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This supplement consists of three sections. In the first section, we prove
Equation (4). The second section contains the detailed proof of Theorem 1, and
the third section contains the proof of Claim 2.

S1 Proof of Equation (4)

By Equations (2) and (3), we have

Y ∆
n = Sn − Sn−1,

where

Sn =

ˆ n∆

0

Yudu

=

ˆ n∆

0

eΦuY0du+

ˆ n∆

0

ˆ u

0

eΦ(u−v)ΣdB̄Hv du

=
(
eΦn∆ − I2

)
Φ−1Y0 +

ˆ n∆

0

ˆ n∆

v

eΦ(u−v)ΣdudB̄Hv

=
(
eΦn∆ − I2

)
Φ−1Y0 +

ˆ n∆

0

(
eΦ(n∆−v) − I2

)
Φ−1ΣdB̄Hv ,

and I2 is the 2× 2 identity matrix. Thus,

Y ∆
n =

(
eΦn∆ − eΦ(n−1)∆

)
Φ−1Y0 +

ˆ n∆

0

eΦ(n∆−v)Φ−1ΣdB̄Hv −
ˆ (n−1)∆

0

eΦ((n−1)∆−v)Φ−1ΣdB̄Hv

−Φ−1Σ
(
B̄Hn∆ − B̄H(n−1)∆

)
= Φ−1(Yn∆ − Y(n−1)∆)− Φ−1Σ

(
B̄Hn∆ − B̄H(n−1)∆

)
.

By the self-similarity property of the fractional Brownian motion, Y ∆
n has the

same distribution as

Φ−1(Yn∆ − Y(n−1)∆)− Φ−1Σ

[
∆H1 0

0 ∆H2

] [
BH1
n −B

H1
n−1

BH2
n −B

H2
n−1

]
.

Therefore, as ∆→∞,

−
[

∆−H1 0
0 ∆−H2

]
Σ−1ΦY ∆

n
d→
[
BH1
n −B

H1
n−1

BH2
n −B

H2
n−1

]
.

This completes the proof of Equation (4).
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S2 Proof of Theorem 1

Theorem 1 follows from Theorem 2 of Hosoya (1996) if we can verify Conditions
A, C, and D listed there. These conditions can be verified by a line of arguments
quite parallel to those in Chan and Tsai (2008). In particular, let δ(x, y) = 1 if
x = y, and δ(x, y) = 0 otherwise.

First, write

f (ω,H1, H2, A) = 2 (1− cosω)AG (ω,H1, H2)A′ = k (ω) I2k
∗ (ω)

where

k (ω) =
√

2 (1− cosω)A diag
(
R

1/2
0 (ω,H1) , R

1/2
0 (ω,H2)

)
(S2.1)

=
√

2 (1− cosω)

(
a11R

1/2
0 (ω,H1) a21R

1/2
0 (ω,H2)

a12R
1/2
0 (ω,H1) a22R

1/2
0 (ω,H2)

)
.

As in Chan and Tsai (2008), we define, for t = 1, ...., N , a bivariate process ỹt
by

ỹt =

∞∑
j=0

Gjet−j ,

where ej is an iid N(02, I2), 02 is the 2 × 1 vector having each component
equal to 0, and Gj is defined by k (ω) =

∑∞
j=0Gj exp (ijω) with k (ω) given in

(S2.1). We can write ỹt as a one sided rather than a two sided moving average
representation, as would follow from the fact that the spectral transfer function
k (ω) is defined through he square root of R0 (ω), because of Gaussianity and the
resulting indistinguishability between the causal and noncausal representation.
The new process ỹt has the same autocovariance structure as yt. Thus, because
of Gaussianity, the estimators obtained from ỹt correspond to the ones for yt.

Condition A is clearly satisfied for the new error term et.

We now verify condition C.

(i) (a) We will show that
´ π
−π |kαβ(ω)|2udω < ∞ for some u such that 1 <

u ≤ 2. We consider kij (ω) =
√

2 (1− cosω)ajiR
1/2
0 (ω,Hj) for i, j = 1, 2.

Let κ1 = 2H1− 1 and κ2 = 2H2− 1. Since |kij |2 = O (|ω|−κj ), there exist
non-negative constants b0 and b1 such that

ˆ π

−π
|kij |2udω ≤ b0

ˆ ε

0

ω−2uκjdω + b1 <∞.

(b) We need to show that there exists γ > 0 such that

sup
|λ|<ε

‖
[
f−1(·){f(·)− f(· − λ)}

]
αβ
‖u = O(εγ), (S2.2)
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where ‖g‖p = {
´ π
−π |g(ω)|pdω}1/p. First, for ω → 0,

f(ω) ∼
(

a2
11|ω|−κ1 + a2

12|ω|−κ2 a11a21|ω|−κ1 + a12a22|ω|−κ2

a11a21|ω|−κ1 + a12a22|ω|−κ2 a2
21|ω|−κ1 + a2

22|ω|−κ2

)
∼

(
a2

11 a11a21

a11a21 a2
21

)
|ω|−κ1 . (S2.3)

From the same two inequalities as on page 27 in Chan and Tsai (2008) it
follows that (S2.2) holds if it holds for a smaller interval containing only
one pole of the spectral density function. Thus, it suffices to show that
(S2.2) holds for fij(ω) ∼ |ω|−κ1 . Let 2 ≥ u > 1 be a constant such that
0 < uκ1 < 1. We have for α, β = 1, 2,

‖
[
f−1(·){f(·)− f(· − λ)}

]
αβ
‖uu

≤ 2

ˆ |λ|
0

∣∣∣∣ω−κ1 − (|λ| − ω)−κ1

ω−κ1

∣∣∣∣u dω
+2

ˆ π

|λ|

∣∣∣∣ω−κ1 − (ω − |λ|)−κ1

ω−κ1

∣∣∣∣u dω. (S2.4)

Using a change of variable ω = x|λ| and therefore dω = dx|λ| we can write
(S2.4) as

2|λ|
ˆ 1

0

∣∣∣∣xκ − (1− x)
κ

(1− x)
κ

∣∣∣∣u dx+ 2|λ|
ˆ π/|λ|

1

∣∣∣∣xκ − (x− 1)
κ

(x− 1)
κ

∣∣∣∣u dx. (S2.5)

The first integral is bounded by
´ 1

0
(1− x)

−κu
< ∞ since the numerator

is bounded by 1 and 0 < κu < 1. We write the second integral as

ˆ 1+ε

1

∣∣∣∣xκ − (x− 1)
κ

(x− 1)
κ

∣∣∣∣u dx+

ˆ π/|λ|

1+ε

∣∣∣∣xκ − (x− 1)
κ

(x− 1)
κ

∣∣∣∣u dx
for some ε > 0. The first term is again bounded and in the second term,
we approximate the numerator by κ (x− η)

κ−1
, with 0 < η < 1, which

is bounded by κ (x− 1)
κ−1

. Since u > 1, the second term is therefore

bounded by
´ π/|λ|

1
(x− 1)

−u
< ∞. Thus (S2.5) is bounded and (S2.2) is

of order O (|ε|γ) with γ = 1/u > 1/2.

(ii) Let hj(ω, θ) = ∂f−1(ω; θ)/∂θj , where θj is the jth component of θ =
(H1, H2, a11, a12, a21, a22). Here, we need to show that for any ε > 0, there
exists a > 0 and Hermitian-valued bounded functions h̃j and h̄j such that,

if |θ1−θ| < a, h̃j(ω) ≤ hj(ω, θ1) ≤ h̄j(ω) and
∥∥∥ [{h̄j(·)− h̃j(·)}f(·)

]
αβ

∥∥∥
v
<

ε, where v = u/(u−1) for u given in (S2.2) above. Note that ∂f−1/∂θj =
−f−1∂ log f/∂θj and that both factors are uniformly continuous in ω and
θ in a sufficiently small neighborhood of θ0. Thus, the requirement in (ii)
can be readily verified element by element.
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(iii) Recall from equation (15) and below this equation, Vj(θ) = Hj(θ) +´ π
−π tr{hj(ω, θ)f(ω)}dω, where f(ω) is the true spectral density function,

and Hj(θ) = ∂
´ π
−π log det f(ω; θ)dω/∂θj . Here, we need to show that

Vj(θ) has a unique zero for all j at θ = θ0, where θ0 is an interior point of
θ.
The true spectral density function is, by assumption, equal to f(ω, θ0).
Consider the functionQ(θ) =

´ π
−π log det f(ω, θ)dω−

´ π
−π log det f(ω, θ0)dω+´ π

−π tr{f
−1(ω, θ)f(ω)}dω. Note that the partial derivative of Q with re-

spect to the jth component of θ equals Vj(θ), for all j. Condition (iii)
holds if Q attains its unique minimum at θ = θ0, which is shown be-
low. Define T (x) = exp(x) − x which is a convex function that is al-

ways ≥ 1. Further note that log det f−1(ω, θ)f(ω) =
∑2
i=1 log λi (ω) and

tr(f−1(ω, θ)f(ω)) =
∑2
i=1 λi (ω) where λi (ω) , i = 1, 2 are the Eigenvalues

of f−1(ω, θ)f(ω). Jensen’s inequality implies that

Q(θ)/(2π) =

ˆ π

−π

(
−

2∑
i=1

log λi (ω) +

2∑
i=1

λi (ω)

)
dω/(2π)

=

ˆ π

−π

2∑
i=1

T (log λi (ω)) dω/(2π)

≥
2∑
i=1

T

(ˆ π

−π
log λi (ω)

)
dω/(2π) ≥ 2,

with both equalities obtained if and only if θ = θ0. This is true since
a symmetric matrix with all eigenvalues being one must be the identity
matrix. The unique zero of Vj (θ) follows then from convexity of T (·) and
the fact that sums and integrals of convex functions remain convex.

(iv) Hj(θ) is continuous on θ.
This condition holds trivially.

Parts (i)–(ii) of condition D can be proved by arguments similar to those used
in proving conditions (i) and (ii) of condition C. In particular, (i) follows from
γ = 1/u > 1/2 in (ii) of Condition C (i) b).

(ii) We need to show that

lim
r→0

sup
|θ−θ0|≤r

‖ [{hj(·, θ)− hj(·, θ0)}f(·)]αβ ‖v < C

for some C > 0, j = 1, ..., s and for v = u/ (u− 1) ≥ 2. We use again the
two inequalities on page 27 in Chan and Tsai (2008) to replace hj by its
pole asymptotics. Thus, for H1 ≥ H2, at the pole

hj(·, θ) =

{
O (|ω|κ1 log |ω|) , for j = 1

O
(
|ω|2κ1−κ2 log |ω|

)
, for j = 2.
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Combining with f(·) from (S2.3), we obtain for j = 1,

‖ [{h1(·, θ)− h1(·, θ0)}f(·)]αβ ‖
v
v

≤ 2C

ˆ π

0

∣∣∣∣log (|ω|) (|ω|κ1 − |ω|κ1,0)

|ω|κ1,0

∣∣∣∣v dω
= 2C

ˆ π

0

∣∣∣log (|ω|)
(
|ω||κ1−κ1,0| − 1

)∣∣∣v dω,
for α, β = 1, 2. Applying a Taylor approximation

|ω||κ1−κ1,0| − 1 = |κ1 − κ1,0||ω||κ
∗
1−κ1,0| log |ω|,

with κ∗1 lying between κ1 and κ1,0, we obtain

‖ [{h1(·, θ)− h1(·, θ0)}f(·)]αβ ‖
v
v

≤ 2|κ1 − κ1,0|v
(ˆ π

0

∣∣∣log2 (|ω|) |ω||κ
∗
1−κ1,0|

∣∣∣v dω) < Crv

for α, β = 1, 2, since the integral is finite. Next, for j = 2,

‖ [{h2(·, θ)− h2(·, θ0)}f(·)]αβ ‖
v
v

≤ 2C1

ˆ π

0

| log (|ω|)
(
|ω||2κ1−κ2−κ1,0| − |ω||κ2,0−κ1,0|

)
|vdω

≤ 2C1|2κ1 − κ2 − κ2,0|v
(ˆ π

0

∣∣∣log2 (|ω|) |ω||2κ
∗
1−κ

∗
2−κ1,0|

∣∣∣v dω)
< C2r

v.

Finally, the derivative with respect to any element of the weighting matrix
A behaves as |ω|κ1 . For this case, we find a bound using parallel argu-
ments to the ones for the memory parameters.

(iii) Given ε, we divide the radius a of a ball around θj,0 into m (ε) partitions
of length r (ε) = a/m (ε) with θij and θ̄ij denoting the lowest and highest
value in partition i. In addition to the behavior of hj (·) from Part (ii) and
the uniform continuity of f−1 and consequently of h, we use monotonicity
of hj (.) in the sense that for any j,

κ′j ≥ κ′′j ⇐⇒ hj(κ
′
j) ≤ hj(κ′′j ),

implying hj
(
κij
)
≥ hij ≥ hj

(
κ̄ij
)

for κij ≤ κij ≤ κ̄ij . Let h̄ij and h̃ij be a
pair of Hermitian bracketing functions. For similar reasons as in part (ii),
we obtain an inequality similar to the one used there. In particular, for
j = 1,

‖k∗{h̄i1 − h0
1}k‖vv

≤ 2C1|κ1 − κ1,0|v
(ˆ π

0

| log2 (|ω|) |ω||κ
∗
1−κ1,0||vdω

)
≤ C2r

v (ε) ,
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with κ∗1 lying between κ1 and κ1,0. Taking m (ε) = C3/ε provides the
result. Next, for j = 2,

‖k∗{h̄i2 − h0
2}k‖vv

≤ 2C4|2 (κ1 − κ1,0)− (κ2 − κ2,0) |v
(ˆ π

0

| log2 (|ω|) |ω||2κ
∗
1−κ

∗
2−κ1,0||vdω

)
≤ C5r

v (ε) .

Both results hold for α, β = 1, 2. Derivatives with respect to elements
of the weighting matrix can be bounded in a similar manner. Finally,
‖k∗{h̃i1 − h0

1}k‖vv ≤ Crv (ε) holds similarly.

(iv)
∣∣∣V (θ)

∣∣∣ ≥ α1

∣∣∣θ1 − θ0

∣∣∣ for some α1 > 0 and a parameter vector θ1 in the

neighborhood of θ0, where V is the vector consisting of all the first partial
derivatives Vj .
This condition holds because

∂2Q

∂θi∂θj
=

ˆ π

−π
tr

[
f(ω, θ)−1 ∂f(ω, θ)

∂θi
f(ω, θ)−1 ∂f(ω, θ)

∂θj

+f−1 (ω, θ)
∂2f(ω, θ)

∂θi∂θj

(
I − f−1 (ω, θ) f (ω)

)]
dω,

where the second term vanishes for θ → θ0. Thus, ∂2Q
∂θi∂θj

converges to

Γij(θ) =

ˆ π

−π
tr

[
f(ω, θ0)−1 ∂f(ω, θ)

∂θi

∣∣∣∣
θ=θ0

f(ω, θ0)−1 ∂f(ω, θ)

∂θj

∣∣∣∣
θ=θ0

]
dω,

which is positive definite since the partial derivatives are linearly indepen-
dent. In particular,

Lk(H) =

ˆ π

−π

{
∂

∂H
logR0(ω;H)

}k
dω, k = 1, 2,

Gij =

ˆ π

−π

R0(ω;Hj)

R0(ω;Hi)
dω, i, j = 1, 2,

then it can be verified that

Γ(θ) =
1

(detA)2
Γ̃(θ)

=
1

(detA)2
[Γ(1)(θ),Γ(2)(θ)],

where

Γ(1)(θ) =


(detA)2L2(H1) 0 2a22(detA)L1(H1)

0 (detA)2L2(H2) 0
2a22(detA)L1(H1) 0 8πa2

22 + 2a2
21G21

0 −2a21(detA)L1(H2) −4πa21a22

−2a12(detA)L1(H1) 0 −8πa12a22 − 2a11a21G21

0 2a11(detA)L1(H2) 4πa12a21

 ,
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and

Γ(2)(θ) =


0 −2a12(detA)L1(H1) 0

−2a21(detA)L1(H2) 0 2a11(detA)L1(H2)
−4πa21a22 −8πa12a22 − 2a11a21G21 4πa12a21

8πa221 + 2a222G12 4πa11a22 −8πa11a21 − 2a12a22G12

4πa11a22 8πa212 + 2a211G21 −4πa11a12
−8πa11a21 − 2a12a22G12 −4πa11a12 8πa211 + 2a212G12

 .

Let Γ̃[i : j, i : j] be the submatrix of Γ̃(θ) formed by rows i, .., j, and columns
i, ..., j. By the Cauchy-Schwarz inequality, we have 2πL2(Hi) > L2

1(Hi), for
i = 1, 2 and G12G21 > 4π2. Furthermore, Gij > 0, for i, j = 1, 2. To show

that Γ(θ) is positive definite, it suffices to show that det Γ̃[i : 6, i : 6] > 0, for
i = 1, ..., 6, and this is seen as follows,

det Γ̃[6 : 6, 6 : 6] = 8πa2
11 + 2a2

12G12 > 0,

det Γ̃[5 : 6, 5 : 6] = 4a2
11a

2
12G12G21 + 16πa4

12G12 + 16πa4
11G21 + 48π2a2

11a
2
12 > 0,

det Γ̃[4 : 6, 4 : 6] = 32π(detA)2{4πa2
12G12 + a2

11(G12G21 − 4π2)} > 0,

det Γ̃[3 : 6, 3 : 6] = 256π2(detA)4(G12G21 − 4π2) > 0,

det Γ̃[2 : 6, 2 : 6] = 128π(detA)6(2πL2(H2)− L2
1(H2))(G12G21 − 4π2) > 0,

det Γ̃[1 : 6, 1 : 6] = 64(detA)8(2πL2(H1)− L2
1(H1))(2πL2(H2)− L2

1(H2))(G12G21 − 4π2) > 0.

This completes the proof that Γ(θ) is positive definite under H1 > H2.

(v) This condition can be easily verified if the spectral density function ad-
mits no poles but otherwise it can be proved by adapting the arguments
presented in Example 3.1 of Hosoya (1996).

This completes the proof of Theorem 1.

S3 Proof of Claim 2

First, write

f(ω;ϑ)

= 2 (1− cosω)A

(
R0 (H1) 0

0 R0 (H2)

)
A′

= 2 (1− cosω)A

{(
R0 (H) 0

0 R0 (H)

)
(S3.6)

+

(
R0 (H1)−R0 (H) 0

0 0

)
+

(
0 0
0 R0 (H2)−R0 (H)

)}
A′,

(S3.7)
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which converges to 2 (1− cosω)R0 (H)B, as H2 → H1. Next,

V3(ϑ) = H3(ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂H
f(ω)

}
dω,

V4(ϑ) = H4(ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂b11
f(ω)

}
dω,

V5(ϑ) = H5(ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂b12
f(ω)

}
dω,

V6(ϑ) = H6(ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂b22
f(ω)

}
dω.

Note that the two terms in (S3.7) converge to zero as H2 → H1. Equally, in
the derivatives of f (ω;ϑ) with respect to H, b11, b12 and b22,

∂f(ω;ϑ)

∂ϑi

= 2 (1− cosω)

{
∂

∂ϑi
R0 (H)B (S3.8)

+
∂

∂ϑi
(R0 (H1)−R0 (H))A

(
1 0
0 0

)
A′ +

∂

∂ϑi
(R0 (H2)−R0 (H))A

(
0 0
0 1

)
A′
}
,

(S3.9)

the terms in (S3.9) coming from the terms in (S3.7) are negligible as H2 →
H1. Thus, ∂f(ω;ϑ)

∂ϑi
converges to 2 (1− cosω)

(
∂
∂ϑi

R0 (H1)B
)

, as H2 → H1.

Therefore, in the following, for simplicity we concentrate on the terms in (S3.6)
and (S3.8).

We show that V3(ϑ) = V4(ϑ) = V5(ϑ) = V6(ϑ) = 0. Denote R0 = R0 (H)
and denote the values of R0 and B evaluated at the true parameter values as
R0

0 and B0. Next,

∂f−1(ω;ϑ)

∂H
f(ω) = −f−1(ω;ϑ)

∂f(ω;ϑ)

∂H
f−1(ω;ϑ)f(ω)

= −∂R0

∂H
R−1

0 B−1B0

→ − 1

R0

∂R0

∂H

(
1 0
0 1

)
,

and consequently,

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂H
f(ω)

}
dω → −2

1

R0

∂R0

∂H
= −2L1 (H) .

Next,
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H3 (ϑ) =
∂

∂H

ˆ π

−π
log |f(ω;ϑ)|dω

=
∂

∂H

ˆ π

−π

(
log [2 (1− cosω)] + logR2

0 + log(detB)
)
dω

= 2

ˆ π

−π

∂

∂H
logR0 (H) dω = 2L1 (H) .

Then,

V3 (ϑ) = H3 (ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂H
f(ω)

}
dω = 0.

Further, it can be shown that

H4(ϑ) =
∂

∂b11

ˆ π

−π
log |f(ω;ϑ)|dω =

2b22π

detB
,

H5(ϑ) =
∂

∂b12

ˆ π

−π
log |f(ω;ϑ)|dω = −4b12π

detB
,

H6(ϑ) =
∂

∂b22

ˆ π

−π
log |f(ω;ϑ)|dω =

2b11π

detB
.

Similarly,

∂f−1(ω;ϑ)

∂b11
f(ω) = −R

0
0

R0

1

(detB)2

(
−b12b22b

0
12 + b222b

0
11 −b12b22b

0
22 + b222b

0
12

−b12b22b
0
11 + b212b

0
12 −b12b22b

0
12 + b212b

0
22

)
,

tr

(
∂f−1(ω;ϑ)

∂b11
f(ω)

)
= −(detB)−2

(
−b12b22b

0
12 + b222b

0
11 − b12b22b

0
12 + b212b

0
22

)
→ − b22

detB
.

Therefore,

V4(ϑ) = H4(ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂b11
f(ω)

}
dω = 0.

Finally, the proof for V5(ϑ) = 0 and V6(ϑ) = 0 is similar to the one for V4(ϑ) = 0.
Next, we show that the matrix of the second derivatives {Vij}i,j=3,...,6 con-

verges to W 33, where

W33

=


2L2(H) (detB)−1b22L1(H) −2(detB)−1b12L1(H) (detB)−1b11L1(H)

(detB)−1b22L1(H) 2π(detB)−2b222 −4π(detB)−2b12b22 2π(detB)−2b212
−2(detB)−1b12L1(H) −4π(detB)−2b12b22 4π(detB)−2((detB) + 2b212) −4π(detB)−2b11b12

(detB)−1b11L1(H) 2π(detB)−2b212 −4π(detB)−2b11b12 2π(detB)−2b211

 .

In particular, for V 33,

V 33 =
∂V3 (ϑ)

∂H
=

∂

∂H

[
H3 (ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂H
f(ω)

}
dω

]
.
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First,

∂

∂H
H3 (ϑ) = 2

∂

∂H

ˆ π

−π

∂

∂H
logR0dω = 2

∂

∂H

(ˆ π

−π

1

R0

∂

∂H
R0dω

)
= 2

ˆ π

−π

R0
∂2

∂H2R0 − ∂
∂HR0

∂
∂HR0

R2
0

dω.

Next,

∂

∂H

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂H
f(ω)

}
dω = −2

ˆ π

−π

∂

∂H

(
∂
∂HR0

R2
0

)
R0

0B
−1B0dω

= −2

ˆ π

−π

R2
0
∂2

∂H2R0 − 2 ∂
∂HR0R0

∂
∂HR0

R4
0

R0
0B
−1B0dω.

And consequently in the limit,

V 33 → 2

ˆ π

−π

(
∂
∂HR0

)2
R2

0

dω = 2L2 (H) .

Next, for V 34,
∂

∂b11
H3 (ϑ) = 0,

and

∂

∂b11

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂H
f(ω)

}
dω = −

ˆ π

−π
tr

∂

∂b11

1

R0

∂R0

∂H

1

2R0
2R0

0B
−1B0dω

= −
ˆ π

−π

1

R0

∂R0

∂H
dω
R0

0

R0
tr

∂

∂b11
B−1B0

= b22
1

(detB)
L1(H),

where we use that

∂

∂b11
B−1B0 = −B−1 ∂

∂b11
BB−1B0 = −B−1

(
1 0
0 0

)
B−1B0 =

1

(detB)

(
b22 0
−b12 0

)
B−1B0

→ 1

(detB)

(
b22 0
−b12 0

)
.

Therefore,

V 34 =
∂V3 (ϑ)

∂b11
=

∂

∂b11

[
H3 (ϑ) +

ˆ π

−π
tr

{
∂f−1(ω;ϑ)

∂H
f(ω)

}
dω

]
→ b22

1

(detB)
L1(H).
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Finally, for V 44,

∂V4(ϑ)

∂b11
=

∂

∂b11

[
2πb22

(detB)
− 2π

(detB)2

{
−b12b22b

0
12 + b222b

0
11 − b12b22b

0
12 + b212b

0
22

}]
= − 2πb222

(detB)2
− 2π

−
(
−b12b22b

0
12 + b222b

0
11 − b12b22b

0
12 + b212b

0
22

)
2(detB)b22

(detB)4

→ 2π

(detB)2
b22

{
−b22 +

2b22(−b12b
0
12 + b22b

0
11 − b12b

0
12 + b212)

detB

}
→ 2π

(detB)2
b22 (−b22 + 2b22) =

2π

(detB)2
b222.

All other terms of Vij follow from similar arguments.
Finally, it can be shown that the matrix W 33 is positive. For this, note that,

by the Cauchy-Schwarz inequality, we have 2πL2(H) > L2
1(H), and detB =

(detA)2 > 0. Therefore,

det 2L2(H)

= 2L2(H) > 0,

det

[
2L2(H) (detB)−1b22L1(H)

(detB)−1b22L1(H) 2π(detB)−2b222

]
=

b222(4πL2(H)− L2
1(H))

(detB)2
> 0,

det

 2L2(H) (detB)−1b22L1(H) −2(detB)−1b12L1(H)
(detB)−1b22L1(H) 2π(detB)−2b222 −4π(detB)−2b12b22

−2(detB)−1b12L1(H) −4π(detB)−2b12b22 4π(detB)−2(detB + 2b212)


=

4πb222(4πL2(H)− L2
1(H))

(detB)3
> 0,

det


2L2(H) (detB)−1b22L1(H) −2(detB)−1b12L1(H) (detB)−1b11L1(H)

(detB)−1b22L1(H) 2π(detB)−2b222 −4π(detB)−2b12b22 2π(detB)−2b212
−2(detB)−1b12L1(H) −4π(detB)−2b12b22 4π(detB)−2((detB) + 2b212) −4π(detB)−2b11b12

(detB)−1b11L1(H) 2π(detB)−2b212 −4π(detB)−2b11b12 2π(detB)−2b211


=

16π2(2πL2(H) − L2
1(H))

(detB)3
> 0.

This completes the proof of Claim 2.
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