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Abstract: This paper proposes a new class of optimum design criteria for the linear

regression model with r responses based on the volume of the predictive ellipsoid.

This is referred to as I
r

L-optimality. The I
r

L-optimality criterion is invariant with

respect to different parameterizations of the model, and reduces to IL-optimality as

proposed by Dette and O’Brien (1999) in single response situations. An equivalence

theorem for I
r

L-optimality is provided and used to verify I
r

L-optimality of designs,

and this is illustrated by several examples.
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1. Introduction

In many experimental situations, especially in engineering, pharmaceutical,

and biomedical, and environmental research, it is necessary to measure more than

one response for each setting of control variables. For example, in the course of

calibration of an apparatus in microwave engineering, several precision transmis-

sion line sections are connected to the apparatus. The connection of each section

produces a complex number called a reflection coefficient; the reflection coeffi-

cients lie on a circle with unknown centre and radius, but due to various causes

the readings are noisy. Berman (1983) analyzed such data using a simple bivariate

response model. Wu (1997) considered Φ-optimal designs for Berman’s model.

Another example is a bioassay experiment that measures a response from differ-

ent doses of the standard and test preparations. The expectation of the response

at a dose level d ∈ [a, b] under the standard preparation is E(y1|d) = η1(d), while

the expected response for the test preparation is E(y2|d) = η2(d) = η1(τd), where

τ is a unknown constant representing the relative potency between the standard

and test preparations. It is common practice to assume η1(d) is linearly related

to x = log(d), and that the two responses are correlated. Huang et al. (2006)

considered D-optimal designs for such models.

The previous work on multiresponse optimal designs has focused mainly on

D-optimal designs. One of the earliest articles on multiresponse designs is the
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one by Draper and Hunter (1966) who developed a criterion for selecting addi-

tional experimental runs after a certain number of runs have already been chosen.

Fedorov (1972, Chap. 5) established a theoretical foundation for multiresponse

experiments and also developed a recursive algorithm for generating multire-

sponse approximate D-optimal designs. Chang (1994) studied the properties of

D-optimal designs for multiresponse models. Khuri and Cornell (1996) devoted

a chapter of their book to multiresponse experiments. Krafft and Schaefer (1992)

considered a linear regression model with a one-dimensional control variable, and

an m-dimensional response variable, and generated a D-optimal design for this

special model. Chang et al. (2001) generated D-optimal designs for a simple

m-dimensional response model with a single control variable.

Here we focus on the design criteria achieving reliable predictions from the

fitted multiresponse linear models, since there are cases where prediction is also

important when designing an experiment. We generalize the IL-optimality of

Dette and O’Brien (1999) for single response experiments to multiresponse situ-

ations. The IL-optimality is analogous to Kiefer’s Φk-criterion but is based on

prediction variance, and contains G- and D-optimality as special cases.

The paper is organized as follows. Section 2 introduces the new optimality

criteria for linear regression models with r responses, termed IrL-optimality. An

equivalence theorem for IrL-optimality is derived in Section 3. Two illustrative

examples are given in Section 4.

2. Development of IrL-Optimality

Throughout the paper we consider multiresponse linear models of the form

Y (x) = F (x)θ + ε, (2.1)

where Y (x) = (y1(x), . . . , yr(x))
T is the vector of r responses, x = (x1, . . . , xq) is

a setting of q control variables, F (x) = (f1(x), . . . , fr(x))
T is an r × p matrix of

regression functions, θ is a vector of p unknown parameters, and ε is a vector of

random errors with mean 0 and known or unknown variance-covariance matrix

Σ. We consider approximate designs of the form

ξ =

{

x1 · · · xn
w1 · · · wn

}

,

where the support points x1, . . . , xn are distinct elements of the design region

X ⊂ Rq, and corresponding weights w1, . . . , wn are nonnegative real numbers

which sum to unity. Denote the set of all approximate designs with positive

semidefinite information matrix on X by Ξ. The information matrix of ξ is

M(ξ) =

∫

X

F T (x)Σ−1F (x)dξ(x),
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and it is assumed that Range{F T (x)} ⊂ Range{M(ξ)} (∀x ∈ X ), which implies

that the r responses are estimable by the design ξ.

Motivated by Dette and O’Brien (1999), we take the matrix F (x) of regres-

sion functions to be defined on a set Z that may be larger than the design region

X . It is assumed that X and Z are bounded, and µ denotes a probability measure

on Z.

For a point z ∈ Z the variance-covariance matrix of predicted responses at

z under the design ξ is

V (z, ξ) = F (z)M−1(ξ)F T (z). (2.2)

When there is no possibility of confusion we omit the dependencies of M,V and

F on ξ and x.

Definition 1. For L ∈ [1,∞) a design ξ∗L is called IrL-optimal in Ξ if it minimizes

ψL(ξ) =

{
∫

Z

|V (z, ξ)|L dµ(z)

}1/L

(2.3)

over Ξ.

Remark 1. This definition can be extended to allow the case L = ∞ by tak-

ing ψ∞(ξ) = supz∈Z |V (z, ξ)| . It can be shown that ψ∞(ξ) = limL→∞ ψL(ξ) if

supp(µ) = Z and each element of the matrix F (z) of regression functions is

continuous on Z.

Obviously, the Ir∞-optimality criterion, which minimizes the maximum vol-

ume of the predictive ellipsoid, is analogous to G-optimality in single response

situations and can be viewed as a generation of G-optimality to multiresponse

situations.

Remark 2. When there is only a single response, the determinant of the

variance-covariance matrix, |V (z, ξ)|, degenerates to the variance function d(z, ξ)

and consequently the criterion function becomes

ψL(ξ) =

{
∫

Z

dL(z, ξ)dµ(z)

}1/L

,

which is the IL-optimality criterion introduced by Dette and O’Brien (1999) in

single response situations. On the other hand, if r = p, and hence F (x) is an

p × p matrix, for example, η1(x, θ) = θ1 + θ2x, η2(x, θ) = θ1 + θ2e
x, 0 ≤ x ≤ 1,

then

|V (z, ξ)| = |F (z)|2
∣

∣M−1(ξ)
∣

∣ ,

and IrL-optimality is equivalent to D-optimality.
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Comparing with Kiefer’s Φk class, a good property of IrL-optimality is that

it is invariant with respect to model reparameterization. Thus the matrix of

regression functions F (x) can be replaced by G(x) := F (x)A for any nonsingular

p×pmatrix A and θ replaced by γ := A−1θ. This was also noted for IL-optimality

by Dette and O’Brien (1999, Thm. 1).

3. An equivalence theorem for IrL-optimality

It is well known that the general equivalence theorem plays an important role

in optimal approximate design theory. Here we establish an equivalence theorem

for IrL-optimality to characterize IrL-optimal designs.

Lemma 1. Let Pn denote the set of all positive definite matrices of order n× n

and suppose A is a fixed m × n(n ≥ m) matrix. Then f(B) = |AB−1AT | is

convex on Pn.

This lemma is a special case of results in Gaffke and Heiligers (1996, p.1153).

From this the lemma and (2.3), we have the following.

Lemma 2. For the criterion function ψL defined by (2.3) we have:

(i) ψL is convex on Ξ;

(ii) the directional derivative of ψL at ξ in the direction of ξ̄, denoted ∆ψL
(ξ, ξ̄),

is

∆ψL
(ξ, ξ̄) = rψL(ξ) − ψ1−L

L (ξ)tr

{

M−1(ξ)M(ξ̄)M−1(ξ)

∫

Z

|V |L F TV −1Fdµ

}

;

(iii) for any fixed ξ with nonsingular information matrix, the directional derivative

∆ψL
(ξ, ξ̄) =

∫

X

∆ψL
(ξ, δx)dξ̄(x), (ξ, ξ̄) ∈ Ξ × Ξ,

is linear in ξ̄, where δx ∈ Ξ denotes the Dirac measure at x.

Proof. (i) The convexity of ψL follows immediately from Lemma 1 and Minkowski’s

inequality.

(ii) Let ξ, ξ̄ ∈ Ξ, α ∈ (0, 1) and ξα = (1 − α)ξ + αξ̄. We have

d

dα
|V (z, ξα)| = |V (z, ξα)| tr

{

V −1(z, ξα)
d

dα
V (z, ξα)

}

= |V (z, ξα)| tr
{

V −1(z, ξα)F (z)M−1(ξα)
(

M(ξ) −M(ξ̄)
)

M−1(ξα)F T (z)
}

,
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so that for all L ∈ [1,∞),

∆ψL
(ξ, ξ̄) = lim

α→0+

dψL(ξα)

dα

= ψ1−L
L (ξ)

∫

Z

(

|V |L tr
{

V −1
(

V − F (z)M−1(ξ)M(ξ̄)M−1(ξ)F T (z)
)}

)

dµ(z)

= rψL(ξ) − ψ1−L
L (ξ)tr

{

M−1(ξ)M(ξ̄)M−1(ξ)

∫

Z

|V |L F T (z)V −1F (z)dµ(z)

}

.

(iii) The linearity of ∆ψL
(ξ, ξ̄) in ξ̄ can be obtained by noting that M(ξ̄) =

∫

X
M(δx)dξ̄(x), and the proof is complete.

According to Whittle (1973), ξ∗L is IrL-optimal in Ξ ⇐⇒ infx∈X ∆ψL
(ξ∗L, δx)

= 0, which implies the following.

Theorem 1. For all L ∈ [1,∞), a design ξ∗L ∈ Ξ is IrL-optimal in Ξ if and only

if

sup
x∈X

tr
{

M−1(ξ∗L)F T (x)Σ−1F (x)M−1(ξ∗L)

∫

Z

|V (z, ξ∗L)|LF T (z)V −1(z, ξ∗L)F (z)dµ(z)
}

= r

∫

Z

|V (z, ξ∗L)|L dµ(z). (3.1)

Moreover, the supremum is achieved at the support points of ξ∗L.

In order to compare the performance of different designs, e.g., Ir1 - and Ir∞-

optimal designs, we define the efficiency of a design ξ as

EffL(ξ) =
ψL(ξ∗L)

ψL(ξ)
, (3.2)

where ξ∗L denotes the IrL-optimal design. It is clear that 0 6 EffL(ξ) 6 1 for all

ξ ∈ Ξ. The following corollary provides a lower bound for EffL(ξ) that follows

immediately from Theorem 1 and Pilz (1983, p.137, Lemma 11.5).

Corollary 1. For L ∈ [0,∞), if

φL(x, ξ) =

tr
{

M−1(ξ)F T (x)Σ−1F (x)M−1(ξ)
∫

Z
|V (z, ξ)|L F T (z)V −1(z, ξ)F (z)dµ(z)

}

∫

Z
|V (z, ξ)|L dµ(z)

,(3.3)

then EffL(ξ) ≥ 1 + r − sup
x∈X

φL(x, ξ).

In terms of the function φL(x, ξ) at (3.3), we can restate Theorem 1.
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Theorem 1′. For L ∈ [0,∞), a design ξ∗L ∈ Ξ is IrL-optimal in Ξ if and only if
supx∈X φL(x, ξ∗L) = r. Moreover, the supremum is achieved at the support points
of ξ∗L.

According to Dette and O’Brien (1999), the equivalence theorem can be ex-
tended to the case L = ∞. For any ξ ∈ Ξ we define the answering set (Danskin
(1967, p.21))

A(ξ) =

{

z ∈ Z
∣

∣

∣

∣

|V (z, ξ)| = sup
z′∈Z

∣

∣V (z′, ξ)
∣

∣

}

.

Let µ∗ be a probability measure on A(ξ) and define

φ∞(x, ξ) = tr

{

M−1(ξ)F T (x)Σ−1F (x)M−1(ξ)

∫

A(ξ)
F T (z)V −1(z, ξ)F (z)dµ∗(z)

}

.

(3.4)

Theorem 2. A design ξ∗∞ ∈ Ξ is Ir∞-optimal in Ξ if and only if there exists a
probability measure µ∗ on A(ξ∗∞) such that

sup
x∈X

φ∞(x, ξ∗∞) = r.

Moreover, the supremum is achieved at the support points of ξ∗∞.

4. Illustrative Examples

In this section, we present two examples of Ir1 - and Ir∞-optimal designs for
bivariate response models. In Example 1, for a linear and quadratic regression
model, we state designs and prove their optimality by means of the equivalence
theorems. In Example 2 we consider Berman’s (1983) model, and construct Ir1 -
and Ir∞-optimal designs immediately.

Example 1. Linear and Quadratic regression. For X = Z = [0, 1], we consider
the responses

{

η1(x, θ1) = θ10 + θ11x,

η2(x, θ2) = θ20 + θ21x+ θ22x
2.

(4.1)

Let Σ be the variance-covariance matrix of the response vector. We take dµ(z) =
dz. For this model, the matrix of regression functions is

F (x) =

(

1 x 0 0 0

0 0 1 x x2

)

,

and the vector of parameters is θ = (θ10, θ11, θ20, θ21, θ22)
T . The D-optimal design

for this model was found by Krafft and Schaefer (1992) as follows:

ξ∗D =

{

0 1
2 1

wD 1−2wD wD

}

, where wD =
3

8
. (4.2)
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Note that the support points of ξ∗D are the endpoints and the centre point of the

design space X = [0, 1], and the weights on the two endpoints are equal.

Motivated by the D-optimal design and admissibility for the second-order

polynomial regression (Pukelsheim (1993, p.253)), we guessed the IrL-optimal

design to be

ξ∗ =

{

0 1
2 1

w 1 − 2w w

}

,

where w ∈ [0, 1/2] is an unknown parameter to be determined. We claim that

the Ir1 - and Ir∞-optimal designs are given by

ξ∗1 =

{

0 1
2 1

w1 1−2w1 w1

}

, where w1 =
2
√

22 − 5

14
, (4.3)

ξ∗∞ =

{

0 1
2 1

w∞ 1−2w∞ w∞

}

, where w∞ =

√
6

6
. (4.4)

We now verify optimality by Theorems 1′ and 2, respectively. For Ir1 -optimality of

ξ∗1 , straightforward calculation gives the following expressions for the determinant

of the matrix V (x, ξ∗1) defined by (2.2) and the function φL(x, ξ∗1) defined by (3.3)

for any x ∈ [0, 1]:

|V (x, ξ∗1)|

=
|Σ|(1+2w1−4x+4x2)(1−2w1+12w1x−12w1x

2−6x+14x2−16x3+8x4)

2w2
1(1−2w1)

,

where w1 = (2
√

22 − 5)/14, and

φ1(x, ξ
∗
1) = 2 − 2(170 − 49

√
22)x(1 − x)(2x− 1)2

27
.

It is clear that φ1(x, ξ
∗
1) is nonnegative for any x ∈ [0, 1], and attains its maximum

r = 2 at x ∈ {0, 1/2, 1}, the support points of ξ∗1 . It follows from Theorem 1′

that the design ξ∗1 is Ir1 -optimal over the class Ξ.

For Ir∞-optimality of ξ∗∞, straightforward calculation gives the determinant

of V (x, ξ∗∞) as

|V (x, ξ∗∞)|

=
|Σ|(1+2w∞−4x+4x2)(1−2w∞+12w∞x−12w∞x

2−6x+14x2−16x3+8x4)

2w2
∞(1 − 2w∞)

,

where w∞ =
√

6/6. The answering set corresponding to ξ∗∞ is

A(ξ∗∞) =

{

z ∈ Z
∣

∣

∣

∣

|V (z, ξ∗∞)| = sup
z′∈Z

∣

∣V (z′, ξ∗∞)
∣

∣

}

=

{

0,
1

2
, 1

}

.
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Table 1. Efficiencies of the multiresponse designs ξ∗
1
, ξ∗

∞
, ξ∗

D
and the single

response designs ζ∗
1
, ζ∗

∞
for the multiresponse model in (4.1)

ξ ξ∗
1

ξ∗
∞

ξ∗
D

ζ∗
1

ζ∗
∞

Eff1(ξ) 1.0000 0.7591 0.9010 0.9131 0.9898
Eff∞(ξ) 0.6564 1.0000 0.8758 0.4541 0.7266

We take the probability measure µ∗ corresponding to Ir∞-optimality as

µ∗ =

{

0 1
2 1

s 1 − 2s s

}

, where s =
2 +

√
6

12
.

Straightforward calculation gives φ∞(x, ξ∗∞) = 2−(5+
√

6)x(1−x)(2x−1)2 . It is

clear that φ∞(x, ξ∗∞) is nonnegative for any x ∈ [0, 1], and attains its maximum

r = 2 at x ∈ {0, 1/2, 1}, the support points of ξ∗∞. It follows from Theorem 2

that the design ξ∗∞ is Ir∞-optimal over the class Ξ.

Figure 1 shows the graphs of |V (z, ξ∗)| corresponding to the D-, Ir1 -, and

Ir∞-optimal designs given in (4.2), (4.3) and (4.4), respectively, indicating how

the optimal designs weight the regions of the prediction space differently; it is

assumed that |Σ| = 1 without loss of generality. Observe that |V (z, ξ∗1)| lies

below both |V (z, ξ∗∞)| and |V (z, ξ∗D)| for about three-fourths of the prediction

space. The efficiencies Eff1 and Eff∞ of ξ∗1 , ξ
∗
∞ and ξ∗D for model (4.1) are given

in Table 1. One sees that the performance of the D-optimal design ξ∗D compares

well with both ξ∗1 and ξ∗∞.

For comparison, we also consider the performance of the I1- and I∞-optimal

designs for each single response against the Ir1 - and Ir∞-optimal designs for the

multiresponse model in (4.1). Note that the I1- and I∞-optimal designs for the

individual response η1(x, θ1) = θ10 + θ11x on X = Z = [0, 1] has two support

points 0 and 1, and consequently is singular for the multiresponse model. The

I1- and I∞-optimal designs for the individual response η2(x, θ2) = θ20 + θ21x +

θ22x
2 on X = Z = [0, 1], denoted by ζ∗1 and ζ∗2 , respectively, are as follows

(Dette and O’Brien (1999)):

ζ∗1 =

{

0 1
2 1

1
4

1
2

1
4

}

, ζ∗∞ =

{

0 1
2 1

1
3

1
3

1
3

}

.

The efficiencies Eff1 and Eff∞ of ζ∗1 and ζ∗∞ are given in Table 1. None that

ζ∗∞ is nearly Ir1 -optimal for the multiresponse model, and the performance of ζ∗1
also compares very well with ξ∗1 . On the other hand, the performance of ζ∗∞ is

moderate, and ζ∗1 is poor compared with the design ξ∗∞ for the multiresponse

model.



OPTIMALITY CRITERIA FOR MULTIRESPONSE LINEAR MODELS 429

Prediction space

|V
(z
,ξ

)|

0 1
2

3

4

5

6

7

8

9

0.5

Figure 1. The graphs of |V (z, ξ)| for Example 1 with |Σ| = 1: ξ = ξ∗
D

(solid
line), ξ = ξ∗

1
(dash-dot line) and ξ = ξ∗

∞
(dashed line).

Example 2.(Berman’s (1983) model.) Wu (1997) represents the Berman’s model

on a circular arc X = [−α/2, α/2] for an arc of length α ∈ (0, 2π] by the bivariate
four-parameter linear model

{

η1(t, θ) = θ1 + θ3 cos t− θ4 sin t,

η2(t, θ) = θ2 + θ3 sin t+ θ4 cos t,
t ∈ X = [−α

2
,
α

2
], (4.5)

or, by Y (t) = F (t)θ + ε, where the matrix of regression functions is

F (t) = (I2, A(t)), where A(t) =

(

cos t − sin t

sin t cos t

)

and θ = (θ1, θ2, θ3, θ4)
T . The variance-covariance matrix of ε = (ε1, ε2)

T is

assumed to be Σ = σ2I2. In what follows we can easily construct Ir1 - and Ir∞-
optimal designs for this model. It is assumed that Z = X and dµ(z) = α−1dz.

For a design ξ, the information matrix is

M(ξ) =

(

I2 A(ξ)

AT (ξ) I2

)

,

where

A(ξ)=

∫

X

A(t) dξ=

(

c(ξ) − s(ξ)

s(ξ) c(ξ)

)

, c(ξ)=

∫

X

cos t dξ, s(ξ)=

∫

X

sin t dξ.

Note that if ξ̃ denotes the reflection of a design ξ across the midpoint of the

arc, then ψL(ξ) = ψL(ξ̃). Consequently, if ξ is IrL-optimal, then ξ̃ is IrL-optimal,
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Table 2. Values of t∗ in (4.6) for various α in (0, 2π].

α
π

4

π

2

3π

4
π

5π

4

3π

2

7π

4
2π

t∗
π

8

π

4
1.0931 1.2333 1.3466 1.4389 1.5131

π

2

and the symmetrized design ξ∗ = (ξ + ξ̃)/2 is also IrL-optimal. Therefore, it
is sufficient to search for IrL-optimal designs among the symmetric designs on
X = [−α/2, α/2].

For a symmetric design ξ we have s(ξ) = 0 and

|V (t, ξ)| = 4

(

1 − c(ξ) cos t

1 − c2(ξ)

)2

,

which depends on ξ only through the cos-term c(ξ).
For L = 1,

ψ1(ξ) = g(c(ξ)) :=
2

α(1 − c2(ξ))2

[

2α− 8c(ξ) sin
α

2
+ c2(ξ)(α+ sinα)

]

.

Let c∗ be a minimizer of g(c). Then a design ξ∗ that satisfies the equation
c(ξ∗) = c∗ is Ir1 -optimal. It is not difficult to verify that the following is a Ir1 -
optimal design:

ξ∗1,α =

{

−t∗ t∗

1
2

1
2

}

, where t∗ = arccos(c∗). (4.6)

Note that c∗ depends on α. Table 2 shows the values of t∗ in (4.6) for various
α ∈ (0, 2π].

For L = ∞, a straightforward argument gives that

ψ∞(ξ) = h(c(ξ)) :=















4

(

1 − c(ξ) cos(α/2)

1 − c2(ξ)

)2

, if 0 ≤ c(ξ) < 1,

4

(1 + c(ξ))2
, if cos α2 ≤ c(ξ) < 0.

For 0 < α < π, the function h(c) is minimized at c∗ = cos(α/2), and then the
following design is Ir∞-optimal:

ξ∗∞,α =

{

−α
2

α
2

1
2

1
2

}

. (4.7)

For π ≤ α ≤ 2π, h(c) is minimized at c∗ = 0, and then the design ξ∗ which
satisfies c(ξ∗) = 0 is Ir∞-optimal. A Ir∞-optimal design is

ξ∗∞,α =

{

−π
2

π
2

1
2

1
2

}

. (4.8)
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Note that the design ξ∗∞,α (π ≤ α ≤ 2π) in (4.8) is also an orthogonal design for

model (4.5), i.e., the information matrix of ξ∗∞,α is diagonal.
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