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Abstract: Corrected score (Nakamura (1990); Stefanski (1989)) is an important con-

sistent functional modeling method for covariate measurement error in nonlinear

regression. Although its pathological behaviors are known to exacerbate with in-

creasing error contamination, neither their nature nor severity is well understood.

We conduct a detailed investigation with the loglinear model for count data in

the presence of sizable measurement error. Our study reveals that multiple roots,

estimate-finding failure, and skewness in distribution are common and may persist

even when the sample size is large. These pathological behaviors are attributed

to a surprising fact that the desirable trend of the corrected score always goes

astray as the parameter space approaches extremes. A novel remedy is proposed

to constrain the derivatives with additional estimating functions. The resulting

trend-constrained corrected score may also substantially improve estimation effi-

ciency. These findings and the estimation strategy shed light on the developments

for other nonlinear models and for the nonparametric correction method.
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1. Introduction

Covariates in regression analyses may not always be accurately measured.

Medical examples of error-contaminated covariates include CD4 lymphocyte

count and HIV viral load in HIV/AIDS studies, and fat intake in nutritional

epidemiology. Such errors are not necessarily small, and can be comparable to

the true underlying covariates or even larger as in the case of HIV viral load.

Naively treating mismeasured covariates as the truth can result in substantial

estimation bias.

Statistical methods to accommodate covariate measurement error have been

well developed for linear regression (Fuller (1987)). Current research efforts are

mostly devoted to nonlinear models (see Carroll et al. (2006)) and we focus on

such methods. These techniques are broadly classified as structural and func-

tional modeling; the former imposes distributional assumptions on the true co-

variates and the latter spares them. Consistent functional modeling methods are
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particularly appealing for their robustness. Corrected score is one such method

for a number of nonlinear models with additive measure error whose distribu-

tion is either known or consistently estimable. Enlisting a reference estimating

function or objective function with the true covariates, the method constructs a

so-called corrected function with error-contaminated covariates to share the same

limit, by the method of moments. Provided that the reference admits only con-

sistent estimates, so does the corrected function in a compact parameter space.

Nakamura (1990) and Stefanski (1989) originally proposed the method for re-

gression models whose likelihood scores are correction amenable, with Poisson

regression as the prime application. Nakamura (1992) later extended it to Cox

regression; see also Kong and Gu (1999) and Huang and Wang (2000). Huang

and Wang (2001) developed a corrected score method for logistic regression, af-

ter devising new references since the likelihood score is not correction amenable

(Stefanski (1989)).

Alternative functional modeling methods are available, most notably condi-

tional score (Stefanski and Carroll (1987)) and locally efficient score (Tsiatis and

Ma (2004)); the latter may be viewed as an extension of the former (Ma and

Tsiatis (2006)). In comparison, corrected score has a number of distinct and ap-

pealing characteristics. First, the approach has a stronger consistency property

since conditional score and locally efficient score admit not only consistent but

also inconsistent roots. In fact, corrected score has been used for consistent root

identification of conditional score (Huang and Wang (2001)). Second, corrected

score can accommodate a general error distribution whereas conditional score is

typically restricted to normal error. Further, corrected score is directly tied to

a reference function rather than the model. For that reason, as an example, the

corrected score for the Poisson regression model remains valid under the loglinear

supermodel, while this is not true for the conditional score.

Nonetheless, corrected score has not often been adopted in practice, largely

due to its finite-sample pathological behaviors. These behaviors were noticed

by, for example, Nakamura (1990, 1992), Huang and Wang (2000, 2001), and

Song and Huang (2005). But neither the nature nor the severity has been well

understood. In the estimating function literature, the issue of multiple roots has

received much attention and research; see a review by Small, Wang, and Yang

(2000). However, the pathological behaviors of corrected score are much more

complicated and challenging. Another but perhaps less important reason is its

limited efficiency. Mean squared error often favors regression calibration (e.g.,

Prentice (1982); Carroll and Stefanski (1990); Gleser (1990)), an approximate

but generally inconsistent method. Also, Stefanski (1989) demonstrated that

the corrected score can be substantially less efficient than the conditional score
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for Poisson regression with normal measurement error. We conduct a detailed

investigation on the pathological behaviors with the loglinear model and provide

a comprehensive remedy that can also achieve remarkable efficiency gain. The

findings are more generally applicable and the remedy may motivate similar

developments for other nonlinear models.

2. Corrected Score for the Loglinear Model and Pathological Behaviors

Write Y as a count response variable and p×1 vectorX as the true covariates.

The loglinear model postulates

E(Y
∣∣ X) = exp

(
α+ βββ⊤X

)
, (2.1)

where α is the intercept and βββ the slope vector. The distribution of Y given X is

not modeled beyond the mean, and thus the Poisson regression model and random

effects Poisson regression model are submodels. With an iid sample {(Yi,Xi) : i =

1, . . . , n} of size n, the standard estimation procedure is to maximize objective

function,

n−1
n∑

i=1

{
Yi

(
a+ b⊤Xi

)
− exp

(
a+ b⊤Xi

)}
, (2.2)

or equivalently to find the zero-crossing of the estimating function

n−1
n∑

i=1

{
Yi − exp

(
a+ b⊤Xi

)}(
1

Xi

)
; (2.3)

these are the normalized log likelihood and likelihood score, respectively, for the

Poisson regression submodel. By profiling out a in (2.3), one may also work with

the profile score for βββ,∑n
i=1 YiXi∑n
i=1 Yi

−
∑n

i=1Xi exp
(
b⊤Xi

)∑n
i=1 exp (b

⊤Xi)
. (2.4)

In practice, α is typically not of as much interest as βββ.

2.1. Corrected score

In the presence of covariate measurement error, X is not directly observed

but through its surrogate W. Adopt the classical additive measurement error

model

W = X+ εεε, εεε ⊥⊥ {X, Y }, (2.5)

where εεε is the error vector and ⊥⊥ denotes statistical independence. The elements

of εεε corresponding to accurately measured covariates, if any, are zeros. To focus

on the main issues, we suppose that the distribution of εεε is completely known.
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Consider now an iid sample, {(Yi,Wi) : i = 1, . . . , n}. The corrected score

approach utilizes (2.2) and (2.3) as references to construct corrected functions

based on the available data. Write the cumulant-generating function of εεε as

Ω(b) ≡ lnE{exp(b⊤εεε)} and its derivative as Ω̇(b) ≡ ∂Ω(b)/∂b; in the normal

error case, Ω(b) = b⊤E(εεε) + b⊤var(εεε)b/2 and Ω̇(b) = E(εεε) + var(εεε)b. The

corrected objective function (Nakamura (1990)) is

n−1
n∑

i=1

(
Yi

[
a+ b⊤

{
Wi − Ω̇(0)

}]
− exp

{
a+ b⊤Wi − Ω(b)

})
, (2.6)

which has the same expectation as (2.2). The estimation is then to maximize (2.6)

or to find a zero-crossing of its derivative, the corrected score

ηηη(a,b) ≡ n−1
n∑

i=1

ηηηi(a,b), (2.7)

where

ηηηi(a,b) ≡ Yi

{
1

Wi − Ω̇(0)

}
− exp

{
a+ b⊤Wi − Ω(b)

}{
1

Wi − Ω̇(b)

}
.

The corrected score may also be constructed directly from (2.3) to have the same

expectation. Inherited from the reference, the corrected score almost surely has

a unique and consistent root in a compact parameter space containing (α,βββ⊤)⊤.

The estimator is asymptotically normal.

Note that a is uniquely determined for given b from the first element of (2.7).

The corrected profile score for βββ is

ξξξ(b) =

∑n
i=1 YiWi∑n

i=1 Yi
−

∑n
i=1Wi exp(b

⊤Wi)∑n
i=1 exp(b

⊤Wi)
+ Ω̇(b)− Ω̇(0), (2.8)

which has the same limit as profile score (2.4) in a compact parameter space

containing βββ (cf., Huang and Wang (2006)). The difference between the corrected

profile score and (2.7) is nothing but algebraic.

2.2. Pathological behaviors

The asymptotic justification of the corrected score requires regularity condi-

tions including compactness of the parameter space. Such conditions are fairly

standard and, for many statistical problems, the asymptotic results typically

provide a good approximation for practical purposes. It is indeed the case when

the measurement error is small. But pathological behaviors soon emerge as the

error increases. They are complex and can be prevalent enough to cause serious

practical concerns.
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Figure 1. Two observed root patterns of corrected profile score ξ(b). Al-
though the reference is decreasing, the corrected function is so only in the
thickened portion.

Consider a single-covariate model with normal error contamination, ε ∼
Normal(0,Λ). For ease of visualization, we work with (2.8), where Ω̇(b)− Ω̇(0) =

bΛ. Note that its reference (2.4) is monotonically decreasing and has a unique

root, provided that Xi, i = 1, . . . , n, are not all equal to each other. Then, by

asymptotic arguments, ξ(b) is approximately decreasing in a compact parameter

space when the sample size is sufficiently large. Despite this, rather surprisingly,

the overall trend as dominated by Ω̇(b) − Ω̇(0) turns out to be the opposite

regardless of the sample size,

ξ(b) =

{
−∞, b = −∞,

∞, b = ∞.
(2.9)

Upon ignoring the trivial local extremum case that ξ(b) touches 0 but does not

cross, ξ(b) has an odd number of roots, with the minimum being 1. Furthermore,

the increasing roots–those with increasing local trend–outnumber decreasing ones

by 1. In our numerical studies, we have observed only single- and triple-root

patterns, however, and they are illustrated along with the reference in Figure 1.

Only decreasing roots of ξ(b) may be appropriate as estimates, since the in-

creasing roots correspond to saddle points, rather than local maximizers, of (2.6).

Then, estimate-finding failure arises with the single-root pattern since the only

root is increasing. More concerning is its high prevalence, particularly when the

measurement error is sizable. We conducted a simulation study under the Pois-

son regression submodel with α = 0, β > 0, and X having mean 0. Sample

sizes ranged from 100 to 800, and several X distributions were studied. The
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Table 1. Behaviors of the corrected profile score under Y ∼ Poisson
{exp(βββX)} with E(X) = 0, βββ > 0, and ε ∼ Normal with mean 0, based
on 1,000 simulation iterations.

distribution of X
Normal Uniform χ2(1)† Normal Uniform χ2(1)†

size SR SK SR SK SR SK SR SK SR SK SR SK
var(ε)/var(X) = 0.5

βββ2var(X) = 0.5 βββ2var(X) = 1
100 2.1 2.74 4.4 2.56 0.6 2.81 15.0 2.66 22.2 2.00 16.4 2.64
200 0.0 3.72 0.2 2.64 0.1 2.08 4.3 2.98 8.4 2.49 12.7 3.65
400 0.0 3.12 0.0 1.44 0.1 2.87 0.8 2.82 3.0 2.84 9.4 2.72
800 0.0 2.53 0.0 1.74 0.1 3.31 0.1 2.57 0.0 1.91 8.4 3.17

var(ε)/var(X) = 1
βββ2var(X) = 0.5 βββ2var(X) = 1

100 24.8 1.60 30.5 1.77 9.4 2.00 48.8 1.19 53.6 1.36 57.8 1.53
200 11.9 2.15 15.5 2.25 1.0 3.17 36.0 1.74 39.4 1.33 46.2 2.00
400 2.7 2.73 8.4 2.78 0.8 2.20 21.9 2.22 32.1 1.53 35.9 2.23
800 0.4 2.60 1.7 2.22 0.4 2.27 12.0 3.06 19.3 2.54 27.8 3.02

SR: prevalence (%) of the single-root pattern; SK: skewness measure (2.10) of the corrected

estimate.
† shifted and rescaled.

results based on 1,000 iterations are reported in Table 1. Consider the case

var(X) = var(ε) = β = 1. With sample size 100, the failure could be as frequent

as around 50%. Although its occurrence decreased with increasing sample size, it

was still over 10% when the sample size was 800. The failure rate declined with

decreasing var(ε) and β, but it is clear that the estimate-finding failure would

not be negligible in many practical situations.

The issue of multiple roots with the triple-root pattern can be readily resolved

since there is only one decreasing root, designated by Nakamura (1990) as the

corrected estimate. Nevertheless, this corrected estimate can be highly skewed.

Table 1 also reports a crude skewness measure,

max β̂ − β

β −min β̂
, (2.10)

where β̂ is the corrected estimate. The sub-distributions were clearly skewed as

shown. Like estimate-finding failure, the skewness may also be attributed to the

misbehaved overall trend but as a less severe manifestation, which might explain

that the skewness did not always improve with increasing sample size.

The results in Table 1 are invariant to the values of var(X), var(ε), and β

once var(ε)/var(X) and β2var(X) are fixed. Also, not only var(ε)/var(X) but
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also β2var(X) are relevant in the discussion of pathological behaviors. When

var(ε) and var(X) are comparable, the pathological behaviors of the corrected

score could nonetheless be negligible if β2var(X) is sufficiently small. Still, they

could be of enormous concern even with a small var(ε) relative to var(X) if

β2var(X) is very large. Throughout, our discussion is understood to be in the

context that both the variance and coefficients of the true covariates are roughly

unity unless otherwise specified.

These pathological behaviors of ξ(b) are not unique to normal error. Trend

(2.9) holds whenever the error distribution is not bounded at both extremes,

because Ω̇(b)− Ω̇(0) is then unbounded. In the case of a bounded measurement

error distribution, one might expect the pathological behaviors to be less serious,

but not completely eliminated. When there are more covariates and one or more

of them are contaminated, the pathological behaviors may be more complex but

should be similar in nature.

3. Improving Corrected Score via Trend Constraining

Multiple roots and estimate-finding failure are the two most prominent

pathological behaviors. The corrected score is too liberal in adopting any root,

yet too stringent in using a root only, as estimate. The local trend needs to

be taken into consideration, and an approximate root should be admissible. We

propose a remedy by imposing trend constraints through additional estimating

functions and defining an estimate via empirical likelihood. This remedy miti-

gates the skewness and improves estimation efficiency as well in the mean time.

3.1. A class of estimating functions

Local trend of the corrected score is quantified by the derivatives. Write

Ω̈(b) ≡ ∂Ω̇(b)/∂b⊤. The first derivative ∂ηηη(a,b)/∂(a,b⊤) is

η̇ηη(a,b) = −n−1
n∑

i=1

exp
{
a+ b⊤Wi − Ω(b)

}
×

[{
1

Wi − Ω̇(b)

}⊗2

− diag
{
0, Ω̈(b)

}]
, (3.1)

where v⊗2 ≡ vv⊤. Section 2 suggests that inappropriate roots of ηηη(a,b) can

be eliminated should η̇ηη(a,b) be constrained. For this purpose, we establish an

identity.

Proposition 1. Suppose that the loglinear model (2.1) and the classical additive

measurement error model (2.5) hold. Writing b ≡ (b1, . . . , bp)
⊤, if the moment-
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generating functions of X and εεε exist, then

E

[
Y

∂k1+···+kp exp
{
b⊤W − Ω(b)

}
∂bk11 · · · ∂bkpp

∣∣∣∣∣
b=0

−
∂k1+···+kp exp

{
α+ b⊤W − Ω(b)

}
∂bk11 · · · ∂bkpp

∣∣∣∣∣
b=βββ

 = 0, (3.2)

for kq ≥ 0, q = 1, . . . , p.

Proof. Given E[exp{a + b⊤W − Ω(b)}
∣∣ X] = exp(a + b⊤X) under (2.5), one

obtains directly that

E

[
∂k1+···+kp exp

{
a+ b⊤W − Ω(b)

}
∂bk11 · · · ∂bkpp

∣∣∣∣∣ X

]
= exp

(
a+ b⊤X

) p∏
q=1

X
kq
q .

Then,

E

[
∂k1+···+kp exp

{
b⊤W − Ω(b)

}
∂bk11 · · · ∂bkpp

∣∣∣∣∣
b=0

∣∣∣∣∣ X

]
=

p∏
q=1

X
kq
q

follows. These two equations, coupled with (2.1), imply (3.2).

Equation (3.2) leads to a class of estimating functions for (α,βββ⊤)⊤. The

corrected score ηηη(a,b), as a special case, corresponds to
∑p

q=1 kq = 0 and 1.

Similarly, the estimating function, as a symmetric matrix,

n−1
n∑

i=1

(
Yi

[{
Wi − Ω̇(0)

}⊗2
− Ω̈(0)

]
− exp

{
a+ b⊤Wi − Ω(b)

}[{
Wi − Ω̇(b)

}⊗2
− Ω̈(b)

])
, (3.3)

corresponds to
∑p

q=1 kq = 2. In light of (3.1), having both ηηη(a,b) and (3.3) equal

to zero leads to the constraint

η̇ηη(a,b) = −n−1
n∑

i=1

Yi

[{
1

Wi − Ω̇(0)

}⊗2

− diag
{
0, Ω̈(0)

}]
.

The right-hand side is independent of (a,b⊤)⊤, and almost surely negative defini-

tive since

E

[{
1

W − Ω̇(0)

}⊗2

− diag{0, Ω̈(0)}

∣∣∣∣∣ X

]
=

(
1

X

)⊗2
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under (2.5). Thus, when incorporating (3.3), the first derivative of ηηη(a,b) at an
estimate is required to be almost surely negative definitive. In the single covariate

case, this means that ξ(b) needs to have a negative derivative almost surely at
the estimate.

Along the same line, estimating functions corresponding to
∑p

q=1 kq > 2,
when additionally incorporated, would effectively impose constraints on higher-

order derivatives of ηηη(a,b) at an estimate.

3.2. Estimation and inference

After constraining the local trend, the number of estimating functions ex-
ceeds that of the parameters. We employ empirical likelihood and adopt the

maximum empirical likelihood estimator (Owen (2001); Qin and Lawless (1994)).
Write a generic estimating function as φφφ(a,b) ≡ n−1

∑n
i=1φφφi(a,b). The estima-

tor is the global maximizer of the empirical likelihood ratio function

L(a,b) = max

{ n∏
i=1

nwi :
n∑

i=1

wiφφφi(a,b) = 0,
n∑

i=1

wi = 1, wi ≥ 0 ∀ i = 1, . . . , n

}
;

(3.4)
algorithms for the computation can be found in Owen (2001). For our problem,

φφφ(a,b) consists of ηηη(a,b) and the additional estimating functions for trend con-
straining. We call this approach the trend-constrained corrected score, and the

special case the first derivative-constrained corrected score if (3.3) is the only
additional estimating function.

While best recognized as a means of dealing with more estimating functions

than parameters, empirical likelihood also provides a natural way to define an
approximate root as estimate even when the numbers of estimating functions and

parameters are the same. This leads to a redefined corrected score by adopting
the empirical likelihood with φφφ(a,b) = ηηη(a,b). Write ŵi as the value of wi for

the maximization in (3.4) with given (a,b⊤)⊤. The estimate is chosen as a local
maximizer of L(a,b) such that

∑n
i=1 ŵiη̇ηηi(a,b) is negative definite. To illustrate,

Figure 2 shows the empirical likelihood ratio functions, upon profiling out a, for

the data sets having single- and triple-root patterns in Figure 1. The redefined
corrected score can identify a local maximizer as estimate when no root deems

appropriate in the single-root pattern, but the global maximizer with the first
derivative-constrained corrected score offers a more comprehensive remedy and

has better computational properties. We view the redefined corrected score as
an ad hoc remedy to multiple roots and estimate-finding failure.

According to Qin and Lawless (1994), the maximum empirical likelihood

estimator is consistent and asymptotically normal with variance

n−1
[
Eφ̇φφ1(α,βββ)

⊤E
{
φφφ1(α,βββ)

⊗2
}−1

Eφ̇φφ1(α,βββ)
]−1

, (3.5)
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Figure 2. Log profile empirical likelihood ratio functions for the two data
sets in Figure 1. Dashed and solid lines correspond to the corrected score and
first derivative-constrained corrected score, respectively. Thickened portion
indicates the region of b where the qualitative trend constraint is satisfied.

under mild moment conditions. The estimator reaches the asymptotic efficiency

bound among those based on linear combinations of elements in φφφ(a,b). Thus,

the trend-constrained corrected score estimator is asymptotically no less efficient

than the corrected score estimator. To provide a sense of the efficiency improve-

ment, we analytically compute the asymptotic efficiency under a single-covariate

Poisson regression submodel. Both true covariate X and measurement error ε

are normal with mean 0, and the intercept α is 0. Table 2 reports the asymptotic

efficiency of the first derivative-constrained corrected score estimator relative to

the corrected score estimator at various values of var(ε)/var(X) and β2var(X).

When var(ε)/var(X) or β2var(X) approaches 0, the asymptotic relative efficiency

is close to 1 as expected. But it can be well over 3 when var(ε) = var(X) = 1

and |β| = 1.

For interval estimation, one standard approach is to construct Wald-type

confidence intervals by adopting a plug-in estimate of the asymptotic variance

(3.5); see Qin and Lawless (1994, p.306). An alternative is to use the empirical

likelihood ratio on the basis of Wilks’ theorem; see Qin and Lawless (1994, Thm. 2

and Coro. 5).

4. Simulation Studies

Simulation studies were conducted to assess the performance of the trend-

constrained corrected score and to identify specific trend-constrained corrected
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Table 2. Asymptotic efficiency of the first derivative-constrained corrected
score estimator relative to the corrected score estimator under Poisson regres-
sion submodel with a single and error-contaminated covariate: X ∼ Normal
with mean 0, ε ∼ Normal with mean 0, and α = 0.

β2var(X)
var(ε)/var(X) 0.25 0.5 0.75 1

0.2 1.00 1.00 1.01 1.06 1.07 1.24 1.27 1.60
0.4 1.00 1.02 1.05 1.18 1.24 1.56 1.72 2.13
0.6 1.00 1.04 1.10 1.32 1.46 1.85 2.25 2.53
0.8 1.01 1.08 1.18 1.46 1.73 2.12 2.84 2.88
1 1.02 1.11 1.27 1.61 2.05 2.37 3.46 3.20

The two columns correspond to estimators of α and β.

scores that best improve the estimation under practical sample sizes. We report

the results from single- and double-covariate models with substantial normal

covariate measurement error.

Three single-covariate models were considered. The true covariate X had

mean 0 and variance 1, and error ε was standard normal. The regression coeffi-

cient (α, β)⊤ was set to (0, 1)⊤.

Case A. Y followed a Poisson regression model given X, and X was standard

normal.

Case B. Y followed a Poisson regression model given X, and X was a modified

chi-square with 1 degree of freedom: first truncated at 5, then location-

shifted to mean 0, and rescaled to variance 1.

Case C. Y was Poisson with mean exp(α + βX + Z) given X and Z, X was

standard normal, and unobserved Z was normal with mean −0.2 and

variance .4. Thus, Y followed a random effects Poisson regression model

given X.

For the double-covariate model, we adopted a Poisson regression model where

the true covariate X was standard bivariate normal with correlation coefficient

.5. The first covariate was subject to contamination by standard normal error,

whereas the second covariate was accurately measured. The regression coefficient

(α, β1, β2)
⊤ was set to (0, 1,−1)⊤.

Sample sizes 100, 200, 400, and 800 were investigated. For each scenario,

1,000 samples were simulated. We report the results on point and interval esti-

mation separately.

4.1. Point estimation

The naive approach, regression calibration, conditional score, and redefined

corrected score were included for comparison. The regression calibration used
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(2.3) with Xi replaced by its best linear approximate given Wi,

W − Ω̇(0) + {Σ̂ΣΣ− Ω̈(0)}Σ̂ΣΣ
−1

(Wi −W),

where W and Σ̂ΣΣ are the sample mean and variance of W (cf., Carroll et al.
(2006)). Despite its inconsistency in general, numerical stability, moderate bias,
and reasonable mean squared error in many small to moderate error contami-
nation situations make regression calibration the default choice in practice. The
conditional score was given in Stefanski and Carroll (1987, p.710) with t(·) linear
as commonly used, and the root closest to the naive estimate was adopted. We
concentrate on estimators of βββ because α is typically of less interest.

Table 3 and Figure 3 summarize the simulation results for the estimators
in the single-covariate models. For the trend-constrained corrected score, three
sets of additional estimating functions were considered to effectively impose con-
straints on the first k derivatives of the corrected score, k = 1, 2, 3. As expected,
the naive estimator had large bias under all three cases. The regression cali-
bration estimator of β is consistent under Cases A and C, which explains the
small bias observed; in Case B, however, it was even more biased than the naive
estimator. The conditional score estimator showed little bias and high efficiency
under Cases A and B, but it is no longer consistent and incurred substantial
bias under Case C. Both the redefined corrected score and trend-constrained
corrected score estimators are consistent under all three cases, and they showed
decreasing bias with increasing sample size. But the bias reduction of the former
appeared slower and the efficiency not nearly as good. The quantile-quantile
plots show that the redefined corrected score estimator deviated from normality
considerably even when the sample size was 800. Notably, the first derivative-
constrained corrected score estimator quickly behaved more like a normal with
increasing sample size. In comparison with higher-order derivatives-constrained
corrected scores, the first derivative-constrained one seemed favorable in bias and
mean squared error despite the fact that the asymptotic efficiency would suggest
otherwise.

Table 4 reports the simulation results for the double-covariate model. The
measurement error in general had impact not only on the coefficient estimation
of the error-prone covariate but also on that of the accurately measured. The
relative performance of these estimators largely followed a pattern similar to
that for the single-covariate models. In consideration of trend constraints for
the trend-constrained corrected score, the first derivative now involves three el-
ements, those in the upper triangle of matrix (3.3). We investigated subsets of
these three as constraints; higher-order derivatives-constrained corrected scores
were not considered due to unfavorable performance in the single-covariate mod-
els. In comparison, the first derivative-constrained corrected score estimator had
the smallest mean squared error albeit not necessarily the smallest bias.
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Table 3. Simulation summary statistics with the single-covariate models:
naive (NV), regression calibration (RC), conditional score (ConS), rede-
fined corrected score (CS), and first k derivatives-constrained corrected score
(TC:k), k = 1, 2, 3.

NV RC ConS CS TC:1 TC:2 TC:3
size B E B E F B E B E B E B E B E

Case A
100 α 241 277 244 297 0 -9 184 -87 304 101 236 148 289 215 316

β -504 514 63 335 38 245 132 330 -93 301 -179 577 -291 551

200 α 243 261 245 268 0 -5 125 -122 284 58 156 81 183 162 244
β -503 508 23 184 18 164 156 345 -44 186 -35 282 -166 353

400 α 249 258 250 262 0 3 85 -118 270 33 113 37 125 103 173
β -502 505 7 128 5 107 145 333 -23 147 6 163 -72 202

800 α 250 254 250 255 0.1 -1 61 -101 231 17 75 11 81 53 111
β -500 502 5 90 5 78 120 282 -15 100 23 118 -19 123

Case B
100 α 195 264 218 322 0 1 168 -293 510 127 238 146 333 196 340

β -285 301 570 795 23 167 259 419 -5 251 -143 632 -320 696

200 α 207 239 219 262 0 2 114 -262 471 76 168 73 182 135 237
β -293 300 472 545 7 104 193 357 16 150 33 300 -69 387

400 α 219 235 224 246 0 5 79 -177 382 49 113 34 119 83 168
β -299 302 428 462 2 71 123 273 6 99 69 150 41 207

800 α 223 231 226 236 0 1 53 -93 244 26 75 8 70 24 88
β -301 303 410 428 2 52 64 176 0 61 48 99 72 136

Case C
100 α 224 279 227 297 0.6 -227 370 -103 313 67 241 88 262 148 306

β -504 519 55 368 359 660 115 339 -87 293 -121 465 -257 540

200 α 240 265 242 272 0.2 -230 299 -126 303 44 177 59 189 129 233
β -504 513 16 226 374 496 148 352 -40 231 -21 250 -137 302

400 α 245 259 244 260 1.1 -220 266 -137 295 24 124 24 136 85 169
β -502 507 12 164 349 427 162 356 -19 156 11 178 -73 194

800 α 246 253 245 253 1.2 -214 243 -105 249 14 89 9 90 43 113
β -501 503 4 114 324 372 116 300 -16 108 10 114 -25 119

F: estimate-finding failure (%); B: bias (×1000); E: root mean squared error (×1000). Only

conditional score was observed to experience estimate-finding failure and its associated summary

statistics are based on successful iterations only.

From these simulations, we found that the first derivative-constrained cor-

rected score compares favorably with those having other choices of trend con-

straints; much larger sample sizes might be needed for higher-order derivatives-

constrained corrected scores to outperform. Relative to existing methods, the

first derivative-constrained corrected score does well given substantial error con-
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Figure 3. Quantile-quantile plots for the slope estimators in the single-
covariate models, where β = 1. Plots in the order of decreasing slopes
correspond to sample sizes 100, 200, 400, and 800. Conditional score is
based on successful estimate-finding iterations only.

tamination under moderate sample size, and it had an efficiency comparable to

the regression calibration in the estimation of βββ when the latter was consistent.
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Table 4. Simulation summary statistics with the double-covariate model:
naive (NV), regression calibration (RC), conditional score (ConS), rede-
fined corrected score (CS), and trend-constrained corrected scores (TC:1/3,
TC:2/3, TC:1).

NV RC ConS CS TC:1/3 TC:2/3 TC:1
size B E B E B E F B E B E B E B E
100 α 200 239 199 262 -18 241 0.1 -55 254 1 339 76 272 140 226

β1 -578 587 123 515 41 403 85 299 -42 403 -134 402 -211 359
β2 293 323 -54 315 -21 249 -97 309 -66 410 13 345 95 253

200 α 205 226 206 235 -6 126 0 -102 244 -38 298 37 197 89 172
β1 -574 578 52 258 25 202 149 335 40 323 -43 260 -106 237
β2 292 309 -22 175 -9 155 -109 286 -90 356 -18 249 46 172

400 α 210 220 211 225 -2 88 0 -118 240 -48 218 14 129 54 113
β1 -573 575 24 160 13 131 168 335 55 260 -15 183 -62 165
β2 288 297 -8 116 -5 106 -111 257 -76 257 -21 180 26 122

800 α 212 217 212 219 -1 61 0 -103 212 -51 180 -1 90 26 80
β1 -571 572 12 107 6 88 146 308 64 224 2 130 -27 118
β2 285 289 -5 79 -3 73 -99 225 -72 216 -24 121 9 87

TC:1/3 and TC:2/3 correspond to using the (1,1)-th element and the first row of matrix (3.3)

as the additional estimating function, respectively. TC:1 is the first derivative-constrained

corrected score. F: estimate-finding failure (%); B: bias (×1000); E: root mean squared error

(×1000). Only redefined corrected score was observed to experience estimate-finding failure and

its associated summary statistics are based on successful iterations only.

Although it could be less efficient than the conditional score, the comparison

is not completely fair since the conditional score requires the Poisson regression

submodel and exploits the extra modeling assumptions; note that the conditional

score is not a viable approach for the Case C single-covariate model. Additional

simulations, not shown, revealed that, in the absence of measurement error, the

first derivative-constrained corrected score performed about the same as the stan-

dard regression despite that the trend constraint is not informative at all with

the Poisson regression submodel.

4.2. Interval estimation

Three confidence intervals were constructed for the first derivative-con-

strained corrected score. In addition to the Wald-type, the others were obtained

by inverting the empirical likelihood ratio test, where the critical value was based

on the asymptotic chi-square distribution or the bootstrap calibration (cf., Owen

(2001, Chap. 3.3)) with bootstrap size 199.

Table 5 reports the empirical coverage of the 95% confidence intervals in the

single- and double-covariate models. The Wald-type confidence interval and the
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Table 5. Coverage of 95% Wald-type (W) and empirical likelihood-based
(EL, ELC) confidence intervals for first derivative-constrained corrected
score.

size 100 200 400 800
W EL ELC W EL ELC W EL ELC W EL ELC

Single-covariate model: Case A
α 79.8 79.8 95.4 85.1 86.0 95.4 89.3 89.0 93.9 93.1 93.1 93.7
β 81.0 89.5 93.5 86.8 90.5 94.1 89.7 91.6 94.0 93.0 94.4 93.7

Single-covariate model: Case B
α 83.3 79.4 94.1 85.4 85.2 96.0 89.2 88.6 95.4 91.3 91.2 95.4
β 87.9 84.9 90.9 91.4 87.8 93.4 93.1 90.8 93.9 94.3 93.9 94.7

Single-covariate model: Case C
α 83.7 84.7 95.3 88.0 89.2 94.5 91.3 90.7 93.3 91.9 91.4 94.6
β 81.9 88.4 93.7 87.0 91.9 95.0 92.0 93.3 94.5 92.3 94.5 93.6

Double-covariate model
α 72.0 73.8 96.7 75.8 76.9 95.2 84.3 85.7 95.1 90.1 90.4 95.0
β1 70.3 78.2 93.4 79.4 85.1 95.0 88.0 89.8 96.0 91.3 93.3 95.4
β2 80.3 86.3 91.9 84.5 90.5 94.3 89.3 90.9 93.9 93.2 93.6 93.6

EL and ELC are empirical likelihood-based confidence intervals with critical value determined

by asymptotic chi-square distribution and bootstrap calibration, respectively.

empirical likelihood-based one using the asymptotic critical value both had under-

coverage, although improved with increasing sample size. In comparison, the

empirical likelihood-based confidence interval using bootstrap-calibrated critical

value achieved much more accurate coverage for all sample sizes considered.

5. Final Remarks

Commonly adopted approximate methods, including regression calibration

and simulation extrapolation (Cook and Stefanski (1994); Stefanski and Cook

(1995)), and existing functional modeling methods may accommodate small or,

at best, moderate covariate error contamination in a nonlinear regression model.

In the presence of substantial error, they are all deficient even with large sample

size. We have developed the trend-constrained corrected score as a functional

modeling method for the loglinear model, which enjoys considerable advantages

over existing methods. In our development, we have assumed that the error

distribution is known. Of course, this is rarely realistic in practice where pa-

rameters in a parametric error distribution often need to be estimated. The

trend-constrained corrected score can be extended in a straightforward fashion

by including additional estimating functions for the parameter estimation of the

error.

Huang and Wang (2006) discovered that the corrected profile score (2.8) for

the loglinear model has an intimate relationship with those for logistic and Cox
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regression. Therefore, the pathological behaviors and their cause for the latter

models are expected to be similar. This might also explain the limited success

in previous remedy attempts for Cox regression (Nakamura (1992); Huang and

Wang (2001)) by reducing or eliminating the asymptotically negligible bias of

the corrected partial score. In fact, this bias is similar in nature to that of the

corrected profile score (2.8); however, the corresponding corrected score (2.7)

is nonetheless unbiased. Our proposed strategy of trend constraining warrants

further investigation for logistic and Cox regression.

With additional data available on the measurement error, Huang and Wang

(1999, 2000, 2001, 2006) generalized the corrected score and developed the non-

parametric correction method which further spares distributional assumptions

on the error. Not surprisingly, nonparametric correction estimating functions

suffer from pathological behaviors as well. While the nature of these pathologi-

cal behaviors might not be exactly the same, the results on the corrected score

nonetheless shed light on the investigation, which is the focus of our current

research.
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