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Abstract: We investigate the performance of the scan (the maximum likelihood ra-

tio statistic) and of the average likelihood ratio statistic in the problem of detecting

a deterministic signal with unknown spatial extent in the prototypical univariate

sampled data model with white Gaussian noise. Our results show that the scan

statistic, a popular tool for detection problems, is optimal only for the detection

of signals with the smallest spatial extent. For signals with larger spatial extent

the scan is suboptimal, and the power loss can be considerable. In contrast, the

average likelihood ratio statistic is optimal for the detection of signals on all scales

except the smallest ones, where its performance is only slightly suboptimal. We

give rigorous mathematical statements of these results as well as heuristic explana-

tions that suggest that the essence of these findings applies to detection problems

quite generally, such as the detection of clusters in models involving densities or

intensities, or the detection of multivariate signals. We present a modification of

the average likelihood ratio that yields optimal detection of signals with arbitrary

extent and which has the additional benefit of allowing for a fast computation of

the statistic. In contrast, optimal detection with the scan seems to require the use

of scale-dependent critical values.

Key words and phrases: Average likelihood ratio statistic, fast algorithm, optimal

detection, scan statistic.

1. Introduction and Overview of Results

We are concerned with the problem of detecting a deterministic signal with

unknown spatial extent against a noisy background. This problem arises in a

wide range of applications, e.g. in epidemiology and astronomy, and has received

considerable attention recently due to important problems in e.g. biosurveillance.

The standard statistical tool to address this problem is the scan statistic (max-

imum likelihood ratio statistic), that considers the maximum of local likelihood

ratio statistics on certain subsets of the data. There is a large body of work on

scan statistics, see e.g. the references in Glaz and Balakrishnan (1999), Glaz,

Naus, and Wallenstein (2001), and Glaz, Poznyakov, and Wallenstein (2009).

But there is also empirical evidence that the scan statistic is suboptimal, see

e.g., Neill (2009) or Chan (2009).

http://dx.doi.org/10.5705/ss.2011.169
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Siegmund (2001) and Gangnon and Clayton (2001) propose to use the av-

erage of the likelihood ratio statistics instead of their maximum. In different

contexts, various versions of the average likelihood ratio where considered by

Shiryaev (1963), Burnashev and Begmatov (1990), and Dümbgen (1998). Chan

(2009) and Chan and Zhang (2009) perform simulation studies for various detec-

tion problems which suggest that the average likelihood ratio statistic is superior

to the scan statistic. In light of these results, it is of interest to provide a theoret-

ical investigation of the performance of both the scan and the average likelihood

ratio. Such a theoretical comparison seems to be missing in the literature and

appears to be quite relevant given the widespread use of the scan statistic as a

standard tool for a range of detection problems.

In the first part of this paper we show that in the prototypical univariate

sampled data model with white Gaussian noise the scan statistic possesses opti-

mal detection power only for signals with the smallest spatial extent; otherwise

the scan statistic is suboptimal, and the loss of power can be considerable for

signals having a large spatial extent. We also show that for average likelihood ra-

tio (ALR) statistic these conclusions hold in reversed order: The ALR possesses

optimal detection power for signals having large spatial extent, but is subopti-

mal for signals with small spatial extent. However, the loss of power in the latter

case is so small that it is unlikely to be of concern, at least for most sample sizes

considered today.

In the second part of the paper we propose a modification of the ALR that

results in universal optimality and allows efficient computation. The ALR aver-

ages the likelihood ratios pertaining to ∼ n2 stretches of the data, where n is the

sample size, resulting in an O(n2) algorithm. Thus the use of the ALR is compu-

tationally infeasible even for moderate sample sizes. We introduce a condensed

ALR that averages only a certain subset of the likelihood ratios and we show

that this condensed ALR possesses optimal detection power for signals having

arbitrary spatial extent. Furthermore, this condensed ALR can be computed in

almost linear time, viz. with an O(n log2 n) algorithm. In light of the preced-

ing discussion, it is arguably this improvement in computation time rather than

the small gain in detection power that is the main advantage of this modifica-

tion. We note that typically, an approximation introduced to make a procedure

computationally less intensive will on the flip side degrade its performance some-

what. It is noteworthy that in the case of the ALR, our computationally efficient

modification actually leads to an improved (in fact: optimal) performance.

We give sharp theoretical results on the performance of the ALR, the scan

statistic, and the newly proposed ALR in Sections 2 and 3. Since these results

are asymptotic, we complement them in Section 5 with a simulation study that

illustrates the results. Various modifications to the scan have been proposed in
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the literature in order to improve its detection power. We describe two such

modifications in Section 4, and include them in our simulation study to obtain a

more informative comparison with the ALR.

As in the case of the ALR, the computation of the scan statistic requires an

O(n2) algorithm. Various efficient algorithms for computing a good approxima-
tion to the scan statistic have been introduced in Neill and Moore (2004), Arias-

Castro, Donoho, and Huo (2005), Walther (2010) and Rufibach and Walther

(2010). Unlike the ALR, constructing a computationally efficient approximation

for the scan does not lead to universally optimal power. Rather, statistical op-

timality for the scan seems to require the use of size-dependent critical values.

We summarize our conclusions in Section 6 and defer proofs to Section 7. The

notation an ∼ bn means c < an/bn < C for constants 0 < c < C.

2. Comparison of the Scan and the Average Likelihood Ratio

We observe

Yi = fn

( i

n

)
+ Zi, i = 1, . . . , n,

where the Zi are i.i.d. N(0, 1) and fn(x) = µn1In(x) with In = (jn/n, kn/n],

0 ≤ jn < kn ≤ n. Both the amplitude µn and the support In are unknown. The
task is to decide whether a signal is present, i.e. whether µn ̸= 0.

The above sampled data model with Gaussian white noise serves as a pro-

totype for many important applications. The heuristics and results we develop

below suggest that our conclusions carry over, at least qualitatively, to related

detection problems involving multivariate signals, non-Gaussian errors, or the

detection of clusters in models involving densities or intensities, as described in

Kulldorff (1997).

The likelihood ratio statistic for testing µn = 0 when In is known is computed
as

exp
((Yn(In))

2

2

)
, where Yn(In) :=

∑
i∈nIn Yi√
n|In|

=

∑kn
i=jn+1 Yi√
kn − jn

.

Since In is unknown, the standard approach is to scan over all intervals
I ∈ Jn := {(j/n, k/n], 0 ≤ j < k ≤ n} for the largest likelihood ratio statistic.

The resulting scan statistic (maximum likelihood ratio statistic) is

Mn := max
0≤j<k≤n

∣∣∣Yn

(( j

n
,
k

n

])∣∣∣.
In contrast, the average likelihood ratio statistic (ALR) averages the likelihood

ratios over all intervals I ∈ Jn:

An :=
1

n2

n∑
j=0

n∑
k=j+1

exp
((Yn((j/n, k/n]))

2

2

)
.
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To quantify the performance of these statistics, we look for the smallest value

of |µn| that allows a reliable detection of the signal. As explained below, in order

to achieve optimality a test must be able to asymptotically detect signals fn with

|µn|
√

|In| ≥
√

2 log 1/|In|+ bn√
n

, where bn → ∞. (2.1)

Note that for signals fn on small scales, |In| → 0, (2.1) is equivalent to

|µn|
√

|In| ≥ (
√
2 + ϵn)

√
log 1/|In|

n
, (2.2)

where ϵn can go to 0 but not too fast: ϵn
√

log 1/|In| → ∞.

For signals fn on large scales, lim infn |In| > 0, (2.1) is equivalent to

|µn| ≥
bn√
n
, where bn → ∞. (2.3)

It is impossible to detect signals with noticeably smaller mean: In the case of

signals on small scales, a classical argument in the minimax framework (see e.g.,

Lepski and Tsybakov (2000), Dümbgen and Spokoiny (2001), and Dümbgen and

Walther (2008)) shows that if ‘+ϵn’ is replaced by ‘−ϵn’ in (2.2), then there exists

no test that can detect such fn with nontrivial asymptotic power. Likewise, a

contiguity argument, as in Dümbgen and Walther (2008), shows that in the case

of large scales the condition (2.3) is necessary for any test to be consistent against

fn. On the other hand, we exhibit below a test that detects signals satisfying

(2.1) with asymptotic power 1. Thus the detection threshold given by (2.1) marks

a standard that is attainable but cannot be improved upon. We now examine

how the scan and the ALR compare against this standard.

Theorem 1. Let κn be the (1− α) quantile of the null distribution of Mn.

1. If |µn|
√

|In| ≥ (
√
2 + ϵn)

√
(log n)/n with ϵn

√
log n → ∞, then IPfn(Mn >

κn) → 1.

2. If |µn|
√

|In| = (
√
2 − ϵn)

√
(log n)/n with ϵn as above, then limnIPfn(Mn >

κn) ≤ α.

Thus the detection threshold for the scan is
√

2(log n)/n, irrespective of the

spatial extent of the signal. Comparing to (2.2), one sees that the scan is optimal

only for signals having the smallest spatial extent, i.e. for |In| close to 1/n. As an

illustration, if |In| = n−p, p ∈ (0, 1], then detection is possible only if |µn|
√

|In| is
at least p−1/2 times larger than the optimal threshold. In the case of large scales,

comparison with (2.3) shows that this multiplier diverges to infinity, and thus the

scan suffers from a noticeably inferior performance. These results are illustrated
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in the simulation study in Section 5, and explain the sometimes disappointing

performance of the scan observed in the literature.

We note that an alternative way to analyze the performance of the scan is

to put a prior on the unknown spatial extent of the signal, e.g. the uniform

distribution on (0, 1). It is readily seen that this analysis leads to the same

conclusions as the case of large scales above, i.e. the scan is far from optimal.

The next theorem details the performance of the average likelihood ratio:

Theorem 2. Let τn be the (1− α) quantile of the null distribution of An.

1. An is optimal for detecting signals with large spatial extent:

If lim infn |In| > 0 and |µn| = bn/
√
n with bn → ∞, then IPfn(An > τn) → 1.

2. An is not optimal for detecting signals with small spatial extent:

If |In| → 0 and |µn|
√

|In| = K
√

(log 1/|In|)/n with K < 2, then limnIPfn(An

> τn) ≤ α.

3. If K ≥ 2 + ϵn, where ϵn
√

log 1/|In| → ∞, then IPfn(An > τn) → 1.

Comparing with (2.2), one sees that on small scales the ALR requires

|µn|
√
|In| to be about

√
2 times larger than the optimal threshold. This dis-

crepancy is not very consequential: The simulations in Section 5 show that the

corresponding loss of power is quite small for sample sizes up to n = 10, 000,

which is the largest sample size we were able to simulate due to the O(n2) com-

putational complexity of the ALR.

A heuristic explanation of why the scan and the ALR do not obtain optimal-

ity is as follows: There are n disjoint intervals I of length 1/n. The corresponding

likelihood ratio statistics Yn(I) are i.i.d. N(0,1) under the null hypothesis, thus

their maximum behaves like
√
2 log n. But in the case of large intervals of length

1/c (say), there are only c disjoint intervals that result in independent statistics

Yn(I). The statistics for the other intervals of length 1/c are not independent

of these Yn(I) since the intervals overlap. Thus the null distribution of that

maximum behaves roughly like the maximum of c i.i.d. N(0,1), which is Op(1).

Hence the overall maximum Mn is dominated by the small intervals, with a

corresponding loss of power at large intervals.

As for the ALR, if a detectable signal lives on a large interval In, then Yn(I)

is significant provided I has a nonvanishing overlap with In. Since there are

∼ n2 such intervals, the ALR is significant despite the divisor n2 in its definition.

In the case of small intervals In, however, the number of intervals I that yield

a sufficiently large statistic Yn(I) is so small compared to the total number of

intervals (∼ n2) that their contribution to An is annihilated by the divisor n2.

More precisely: the likelihood ratio statistic is maximized at I = In, where its size

is ≫ |In|−1 (up to log terms) for signals at the detection threshold (2.1). Thus
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if |In| = 1/n, then there are only a few significant likelihood ratios and their

magnitude is about |In|−1 = n. Thus dividing by n2 will let their contribution

vanish unless the size of the likelihood ratio statistics is increased to |In|−2 = n2

by doubling |µn|2|In| in the log likelihood ratio.

3. The Condensed Average Likelihood Ratio Statistic

The above heuristic suggests that an optimal version of the ALR can be

constructed by averaging the likelihood ratios not over all ∼ n2 intervals of Jn

but over a subset of Jn with cardinality close to n. The general idea is that

for larger intervals, there is not much lost by considering only intervals with

endpoints on a coarser grid as long as the distance between such gridpoints is

small compared to the length of the intervals. Then these intervals still provide

a good approximation to Jn, while the cardinality of this approximating set

can be reduced dramatically. To implement this idea, we modify the approach in

Walther (2010) and Rufibach and Walther (2010) and group intervals into ℓmax =

⌈log2 n/log n⌉ sets, each of which contains intervals having about the same length:

the approximating set Iapp(ℓ) consists of intervals that contain between mℓ + 1

and 2mℓ design points and whose endpoints are restricted to a grid consisting

of every dℓth design point, where mℓ = n2−ℓ and dℓ = ⌈√mℓℓ
4/5/log n⌉. Our

overall approximating set is then the union of these Iapp(ℓ) together with all

small intervals:

Iapp =

ℓmax∪
ℓ=1

Iapp(ℓ) ∪ Ismall, where

Iapp(ℓ) =
{
(
j

n
,
k

n
] ∈ Jn : j, k ∈ {idℓ, i = 0, 1, . . .} and mℓ < k − j ≤ 2mℓ

}
,

Ismall =
{
(
j

n
,
k

n
] ∈ Jn : k − j ≤ mℓmax

}
.

We suppress the dependence on n for notational simplicity. Our condensed ALR

is thus

An,cond :=
1

#Iapp

∑
I∈Iapp

exp
((Yn(I))

2

2

)
.

The above choices of dℓ and mℓ result in statistical and computational efficiency

for the ALR and differ from the choices used in Walther (2010) and Rufibach

and Walther (2010). We give an explanation for this in the proof of Theorem 3.

Theorem 3. The condensed ALR An,cond is optimal for detecting signals with

arbitrary spatial extent. Furthermore, An,cond can be computed in O(n log2n)

time.
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4. Modifications of the Scan That Improve Power

Here we describe two simple ways to improve the power of the scan by fixing
the miscalibration across different scales described in Section 2. For the first one
we adapt the penalty term introduced by Dümbgen and Spokoiny (2001) in the
context of inference about a function. The idea is to subtract off the putative
maximum at each scale in order to put the different scales on an equal footing:
the penalized scan is

Pn := max
0≤j<k≤n

(∣∣∣Yn

(( j

n
,
k

n

])∣∣∣−√
2 log

en

k − j

)
.

We declare that a signal is present if Pn > γn(α), where γn(α) is the (1 − α)
quantile of the null distribution of Pn.

A drawback of the penalized scan is that it requires the specification of the
penalty term, which has to be derived for each situation at hand. The penalty
term

√
2 log en/(k − j) optimizes signal detection for all scales in the Gaussian

regression setting; a different setting or a different error distribution may require
a different penalty term to achieve optimal detection. The form of the penalty
term depends on the tail behavior of the local test statistics, their dependence
structure, and the entropy of the underlying space, see Theorem 7.1 in Dümbgen
and Walther (2008). Thus these properties have to be derived on a case-by-case
basis, and this derivation is typically far from straightforward.

The second way to fix the miscalibration of the scan is the blocked scan
introduced in Walther (2010). The block method has the advantage that it
is a general recipe that does not require any case-specific input. The idea is
to group intervals having roughly the same length into blocks, with the ℓth
block comprising all intervals that contain between mℓ = n2−ℓ and 2mℓ design
points. Then one assigns different critical values to different blocks such that the
significance level on the ℓth block decreases as ∼ ℓ−2.

In more detail, for mℓ and ℓmax as above, define

Mn,ℓ := max
mℓ<k−j≤mℓ−1

∣∣∣Yn

(( j

n
,
k

n

])∣∣∣, ℓ = 1, . . . , ℓmax,

and Mn,ℓmax+1 := maxk−j≤mℓmax
|Yn((j/n, k/n])|. Thus the (ℓmax + 1)st block

comprises all small intervals that contain up to mℓmax design points. The blocked
scan declares that a signal is present if Mn,ℓ > qℓ(α̃/(A+ ℓ)2) for any ℓ ∈
{1, . . . , ℓmax + 1}. Here qℓ(α̃/(A+ ℓ)2) is the (1 − α̃/(A+ ℓ)2) quantile of the
null distribution of Mn,ℓ, A := 10 (say), and α̃ is chosen such that the overall
significance level is α:

IP0

(ℓmax+1∪
ℓ=1

{
Mn,ℓ > qℓ

( α̃

(A+ ℓ)2

)})
= α.
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The critical values qℓ and α̃ can be easily simulated with Monte Carlo, see Ru-

fibach and Walther (2010). We suppress the dependence of qℓ on n for notational

simplicity.

It can be shown that both the penalized scan and the blocked scan are also

optimal for detecting signals with arbitrary spatial extent, see Chan and Walther

(2011).

Computationally efficient algorithms for evaluating the scan or an approxi-

mation thereof have been introduced in the literature, see e.g., Neill and Moore

(2004), Arias-Castro, Donoho, and Huo (2005), Rufibach and Walther (2010)

and Walther (2010). Those algorithms reduce the computational complexity for

the scan from O(n2) to almost linear time in n (apart from log n factors), com-

parable to the condensed scan. Hence it is possible to modify the scan to obtain

statistical optimality (via the penalized or blocked scan) and computational ef-

ficiency. But, unlike the case of the condensed ALR where the particular choice

of the approximating set leads to optimal power properties, it appears that eval-

uating the scan on an appropriate approximating set does not lead to optimal

detection by itself. Rather, it appears that optimal detection requires the use

of scale-dependent critical values, and efficient computation has to be addressed

separately using any of the methods cited above.

5. A Simulation Study

Since the results of the previous sections are asymptotic, we illustrate them

in a finite sample context with a simulation study. We first consider signals fn
with fixed norm ∥ fn ∥:= |µn|

√
|In| but varying spatial extent. Table 1 gives

the power of the scan, the ALR, the condensed ALR, the penalized scan, and

the blocked scan for a sample size of n = 10, 000. The results are visualized in

the left plot in Figure 1. One sees that the overall performance of the scan is

inferior to that of the other four methods, whose performances are quite similar.

In particular, the power of the scan is not increasing with the spatial extent of

the signal as opposed to the other four methods. As a consequence, the scan is

competitive only for signals on the smallest scales.

Table 1 also shows an improvement in power of the condensed ALR vis-

a-vis the ALR on small scales, illustrating Theorems 2 and 3. However, this

improvement is modest, at least for the sample size under consideration, and thus

the main advantage of the condensed scan is arguably the dramatic reduction in

computation time to O(n log2 n) versus O(n2) for the ALR. We were able to

accurately simulate critical values for the condensed ALR with a sample size of

1 million in a matter of hours, whereas this computation would take hundreds of

days for the ALR.
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Figure 1. Left: Power of the scan and the ALR for detecting signals fn with
fixed norm ∥fn∥= 0.04 but varying spatial extent |In|, n = 10, 000. Right:
Power of the scan and the ALR for detecting signals fn with varying norms
∥fn∥ and random spatial extent. The power curves for the condensed ALR,
the penalized scan, and the blocked scan are similar to those of the ALR
and are not plotted, see Tables 1 and 2 for the numerical results.

Table 1. Power in percent for detecting signals fn with fixed norm ∥fn∥=
0.04 but varying spatial extent |In|, n = 10, 000.

scale 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
scan 38 41 43 45 39 42 42 41 41 43 39
ALR 28 58 72 82 88 86 88 89 90 92 91

condensed ALR 36 61 72 80 87 85 87 88 90 91 91
penalized scan 37 61 72 80 85 84 85 86 87 90 89
blocked scan 41 59 69 77 82 80 82 82 84 87 86

Table 2 shows how the power varies as function of ∥fn∥, see the right plot in

Figure 1 for a visual representation. The spatial extent of the signal was chosen

uniformly in [0, 1] in each of the 2,000 Monte Carlo simulations. The power

curves of the last four methods are again quite similar, and superior to that of

the scan. One sees that the scan requires a signal with almost twice the norm

to achieve the power of the four other methods. According to the results in the

previous sections, this discrepancy increases with the sample size.

All power values in Tables 1 and 2 are with respect to a 5% significance

level. The corresponding critical values were simulated with 10,000 Monte Carlo

samples, and the power was simulated with 2,000 Monte Carlo samples. The

location of the signal was chosen at random in each of these simulations to avoid

confounding the results with the approximation scheme of the condensed ALR.
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Table 2. Power in percent for detecting signals fn with varying norms ∥fn∥
and random spatial extent, n = 10, 000.

∥fn∥ ×100 2 2.5 3 3.5 4 4.5 5
scan 7 9 15 24 39 57 74
ALR 30 45 61 75 88 94 97

condensed ALR 30 44 60 75 87 94 97
penalized scan 26 40 57 74 85 93 97
blocked scan 24 35 51 69 82 92 96

6. Conclusion

The scan is optimal only for detecting signals on the smallest scales. The

ALR has a superior overall performance and is optimal for detecting signals

on all scales except on the smallest ones, but the loss of power there appears

to be modest. Moreover, by averaging the likelihood ratios over a particular

subset of intervals rather than over all intervals, the resulting condensed ALR

is simultaneously optimal for all scales and also allows for efficient computation.

In contrast, improved versions of the scan, such as the penalized scan and the

blocked scan, appear to require the use of scale-dependent critical values, and

thus it appears that statistical optimality and computational efficiency have to

be addressed separately for the scan.

The results of this paper are developed in the Gaussian white noise model

since it is known that the conceptual results in that model are applicable and

relevant for a wide range of related problems. We note that the concrete im-

plementation of the results derived in the Gaussian white noise model requires

additional work that depends on the concrete problem at hand. For example, in

the univariate regression setting, Rohde (2008) employs local signed rank tests

to transform non-Gaussian data into statistics with sub-gaussian tails, and Cai,

Jeng, and Li (2011) employ a local median transformation for the same purpose.

To see why such an additional step is required, note that the null distribution of

both the scan and the ALR, as well as the form of the penalty term for the penal-

ized scan, depend sensitively on the tails of the error distribution, and hence on

the assumption of Gaussianity. The above papers show rigorously that the Gaus-

sian white noise model is applicable after a local signed rank or a local median

transformation, assuming only e.g. symmetry of the error distribution. These

arguments are technically sophisticated and thus the transformation step consti-

tutes a piece of methodological work by itself. It is thus helpful to separate the

conceptual issues involving the scan and the ALR from the particular implemen-

tation and to present an unencumbered exposition in the Gaussian white noise

model. In particular, the heuristics developed in this model give guidance how

the corresponding problems might be addressed in related detection problems,
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such as the detection of clusters in models involving densities and intensities,

as well as the important case of detecting multivariate signals. For example, in

a regression type setting with irregularly spaced or multivariate data, the pro-

portion of observations falling into the set I would take the place of the size |I|
used above. Section 3 shows how to construct an approximating set that, on

the one hand, results in computational efficiency and, on the other, provides the

right ‘weighting’ of the various sizes of intervals in the condensed ALR to achieve

statistical optimality. This idea can presumably be mimicked in a multivariate

situation, where the construction would then depend on the entropy of the class

of scanning windows. The implementation of this idea in the multivariate con-

text is an interesting problem for future research. Another open problem is a

theoretical result on the precision with which the scan and the ALR allow one

to localize a signal once it is detected.

7. Proofs

Note that fn(x) = µn1In(x) implies for any interval I ∈ Jn:

Yn(I) = Zn(I) + sign(µn)
√
n|µn|

|I ∩ In|√
|I|

. (7.1)

We use the following consequence of a result of Dümbgen and Spokoiny

(2001).

Lemma 1. Let ℓ ∈ (0, 1) and J ∈ Jn, where J does not depend on Zn. Then

max
I∈Jn:I⊂J,|I|≥ℓ

|Zn(I)|
d
≤ L+

√
2 log

e|J |
ℓ

for a universal random variable L which is finite almost surely.

Proof of Lemma 1. WritingW for Brownian motion and j, k for integer indices:

max
I∈Jn:I⊂J

|I|≥ℓ

(
|Zn(I)| −

√
2 log

e|J |
|I|

)
d
= max

0≤j<k≤n|J |
k−j≥nℓ

( |W (k)−W (j)|√
k − j

−

√
2 log

e|J |n
k − j

)

≤ sup
s,t∈R:

0≤s<t≤n|J |

( |W (t)−W (s)|√
t− s

−
√

2 log
e|J |n
t− s

)
d
= sup

0≤s<t≤1

( |W (t)−W (s)|√
t− s

−
√

2 log
e

t− s

)
=: L (7.2)
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by Brownian scaling. Thus the random variable L defined above is universally

applicable for all n, ℓ, and J . Importantly, L is finite almost surely, see Sec. 6.1

in Dümbgen and Spokoiny (2001).

Proof of Theorem 1. As for part 1, (7.1) impliesMn ≥ |Yn(In)| ≥ −|Zn(In)|+√
2 log n+ϵn

√
logn. SinceZn(In) ∼ N(0, 1) and ϵn

√
log n → ∞, the claim follows

from κn =
√
2 log n+O(1), see (7.3).

For the proof of part 2, set bn := ϵn
√
log n → ∞ and consider first the

collection of intervals Jn,1 :=
{
I ∈ Jn : I ∩ In ̸= ∅ and |In|/bn ≤ |I| ≤ bn|In|

}
.

So I ∈ Jn,1 implies I ⊂
(
(jn − ⌊bnn|In|⌋)/n, (kn + ⌊bnn|In|⌋)/n

]
∩(0, 1] and thus

Lemma 1 gives

max
I∈Jn,1

|Zn(I)|
d
≤ L+

√
2 log

e(1 + 2bn)|In|
|In|/bn

≤ L+ 2
√

log(3bn).

Together with (7.1) and |I ∩ In| ≤
√

|I||In|, this yields

IPfn

(
max
I∈Jn,1

|Yn(I)| > κn

)
≤ IP

(
max
I∈Jn,1

|Zn(I)|+
√

2 log n− bn > κn

)
≤ IP

(
L > κn −

√
2 log n+ bn − 2

√
log(3bn)

)
→ 0 since κn =

√
2 log n+O(1) by (7.3).

Next, only if bn ≤ log3n do we need to consider Jn,2 := {I ∈ Jn : I ∩ In ̸= ∅
and either |In|/ log3n ≤ |I| ≤ |In|/bn or bn|In| < |I| ≤ |In| log3n}. Similarly

as above, I ∈ Jn,2 implies that I is contained in an interval J ∈ Jn with |J | ≤
(1 + 2 log3n)|In|. Thus Lemma 1 yields

max
I∈Jn,2

|Zn(I)|
d
≤ L+

√
2 log

e(1 + 2 log3n)|In|
|In|/ log3n

≤ L+ 4
√

log log n.

One readily checks that I ∈ Jn,2 implies |I ∩ In| ≤
√

|I||In|/bn. Thus (7.1) gives

IPfn

(
max
I∈Jn,2

|Yn(I)| > κn

)
≤ IP

(
max
I∈Jn,2

|Zn(I)|+
√
2 log n− bn√

bn
> κn

)
≤ IP

(
L > κn −

√
2 log n− bn√

bn
− 4

√
log log n

)
→ 0 since κn =

√
2 log n+O(1).

Finally, consider Jn,3 :=
{
I ∈ Jn : I ∩ In = ∅ or |I| ≤ |In|/ log3n or

|I| > |In| log3n
}
. Since I ∈ Jn,3 implies |I ∩ In| ≤

√
|I||In|/ log3n, we get by
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(7.1),

IPfn

(
max
I∈Jn,3

|Yn(I)| > κn

)
≤ IP

(
max
I∈Jn

|Zn(I)| > κn −
√
2 log n− bn√

log3n

)
→ α,

where the convergence follows from the following.

A sequence {cn} satisfies limn IP
(
maxI∈Jn |Zn(I)| > cn

)
= α if and only if

cn =
√

2 log n+ (2 log n)−1/2
(1
2
log log n+ C(α)

)
+ o

(
(log n)−1/2

)
(7.3)

for a certain constant C(α). This follows from Theorem 1.3 in Kabluchko (2008)

or, with some work, from the earlier Theorem 1 in Siegmund and Venkatraman

(1995).

Since Jn = Jn,1 ∪ Jn,2 ∪ Jn,3 the theorem is proved.

Proof of Theorem 2. We begin by showing that in the null case of no signal,

Yn = Zn, we have

An = Op(1). (7.4)

Note that An is an average of correlated random variables that do not possess

a finite first moment. In light of the converse to the strong law it is thus not

at all obvious that (7.4) holds. For a proof let m > 0 and define the event

Bm,n := {|Zn((j/n, k/n])| ≤ C((k − j)/n) + m for all 0 ≤ j < k ≤ n}, where
C(δ) :=

√
2 log e/δ. Then Markov’s inequality gives, for λ > 0,

IP0(An > λ) ≤ 1

λn2

n−1∑
j=0

n∑
k=j+1

IE
[
exp

((Zn((j/n, k/n]))
2

2

)
1(Bm,n)

]
+ IP(Bc

m,n)

≤ 1

λn2

n−1∑
j=0

n∑
k=j+1

∫ C( k−j
n

)+m

−C( k−j
n

)−m
ez

2/2 1√
2π

e−z2/2dz + IP(Bc
m,n)

≤ 1

λn2

n−1∑
j=0

n∑
k=j+1

(√
2 log

en

k − j
+m

)
+ IP(Bc

m,n)

≤ 1

λ

( 1

n

n−1∑
j=0

∫ 1

0

√
2 log

e

u
du+m

)
+ IP(Bc

m,n)

≤ 4 +m

λ
+ IP(L > m)

by (7.2). This sum can be made arbitrarily small by choosing m and λ appro-

priately, proving (7.4).
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To prove parts 1 and 3 together we consider fn with arbitrary spatial

extent and |µn|
√

|In| ≥ (
√
4 log 1/|In| + bn)/

√
n with bn → ∞. Set ϵn :=

min(1, bn(log e/|In|)−1/2) and J (In) := {I ∈ Jn : I ⊂ In and |I| ≥ |In|(1−ϵn/2)}.
Then #J (In) ≥ ⌈ϵnn|In|/4⌉2 since each of the ⌈ϵnn|In|/4⌉ smallest (largest)

design points in cl(In) may serve as a left (right) endpoint for some I ∈ J (In).

Lemma 1 gives

max
I∈J (In)

|Zn(I)|
d
≤ L+

√
2 log

e

1− ϵn/2
≤ L+ 2.

Together with |I∩In|√
|I||In|

=
√

|I|
|In| ≥

√
1− ϵn

2 and (7.1) we get

min
I∈J (In)

|Yn(I)|
d
≥

(√
4 log

1

|In|
+ bn

)√
1− ϵn

2
− L− 2

≥

√
4 log

1

|In|
+

bn
9

− L− 2,

since (x + y)
√

1−min(1, y)/2 ≥ x + y/9 for x ∈ [0, 2], y > 0. Thus, writing

Rn := (bn/9)− L− 2,

An ≥ #J (In)

n2
min

I∈J (In)
exp

((Yn(I))
2

2

)
d
≥ ϵ2n|In|2

42
exp

{
2 log

1

|In|
+Rn

(Rn

2
+

√
4 log

1

|In|

)}
=

ϵ2n
42

exp
{
Rn

(Rn

2
+

√
4 log

1

|In|

)}
≥ ϵ2n

42

(
log

e

|In|

)
exp

(R2
n

2

)
1(Rn ≥ 1)

a.s.→ ∞ since Rn
a.s.→ ∞ and ϵn

√
log

e

|In|
≥ 1 eventually.

The claim follows since τn = O(1) by (7.4).

For the proof of part 2 we partition Jn into Jn,1 := {I ∈ Jn : I ∩ In ̸= ∅
and |In|/(log4 1/|In|) ≤ |I| ≤ |In| log4 1/|In|} and Jn,2 := Jn ∩ J c

n,1. We show

for J = Jn,1,Jn,2 that

1

n2

∑
I∈J

∣∣∣exp((Yn(I))
2

2

)
− exp

((Zn(I))
2

2

)∣∣∣ P→ 0. (7.5)
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Since it can be shown that in the null case fn ≡ 0, the ALR An converges weakly

to a continuous limit, the claim of part 2 follows from (7.5).

To prove (7.5) for J = Jn,1 we follow the proof of part 2 of Theorem 1 (set

bn :=log4 1/|In| there) and conclude maxI∈Jn,1 |Zn(I)|
d
≤L+2

√
log(3 log4 1/|In|).

Hence for a fixed constant λ which is specified below we obtain

IP
(
An :=

{
max
I∈Jn,1

|Zn(I)| ≤ λ

√
log

1

|In|

})
→ 1.

That proof also shows that every I ∈ Jn,1 is contained in a certain interval of

length (1 + 2 log4 1/|In|)|In|, thus #Jn,1 ≤ ((1 + 2 log4 1/|In|)n|In|)2. On the

event An we have, by (7.1),

1

n2

∑
I∈Jn,1

∣∣∣exp((Yn(I))
2

2

)
− exp

((Zn(I))
2

2

)∣∣∣
≤ #Jn,1

n2
2 exp

(
max
I∈Jn,1

(Zn(I))
2

2
+

n|µn|2|In|
2

+ max
I∈Jn,1

|Zn(I)|
√

n|In||µn|
)

≤ 18
(
log1/|In|

)8
|In|2 exp

(λ2 log 1/|In|
2

+
K2

2
log

1

|In|
+ λK log

1

|In|

)
= 18

(
log

1

|In|

)8
|In|2−

K2

2
−λ2

2
−λK .

Since K2/2 < 2 we can choose λ = λ(K) > 0 such that the above expression

goes to 0 as |In| → 0, proving (7.5) for J = Jn,1.

To prove (7.5) for J = Jn,2, we proceed similarly as in the proof of (7.4) and

employ the event Bm,n defined there. Then for λ,m > 0, Markov’s inequality

gives

IPfn

( 1

n2

∑
I∈Jn,2

∣∣∣exp((Yn(I))
2

2

)
− exp

((Zn(I))
2

2

)∣∣∣ > λ
)

≤ 1

λn2

∑
I∈Jn,2

IEfn

(∣∣∣exp((Yn(I))
2

2

)
− exp

((Zn(I))
2

2

)∣∣∣1(Bm,n)
)
+ IP(Bc

m,n).

Since (7.2) gives IP(Bc
m,n) ≤ IP(L > m) → 0 as m → ∞, it is enough to show

that for any fixed m the above expectation converges to 0 as n → ∞, uniformly

in I ∈ Jn,2. Using Zn(I) ∼ N(0,1) and writing δI :=
√
n|µn|(|I ∩ In|/

√
|I|) and

C(|I|) :=
√
2 log e/|I|, we get with (7.1),

IEfn

(∣∣∣exp((Yn(I))
2

2

)
− exp

((Zn(I))
2

2

)∣∣∣1(Bm,n)
)
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≤ 1√
2π

∫ C(|I|)+m

−C(|I|)−m

∣∣∣exp(zδI + δ2I
2
)− 1

∣∣∣dz
≤

√
2

π
exp

(
δI(C(|I|) +m) +

δ2I
2

)(
δI(C(|I|) +m)2 +

δ2I (C(|I|) +m)

2

)
(7.6)

by bounding the function z 7→ exp(zδ + δ2/2)− 1 above and below by the Mean

Value Theorem. Next we show that, as n → ∞,

δI → 0 and δIC
2(|I|) → 0 uniformly in I ∈ Jn,2. (7.7)

This conclusion then also holds for the expression in (7.6), and (7.5) follows.

To prove (7.7), note that δI = K
√

log 1/|In||I ∩ In|/
√

|I||In|. If I ∩ In = ∅,
then δI = 0. If |I| < |In|/ log4 1/|In|, then the bound |I ∩ In| ≤ |I| yields

δI ≤ K(log 1/|In|)−3/2, while the monotonicity of the function x 7→
√
x log e/x

for x ∈ (0, e−1) gives

δIC
2(|I|) ≤ 2K

√
log

1

|In|

√
|I|
|In|

log
e

|I|

≤ 2K
(
log

1

|In|

)−3/2
log

e log41/|In|
|In|

≤ 6K
(
log

1

|In|

)−1/2

if n is large enough so that |In|/ log4 1/|In| ≤ e−1.

If |I| > |In| log4 1/|In|, then the bound |I ∩ In| ≤ |In| yields again δI ≤
K(log 1/|In|)−3/2, while

δIC
2(|I|) ≤ 2K(log

1

|In|
)−3/2 log

e

|I|
≤ 2K(log

1

|In|
)−1/2.

Proof of Theorem 3. Before proceeding to the proof, we sketch an explanation

for the choice of the grid spacing dℓ. For given In, let ℓ be such that the intervals in

Iapp(ℓ) have length about |In|. Thus mℓ ∼ n|In|, i.e. ℓ ≈ log2 e/|In|. An interval

I results in a significant likelihood ratio provided its endpoints lie in a (ϵn/2)|In|
neighborhood of the endpoints of In, where ϵn := min(1, bn(log e/|In|)−1/2). Thus

the number of significant intervals in Iapp(ℓ) is ∼ (ϵn|In|n/dℓ)2. Under (2.1) the

size of the corresponding likelihood ratios is ≫ (log2 e/|In|)p/|In| for arbitrary

p > 0. Thus optimality of An,cond obtains if the number of significant intervals

in Iapp(ℓ) is at least #Iapp|In|/(log2 e/|In|)p for some fixed p > 0, and even if

the number is smaller by some factor ϵkn, since ϵn
√

log2 e/|In| ≥ 1. Solving this

inequality for dℓ yields dℓ ≤
√

n2|In|ℓp/#Iapp. Requiring #Iapp ∼ n(log n)q for
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some q > 0 for computational efficiency suggests the choice dℓ ∼
√

mℓℓp(log n)−q.

Computing #Iapp shows that this choice of dℓ is indeed consistent with #Iapp ∼
n(log n)q provided p > 1. Further, it will be seen that An,cond = Op(1) under the

null hypothesis requires
∑

ℓ ℓ
1/2−p < ∞, i.e. p > 3/2. Finally, optimal detection

for very small intervals In requires that their endpoints are approximated exactly,

i.e. it is necessary to have dℓ = 1 for large ℓ. Thus we need an appropriate

combination of a small p > 3/2 and a large q. Since the required large q results in

a noticeably worse computation time, we prefer to stick to a O(n log2 n) algorithm

by setting p = 8/5, q = 2, and by explicitly considering all small intervals

containing up to log n design points in lieu of choosing a larger q.

We now prove the theorem, starting with the claim about the computational

complexity. Since Iapp(ℓ) allows only every dℓth design point as a potential

endpoint for an interval, there are at most ⌈n/dℓ⌉ left endpoints. For each left

endpoint there are at most ⌈2mℓ/dℓ⌉ right endpoints since each interval contains

not more than 2mℓ design points. Thus

#Iapp(ℓ) ≤
⌈ n

dℓ

⌉⌈2mℓ

dℓ

⌉
≤ 3

n log2n

ℓ8/5
and (7.8)

#Ismall ≤ n log n since mℓmax ≤ log n. Hence (7.9)

#Iapp ≤
ℓmax∑
ℓ=1

3
n log2n

ℓ8/5
+ n log n ≤ 9n log2n. (7.10)

exp((Yn(I))
2/2) can be evaluated in a constant number of steps after an initial

one-time computation of the cumulative sum vector of (Yi, 1 ≤ i ≤ n). Since that

computation has complexity O(n), the overall computational complexity of com-

puting An,cond is dominated by the cardinality of Iapp and hence is O(n log2n).

Next we show that for fn ≡ 0:

An,cond = Op(1) as n → ∞. (7.11)

Proceeding as in the proof of (7.4) it is enough to show that

(
1

#Iapp
)

∑
I∈Iapp

√
2 log(

1

|I|
) = O(1). (7.12)

Since I ∈ Iapp(ℓ) implies |I| > mℓ/n = 2−ℓ, we obtain with (7.8) and (7.9),

∑
I∈Iapp

√
2 log

1

|I|
≤

ℓmax∑
ℓ=1

#Iapp(ℓ)
√
2ℓ + n(log n)

√
2 log n

≤ 5n log2n

∞∑
ℓ=1

ℓ1/2

ℓ8/5
+ n(log n)2 ≤ 56n log2n.
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On the other hand, #Iapp ≥ #Iapp(2) ≥ (1/10)n(log n)2 by considerations
similar to those establishing (7.8). (7.12) follows.

To establish optimality of An,cond, we proceed as in the proof of Theorem 2
and consider fn with arbitrary spatial extent and |µn|

√
|In| ≥ (

√
2 log 1/|In| +

bn)/
√
n, where bn → ∞. As before we define ϵn := min(1, bn(log e/|In|)−1/2)

and J (In) := {I ∈ Jn : I ⊂ In and |I| ≥ |In|(1 − ϵn/2)}. Intervals I ∈ J (In)
contribute significant LR statistics to An,cond. Since we now require that the
endpoints of these intervals fall on a dℓ- grid, there are now many fewer of these
intervals. But this is more than compensated by the small cardinality of Iapp

appearing in the divisor of An,cond. This fact allows us to detect fn with a
norm that is smaller than in Theorem 2. In more detail, take the integer ℓ so
mℓ < n|In|(1− ϵn/4) ≤ 2mℓ.

Lemma 2.

If ℓ ≤ ℓmax, then
#
(
J (In) ∩ Iapp(ℓ)

)
#Iapp

≥ ϵ2n|In|

93
(
log2 e/|In|

)8/5
.

If ℓ > ℓmax, then
#
(
J (In) ∩ Ismall

)
#Iapp

≥ ϵ2n|In|

322
(
log2 e/|In|

)2 .

As in the proof of Theorem 2 we find minI∈J (In) |Yn(I)|
d
≥

√
2 log 1/|In|+Rn,

where Rn := bn/9− L− 2. Thus in the case ℓ ≤ ℓmax, Lemma 2 gives

An,cond ≥
#
(
J (In) ∩ Iapp(ℓ)

)
#Iapp

min
I∈J (In)

exp
((Yn(I))

2

2

)
d
≥ ϵ2n|In|

93
(
log2

e
|In|

)8/5
exp

{
log

1

|In|
+Rn

(Rn

2
+

√
2 log

1

|In|

)}

=
ϵ2n

93
(
log2

e
|In|

)8/5
exp

{
Rn

(Rn

2
+

√
2 log

1

|In|

)}

≥ Cϵ2n

(
log

e

|In|

)
exp

(R2
n

2

)
1(Rn ≥ 1) for some universal C > 0

a.s.→ ∞ since Rn
a.s.→ ∞ and ϵn

√
log

e

|In|
≥ 1 eventually.

In the case ℓ > ℓmax, the same conclusion obtains by using Ismall in place of
Iapp(ℓ). The claim then follows since the critical value of An,cond stays bounded,
by (7.11).
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Thus the crucial difference with Theorem 2 is the stronger inequality pro-

vided by Lemma 2. The corresponding inequality for Theorem 2 is #J (In)/n
2 ≥

ϵ2n|In|2/42, and the extra term |In| causes the loss of efficiency in the case when

the spatial extent |In| is small.

It remains to prove Lemma 2. Elementary considerations show that one

can find sets In,left and In,right, each consisting of p := ⌈ϵnn|In|/8⌉ consecutive

integers, such that (j, k) ∈ In,left × In,right implies (j/n, k/n] ∈ J (In), and also

mℓ < k− j ≤ 2mℓ if ℓ ≤ ℓmax, resp. k− j ≤ mℓmax if ℓ > ℓmax. Thus, in the latter

case, we immediately obtain #(J (In)∩Ismall) ≥ p2, and the claim of the Lemma

obtains with (7.10), n|In| ≥ 1, and log n ≤ (4/3) log2 e/|In|, which follows from

ℓ > ℓmax. In the case ℓ ≤ ℓmax, only a subset of the p2 intervals {(j/n, k/n]:
(j, k) ∈ In,left × In,right} belongs to J (In) ∩ Iapp(ℓ), namely those for which

both j and k lie on the dℓ-grid. The number of such indices j is at least ⌊p/dℓ⌋ ≥
⌈ϵn

√
n|In|(log n)/(9 ℓ4/5)⌉ for n large enough, where this inequality follows from

the fact that ℓ ≤ ℓmax implies n|In| > mℓ ≥ (log n)/2 and dℓ ≥ (log n)3/10;

further, ϵn
√
logn → ∞ by the definition of ϵn. The same bound obtains for the

number of indices k that lie on the dℓ-grid. The claim of the Lemma then follows

with (7.10) and ℓ ≤ log2 e/|In|, which is a consequence of the definition of ℓ.
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