0.110 0.009 0.064 0.106
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Figure 4. Example 4: Empirical power comparisons at the 0.05 significance level for
n = 30: (a) δ varies with p = 10; (b) p varies and δ = 0.5.

They proved that the α-DISCO test works if E[‖X‖α] < ∞. In this example,

we compare the PMV with the α-DISCO test. The following two settings are

studied:

Case (i): The data are generated from Example 4;

Case (ii): In Sample 1, the marginal distributions are independent of the mix-

ture distributions δCauchy(0, 1) + (1 − δ) exp{Cauchy(0, 1)}, for δ ∈ [0, 1].

Samples 2–4 each have exp{Cauchy(0, 1)} distributions.

The simulation results for Example 5 are summarized in Figure 5 and Table 6,

where DISCO 1, DISCO 0.8, DISCO 0.5, DISCO 0.2, and DISCO 0.02 represent

the α-DISCO test with α = 1, 0.8, 0.5, 0.2, and 0.02, respectively. For any α ∈
(0, 1), it is easy to see that E[‖X‖α] <∞, but that E[‖X‖] =∞ in Case (i) and

E[‖X‖α] = ∞ in Case (ii). Figure 5 Case (i) indicates that the α-DISCO test

works well for the empirical type-I error rate and empirical power in Case (i),

which is consistent with the findings of Rizzo and Székely (2010). We can also

see that DISCO 0.2 performs best, followed by PMV, DISCO 0.5, DISCO 0.8,
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Figure 5. Example 5: Empirical power comparisons at the 0.05 significance level for
n = 30 and p = 10.

Table 6. Example 5 Case (ii): Empirical type-I error rate, with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.006 0.056 0.096 0.009 0.046 0.095

DISCO 1 0.438 0.463 0.499 0.433 0.451 0.476

DISCO 0.5 0.287 0.317 0.333 0.256 0.293 0.323

DISCO 0.2 0.074 0.107 0.149 0.024 0.049 0.104

DISCO 0.02 0.014 0.030 0.083 0.000 0.030 0.104

and DISCO 1.

Table 6 illustrates that DISCO 1 and DISCO 0.5 cannot control the empirical

type-I error rate in Case (ii). Figure 5 Case (ii) shows that the PMV test works

best, whereas DISCO 0.2 and DISCO 0.02 have inferior power. In Figure 5 Case

(ii), we report only the α-DISCO test where the minimum value of α is set to

0.02. A smaller α was also considered. The results showed that our method is

still better than the α-DISCO test in this setting (results not reported here).

From the above results, the finite-sample performance of the PMV test is

quite encouraging. In Example 1 Case (i), where data follow t(4) distributions,

the PMV and DISCO tests behave comparably well. However, the PMV test

outperforms the DISCO test in Example 1 Case (ii), where E[‖X‖] < ∞, but

E[‖X‖] is large. In Examples 2–4, where the data are generated from heavy-

tailed distributions with infinite moments, our test outperforms the other tests.

In Example 5, the PMV and α-DISCO tests perform comparably in Case (i),

and the PMV test outperforms the α-DISCO tests with different α in Case (ii).
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Table 7. Analysis of Michigan lung cancer data.

Methods Source Df Sum Mean F-ratio p-value

PMV Between 1 106.647[1] 106.647 1.215 0.048

Within 84 7,370.344[2] 87.742

Total 85 7,476.991[3]

DISCO Between 1 23.338 23.338 1.172 0.086

Within 84 1,672.408 19.910

Total 85 1,695.746
[1] n2SSB ; [2] n2SSW ; [3] n2SST .

This limited evidence demonstrates that the PMV test is very effective when the

moments are large or the data include outliers.

7. Real-Data Analysis

The section illustrates our method by means of an empirical analysis of two

real data sets.

Example 6. (Michigan lung cancer data). This example considers Michigan lung

cancer data, as analyzed by Subramanian et al. (2005). The data set consists of

observations of 86 samples on 5,217 gene expression levels from two classes: 62

in the “good outcomes” class, and 24 in the “poor outcomes” class. The data set is

available at http://statweb.stanford.edu/∼ckirby/brad/LSI/datasets-and
-programs/datasets.html.

We apply the proposed method to measure the differences between the “good

outcomes” and “poor outcomes” classes. Because the data set contains 86 sam-

ples, the statistical inference becomes a p� n problem, for which the Wilks-type

methods fail. The PMV and DISCO tests with B = 999 permutations are listed in

Table 7. The results suggest that both can detect significant differences between

the good and poor outcome groups.

We also perform PMV and DISCO tests on subsets of the original data to

provide power comparisons. Specifically, for some given subsample size, we pick

a subsample from the full data, uniformly at random. Then, we repeat each

resampling 200 times to obtain the empirical power of each test method. In

Figure 6, we conduct resamplings with subsample sizes from 30 to 86, and report

their empirical power with B = 199 permutations at significance levels of 0.05

and 0.1. Figure 6 shows that the proposed method significantly outperforms the

DISCO test for this data set.

Example 7. (Prostate data). In this example, we consider the prostate data

http://statweb.stanford.edu/~ckirby/brad/LSI/datasets-and-programs/datasets.html
http://statweb.stanford.edu/~ckirby/brad/LSI/datasets-and-programs/datasets.html


PROJECTION MEAN VARIANCE 387

30 40 50 60 70 80

0.
1

0.
2

0.
5

0.
6

0.
7

n

em
pi

ric
al

 p
ow

er
 

0.
3 

0.
4

PMV
DISCO

(a)

30 40 50 60 70 80

0.
4

0.
6

0.
8

1.
0

n

em
pi

ric
al

 p
ow

er

PMV
DISCO

(b)

Figure 6. Michigan lung cancer data: Empirical power comparisons (a) at the 0.05
significance level; (b) at the 0.1 significance level.

set in the MultNonParam package of R. The data set consists of 101 prostate

cancer patients and five features for each patient. The five feature variables are

the hospital in which the patient is hospitalized (hosp), the stage of the cancer

(stage), whether used to help evaluate the prognosis of the cancer (gleason), the

prostate-specific antigen (psa), and age of the patient (age).

Here, hosp is a factor variable that consists of three levels: A, B, and C hos-

pitals. In the analysis, we check whether there is heterogeneity between the three

hospitals. To this end, we test the independence between X = (gleason, psa, age)T

and Y = hosp. Table 8 reports the p-values of the PMV, DISCO, Wilks, and

RankWilks tests, where B = 999 permutation replicates are carried out for the

PMV and DISCO tests. Table 8 shows that the DISCO fails to detect differences

between the three hospitals, whereas the PMV, Wilks, and RankWilks identify

significant differences between the hospitals. The reasonability of the result is

supported by box plots of the data, shown in Figure 7.

8. Discussion

We have proposed a novel nonparametric multivariate multisample test based

on the projection method and the mean variance index. The proposed method is

equivalent to testing the independence between a continuous random vector and a

categorical variable. The proposed test is consistent against all fixed alternatives,

robust to heavy-tailed data, and applicable in arbitrary dimensions, regardless of

the sample size.

Note that the time complexity for the DISCO statistic is O(K2pn2), whereas
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Table 8. Analysis of prostate data.

Methods Source Df Sum Mean F-ratio p-value

PMV Between 2 342.534[1] 171.267 1.675 0.056

Within 98 10,018.56[2] 102.230

Total 100 10,361.1[3]

DISCO Between 2 17.390 8.695 1.427 0.15

Within 98 597.179 6.093

Total 100 614.570

Wilks Df Wilks approx F p-value

Between 2 0.810 3.547 0.002

RankWilks Wilks Chi2-Value

0.8134 20.034 0.003
[1] n2SSB ; [2] n2SSW ; [3] n2SST .
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Figure 7. Box plots for prostate data.

that for the PMV statistic is O(Kpn3). Thus, the DISCO test may be faster

than the PMV test for small K. In fact, all projection-based methods, such as

the PC test (Zhu et al., 2017) and multivariate CvM test (Kim, Balakrishnan

and Wasserman, 2020), suffer the same problem. However, we think that this

can be significantly improved by using the sketch approach (Pham and Pagh,

2012), which can easily be extended to our method. As suggested by Pham

and Pagh (2012), it is a near-linear time approximation algorithm, which needs

further research.

Although our theoretical results are obtained only for the setting in which
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p is fixed, we evaluate the finite-sample performance in both small p and large

p settings in our numerical studies. Thus, it is desirable to establish similar

theoretical properties in the large p setting, such as the consistency of the PMV

test and the limiting distributions of Fn under H0 and H1; see Székely and Rizzo

(2013a) and Kim, Balakrishnan and Wasserman (2020). These topics are left to

future research.

Supplementary Material

The online Supplementary Material contains proofs of the theoretical results.
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