SUPPLEMENT TO "POLYNOMIAL SPLINE CONFIDENCE BANDS FOR REGRESSION CURVES" Jing Wang and Lijian Yang University of Illinois at Chicago, Michigan State University # Appendix A: Proof of Theorem 1 ### A. 1. Preliminaries Throughout Appendices A and B, we denote by the same letters c, C, any positive constants, without distinction in each case. Detailed proof is given in Wang and Yang (2006). **Lemma A.1** Under Assumptions (A3) and (A4), there exists $\alpha_0 > 0$ such that the sequence $\{D_n\} = \{n^{\alpha_0}\}$ satisfies $$\frac{\log^2 n}{\sqrt{nh}} D_n \to 0, \sum_{n=1}^{\infty} D_n^{-(2+\eta)} < \infty, \frac{\sqrt{nh}}{D_n^{(1+\eta)}} \to 0, D_n^{-\eta} h^{-1/2} \to 0.$$ (A.1) For such a sequence $\{D_n\}$, $P\{\omega \mid \exists N(\omega), \ni |\varepsilon_i| \leq D_n, 1 \leq i \leq n, n > N(\omega)\} = 1$. Denote the theoretical norms of the basis $c_{j,n} = \|b_{j,1}\|_2^2$ and $d_{j,n} = \|b_{j,2}\|_2^2$ by $$c_{j,n} = \int_{a}^{b} I_{j}(x) f(x) dx, d_{j,n} = \int_{a}^{b} K^{2} \left(\frac{x - t_{j+1}}{h}\right) f(x) dx.$$ **Lemma A.2** Under Assumptions (A2) and (A3), as $n \to \infty$, $$c_{j,n} = f(t_j) h(1 + r_{j,n,1}), \langle b_{j,1}, b_{j',1} \rangle \equiv 0, j \neq j'$$ (A.2) $$d_{j,n} = \frac{2}{3} f(t_{j+1}) h \times \begin{cases} 1 + r_{j,n,2} & j = 0, ..., N - 1, \\ 1/2 + r_{j,n,2} & j = -1, N, \end{cases}$$ (A.3) $$\langle b_{j,2}, b_{j',2} \rangle = \frac{1}{6} f(t_{j+1}) h \times \begin{cases} 1 + \tilde{r}_{j,n,2} & |j' - j| = 1, \\ 0 & |j' - j| > 1, \end{cases}$$ (A.4) where $$\max_{0 \le j \le N} |r_{j,n,1}| + \max_{-1 \le j \le N} \{ |r_{j,n,2}| + |\tilde{r}_{j,n,2}| \} \le C\omega(f,h). \tag{A.5}$$ In particular, $$\frac{1}{3}f(t_{j+1})h\{1 - C\omega(f,h)\} \le d_{j,n} \le \frac{2}{3}f(t_{j+1})h\{1 + C\omega(f,h)\}.$$ (A.6) PROOF OF LEMMA 3.1. For brevity, we give only the proof of (3.1) for $A_{n,1}$. Take any j = 0, 1, ..., N $$\left| \left\| B_{j,1} \right\|_{2,n}^{2} - 1 \right| = \left| \sum_{i=1}^{n} \xi_{i} \right|, \xi_{i} = \left\{ B_{j,1}^{2} \left(X_{i} \right) - 1 \right\} n^{-1}$$ with $E\xi_i=0$ and for any $k\geq 2$. Minkowski's inequality implies that $$E |\xi_i|^k = n^{-k} E |B_{j,1}^2(X_i) - 1|^k \le 2^{k-1} n^{-k} E [B_{j,1}^{2k}(X_i) + 1] \le \left\{ \frac{2}{nh} \right\}^k C_0 h,$$ while (A.2) implies that $E\xi_i^2 \geq n^{-2}E\left[\frac{1}{2}B_{j,1}^4\left(X_i\right)-1\right] \geq \{2/\left(nh\right)\}^2C_1h$. One can then find a constant c>0 such that for k>2, $E\left|\xi_i\right|^k \leq \left(cn^{-1}h^{-1}\right)^{k-2}k!E\left|\xi_i\right|^2$. Applying Bernstein's inequality, we conclude that $P\left\{\left|\sum_{i=1}^n \xi_i\right| \geq \eta_0 \log^{1/2}\left(n\right)\left(nh\right)^{-1/2}\right\} \leq 2n^{-3}$ for large enough $\eta_0>0$. Thus, $$\sum_{n=1}^{\infty} P\left\{ \sup_{0 \le j \le N} \left| \|B_{j,1}\|_{2,n}^{2} - 1 \right| \ge \eta \log^{1/2} (n) (nh)^{-1/2} \right\} < \infty$$ for such $\eta_0 > 0$, so that (3.1) follows. ## A. 2. Proof of Theorem 1 In this section, we investigate the behavior of $\tilde{\varepsilon}_1(x)$ defined in (3.4). Since $\langle \mathbf{B}_{j',1}(\mathbf{X}), \mathbf{B}_{j,1}(\mathbf{X}) \rangle_n = 0$ unless j = j', $\tilde{\varepsilon}_1(x)$ can be written as $\tilde{\varepsilon}_1(x) = \sum_{j=0}^N \varepsilon_j^* B_{j,1}(x) \|B_{j,1}\|_{2,n}^{-2}$, in which $\varepsilon_j^* = \langle \mathbf{E}, \mathbf{B}_{j,1}(\mathbf{X}) \rangle_n = n^{-1} \sum_{i=1}^n B_{j,1}(X_i) \sigma(X_i) \varepsilon_i$. **Lemma A.3** Let $\hat{\varepsilon}_1(x) = \sum_{j=0}^{N} \varepsilon_j^* B_{j,1}(x), x \in [a, b], \text{ for } A_{n,1} \text{ defined in (3.1)}$ $$|\tilde{\varepsilon}_1(x) - \hat{\varepsilon}_1(x)| \le A_{n,1} (1 - A_{n,1})^{-1} |\hat{\varepsilon}_1(x)|, x \in [a, b].$$ Thus, $\sup_{x\in[a,b]}|\tilde{\varepsilon}_1(x)|$ and $\sup_{x\in[a,b]}|\hat{\varepsilon}_1(x)|$ have the same asymptotic behavior. **Lemma A.4** The pointwise variance of $\hat{\varepsilon}_1(x)$ is the function $\sigma_{n,1}^2(x)$ defined in (2.6) which satisfies for $\sup_{x \in [a,b]} |r_{n,1}(x)| \to 0$ $$E\left\{\hat{\varepsilon}_{1}(x)\right\}^{2} \equiv \sigma_{n,1}^{2}(x) = \frac{\sigma^{2}(x)}{f(x) nh} \left\{1 + r_{n,1}(x)\right\}, x \in [a, b]. \tag{A.7}$$ **Lemma A.5** Let the sequence $\{D_n\}$ satisfy (A.1), then as $n \to \infty$ $$\|\hat{\varepsilon}_{n,1}(x) - \hat{\varepsilon}_{n,1}^{D}(x)\|_{\infty} = O\left(D_n^{-(1+\eta)}\sqrt{nh}\right) = o(1), \ w. \ p. \ 1,$$ where, for $x \in [a, b]$, $$\hat{\varepsilon}_{n,1}(x) = \sigma_{n,1}(x)^{-1} \sum_{j=0}^{N} B_{j,1}(x) \, \varepsilon_{j}^{*} = \sigma_{n,1}(x)^{-1} \sum_{j=0}^{N} B_{j,1}(x) \left(\varepsilon_{j}^{*} - E \varepsilon_{j}^{*} \right),$$ $$\hat{\varepsilon}_{n,1}^{D}(x) = \sigma_{n,1}(x)^{-1} \sum_{j=0}^{N} B_{j,1}(x) \left(\varepsilon_{j}^{*} - E \varepsilon_{j}^{*} \right) I_{\{|\varepsilon| < D_{n}\}}.$$ (A.8) PROOF. Notice that $E\varepsilon_{j}^{*} = E\{n^{-1}\sum_{i=1}^{n}B_{j,1}(X_{i})\sigma(X_{i})\varepsilon_{i}\}=0$, so that $$\hat{\varepsilon}_{n,1}(x) = \left\{\sigma_{n,1}(x)\sqrt{n}c_{j(x),n}\right\}^{-1} \int \int I_{j(x)}(v) \,\sigma(v) \,\varepsilon dZ_n(v,\varepsilon)$$ according to the definition of $Z_n(v,\varepsilon)$ in (3.9). The truncated part $\hat{\varepsilon}_{n,1}^D(x)$ is defined in (A.8). The tail part $\hat{\varepsilon}_{n,1}(x) - \hat{\varepsilon}_{n,1}^D(x)$ is bounded uniformly over [a,b] by $$\sup_{x \in [a,b]} \left| \left\{ \sigma_{n,1}(x) \sqrt{n} c_{j(x),n} \right\}^{-1} \int \int I_{j(x)}(v) \sigma(v) \varepsilon I_{\{|\varepsilon| \ge D_n\}} dZ_n(v,\varepsilon) \right|$$ $$\leq \sup_{x \in [a,b]} \left| \left\{ \sigma_{n,1}(x) c_{j(x),n} \right\}^{-1} \frac{1}{n} \sum_{i=1}^n I_{j(x)}(X_i) \sigma(X_i) \varepsilon_i I_{\{|\varepsilon_i| \ge D_n\}} \right|$$ $$+ \sup_{x \in [a,b]} \left| \left\{ \sigma_{n,1}(x) c_{j(x),n} \right\}^{-1} \int \int I_{j(x)}(v) \sigma(v) \varepsilon I_{\{|\varepsilon| \ge D_n\}} dF(v,\varepsilon) \right|.$$ (A.10) By Lemma A.1, the term (A.9) is 0 almost surely. The term (A.10) is bounded by $$\sup_{x \in [a,b]} \left\{ \sigma_{n,1}(x) c_{j(x),n} \right\}^{-1} \int I_{j(x)}(v) \sigma(v) f(v) \left[\int |\varepsilon| I_{\{|\varepsilon| \ge D_n\}} dF(\varepsilon|v) \right] dv \leq \sup_{x \in [a,b]} \left\{ \sigma_{n,1}(x) c_{j(x),n} \right\}^{-1} \int I_{j(x)}(v) \sigma(v) f(v) dv \frac{M_{\eta}}{D_n^{1+\eta}} \le C \frac{\sqrt{nh}}{D_n^{1+\eta}}.$$ The lemma follows immediately by the third condition in (A.1). **Lemma A.6** Define for $x \in [a, b]$ $$\hat{\varepsilon}_{n,1}^{(0)}\left(x\right) = \left\{\sigma_{n,1}\left(x\right)\sqrt{n}c_{j(x),n}\right\}^{-1}\int\int I_{j(x)}\left(v\right)\sigma\left(v\right)\varepsilon I_{\left\{|\varepsilon|< D_{n}\right\}}dB\left\{M\left(v,\varepsilon\right)\right\}$$ then as $n \to \infty$ $$\sup_{x \in [a,b]} \left| \hat{\varepsilon}_{n,1}^{(0)}(x) - \hat{\varepsilon}_{n,1}^{(D)}(x) \right| = O\left(h^{-1/2}n^{-1/2}D_n \log^2 n\right) = o\left(1\right), \ w. \ p. \ 1.$$ PROOF. First, $\left|\hat{\varepsilon}_{n,1}^{(0)}(x) - \hat{\varepsilon}_{n,1}^{D}(x)\right|$ can be written as $$\left|\left\{\sigma_{n,1}\left(x\right)\sqrt{n}c_{j(x),n}\right\}^{-1}\int\int I_{j(x)}\left(v\right)\sigma\left(v\right)\varepsilon I_{\left\{\left|\varepsilon\right|< D_{n}\right\}}d\left[Z_{n}\left(v,\varepsilon\right)-B\left\{M\left(v,\varepsilon\right)\right\}\right]\right|,$$ which becomes the following via integration by parts $$\left| \left\{ \sigma_{n,1}\left(x\right)\sqrt{n}c_{j(x),n} \right\}^{-1} \int \int \left[Z_n\left(v,\varepsilon\right) - B\left\{M\left(v,\varepsilon\right)\right\} \right] d\left\{ I_{j(x)}\left(v\right)\sigma\left(v\right)\varepsilon I_{\left\{|\varepsilon| < D_n\right\}} \right\} \right|$$ $$\leq \left\{ \sigma_{n,1}\left(x\right)\sqrt{n}c_{j(x),n} \right\}^{-1} \int \int \left| Z_n\left(v,\varepsilon\right) - B\left\{M\left(v,\varepsilon\right)\right\} \right| d\left\{\varepsilon I_{\left\{|\varepsilon| < D_n\right\}} \right\} d\left\{ I_{j(x)}\left(v\right)\sigma\left(v\right) \right\}.$$ Next, by Lemma A.4, the bounded variation of the function $\sigma(x)$ in Assumption (A2), the strong approximation result (3.10), and the first condition in (A.1), $\sup_{x \in [a,b]} \left| \hat{\varepsilon}_{n,1}^{(0)}(x) - \hat{\varepsilon}_{n,1}^{D}(x) \right|$ is bounded as $$O\left\{ \left(nh\right)^{1/2}n^{-1/2}h^{-1}\left(n^{-1/2}\log^{2}n\right)D_{n}\right\} = O\left(n^{-1/2}h^{-1/2}D_{n}\log^{2}n\right) = o\left(1\right)$$ with probability 1, thus completing the proof of the lemma. The next lemma finds a process $\hat{\varepsilon}_{n,1}^{(1)}(x)$ defined in terms of the 2-dimensional Brownian motion to approximate $\hat{\varepsilon}_{n,1}^{(0)}(x)$. **Lemma A.7** Define for $x \in [a, b]$ $$\hat{\varepsilon}_{n,1}^{(1)}(x) = \left\{\sigma_{n,1}(x)\sqrt{n}c_{j(x),n}\right\}^{-1}\int\int I_{j(x)}(v)\,\sigma(v)\,\varepsilon I_{\{|\varepsilon|< D_n\}}dW\left\{M\left(v,\varepsilon\right)\right\}$$ $$then \ as \ n \to \infty, \left\| \hat{\varepsilon}_{n,1}^{(1)} \left(x \right) - \hat{\varepsilon}_{n,1}^{(0)} \left(x \right) \right\|_{\infty} = O \left(h^{1/2} D_n^{-(1+\eta)} \right) = o \left(1 \right) \ \ w. \ \ p. \ \ 1.$$ PROOF. Based on the Rosenblatt transformation $M\left(x,\varepsilon\right)$ defined in (3.8), and $\frac{\partial M(x,\varepsilon)}{\partial(x,\varepsilon)} = f\left(x,\varepsilon\right)$, the term $\left\|\hat{\varepsilon}_{n,1}^{(1)}\left(x\right) - \hat{\varepsilon}_{n,1}^{(0)}\left(x\right)\right\|_{\infty}$ is bounded by $$\sup_{x \in [a,b]} \left\{ \sigma_{n,1}(x) \sqrt{n} c_{j(x),n} \right\}^{-1} \int \int I_{j(x)}(v) \, \sigma(v) \, |\varepsilon| \, I_{\{|\varepsilon| < D_n\}} dM(v,\varepsilon) \, W(1,1) \right\} \\ \leq \sup_{x \in [a,b]} \left\{ \sigma_{n,1}(x) \sqrt{n} c_{j(x),n} \right\}^{-1} \int I_{j(x)}(v) \, \sigma(v) \, f(v) \, dv \\ \times \left\{ \int |\varepsilon| \, I_{\{|\varepsilon| < D_n\}} dF(\varepsilon|v) \right\} |W(1,1)| \\ \leq C \left(\frac{\sqrt{nh}}{\sqrt{nh}} \right) h \frac{M_{\eta}}{D_n^{1+\eta}} |W(1,1)| = O\left(h^{1/2} D_n^{-(1+\eta)} \right) = o(1) \quad \text{w. p. 1.}$$ The last step is obtained by applying the third condition in (A.1). The next lemma expresses the distribution of $\hat{\varepsilon}_{n,1}^{(1)}(x)$ in terms of 1-dimensional Brownian motion. **Lemma A.8** The process $\hat{\varepsilon}_{n,1}^{(1)}\left(x\right)$ has the same distribution as $$\hat{\varepsilon}_{n,1}^{(2)}(x) = \left\{ \sigma_{n,1}(x) \sqrt{n} c_{j(x),n} \right\}^{-1} \int I_{j(x)}(v) \, \sigma(v) \, s_n(v) \, f^{\frac{1}{2}}(v) \, dW(v) \,, x \in [a,b]$$ $$s_n^2(v) = \int \varepsilon^2 I_{\{|\varepsilon| < D_n\}} dF(\varepsilon|v) \,. \tag{A.11}$$ PROOF. According to Itô's Isometry Theorem, var $\left\{\hat{\varepsilon}_{n,1}^{(1)}\left(x\right)\right\}$ and var $\left\{\hat{\varepsilon}_{n,1}^{(2)}\left(x\right)\right\}$ are exactly the same for any $x\in[a,b]$. Hence, the two Gaussian processes $\hat{\varepsilon}_{n}^{(1)}\left(x\right)$ and $\hat{\varepsilon}_{n}^{(2)}\left(x\right)$ have the same distribution. **Lemma A.9** Define for any $x \in [a, b]$ where $$\hat{\varepsilon}_{n,1}^{(3)}(x) = \left\{ \sigma_{n,1}(x) \sqrt{n} c_{j(x),n} \right\}^{-1} \int I_{j(x)}(v) \, \sigma(v) \, f^{\frac{1}{2}}(v) \, dW(v)$$ then as $n \to \infty$, $\left\| \hat{\varepsilon}_{n,1}^{(2)}(x) - \hat{\varepsilon}_{n,1}^{(3)}(x) \right\|_{\infty} = O\left(D_n^{-\eta} h^{-1/2}\right) = o(1)$ w. p. 1. PROOF. By the fourth condition in (A.1), $\sup_{x \in [a,b]} \left| \hat{\varepsilon}_{n,1}^{(2)}(x) - \hat{\varepsilon}_{n,1}^{(3)}(x) \right|$ is almost surely bounded by $$\sup_{v \in [a,b]} \left| s_n^2(v) - 1 \right| \sup_{x \in [a,b]} \left| \sigma_{n,1}^{-1}(x) c_{j(x),n}^{-1} n^{-1/2} \int I_{j(x)}(v) \sigma(v) f^{\frac{1}{2}}(v) dW(v) \right|$$ $$= O\left(D_n^{-\eta} h^{-1/2} \right) = o(1) . \text{ w. p. 1}$$ **Lemma A.10** The process $\hat{\varepsilon}_{n,1}^{(3)}(x)$ is a Gaussian process with mean 0, variance 1, and covariance $\operatorname{cov}\left\{\hat{\varepsilon}_{n,1}^{(3)}(x),\hat{\varepsilon}_{n,1}^{(3)}(y)\right\} = \delta_{j(x),j(y)}, \forall x,y \in [a,b].$ PROOF. This follows from Itô's Isometry Theorem and (A.7). PROOF OF PROPOSITION 3.1. The proof follows immediately from Lemmas A.3, A.5, A.6, A.7, A.8, A.9 and A.10. \Box PROOF OF THEOREM 1. It is clear from Proposition 3.1 that the Gaussian process U(x) consists of (N+1) i.i.d. standard normal variables $U(t_0), ..., U(t_N)$. Hence Theorem 3.4 implies that as $n \to \infty$ $$P\left\{\sup_{x\in\left[a,b\right]}\left|U\left(x\right)\right|\leq\tau/a_{N+1}+b_{N+1}\right\}\rightarrow\exp\left(-2e^{-\tau}\right).$$ By letting $\tau = -\log\left\{-\frac{1}{2}\log\left(1-\alpha\right)\right\}$, and using the definition of a_{N+1} and b_{N+1} , we obtain $$\begin{split} &\lim_{n \to \infty} P\left[\sup_{x \in [a,b]} |U\left(x\right)| \le -\log\left\{-\frac{1}{2}\log\left(1-\alpha\right)\right\} \left\{2\log\left(N+1\right)\right\}^{-1/2} \\ &+ \left\{2\log\left(N+1\right)\right\}^{1/2} - \frac{1}{2} \left\{2\log\left(N+1\right)\right\}^{-1/2} \left\{\log\log\left(N+1\right) + \log 4\pi\right\}\right] = 1 - \alpha. \end{split}$$ Replacing U(x) with $\sigma_{n,1}(x)^{-1}\tilde{\varepsilon}_1(x)$ (Proposition 3.1), and the definition of d_n in (2.9) implies that $$\lim_{n \to \infty} P\left[\sup_{x \in [a,b]} \left| \sigma_{n,1} (x)^{-1} \tilde{\varepsilon}_1 (x) \right| \le \left\{ 2 \log (N+1) \right\}^{1/2} d_n \right] = 1 - \alpha.$$ As (3.5) implies that $\sqrt{nh/\log\left(N+1\right)} \|\tilde{m}_1\left(x\right) - m\left(x\right)\|_{\infty} = o_p\left(1\right)$. According to (3.3), $$\lim_{n \to \infty} P\left[m\left(x\right) \in \hat{m}_{1}\left(x\right) \pm \sigma_{n,1}\left(x\right) \left\{2\log\left(N+1\right)\right\}^{1/2} d_{n}, \forall x \in [a,b]\right]$$ $$= \lim_{n \to \infty} P\left[\left\{2\log\left(N+1\right)\right\}^{-1/2} d_{n}^{-1} \sup_{x \in [a,b]} \sigma_{n,1}^{-1}\left(x\right) |\tilde{\varepsilon}_{1}\left(x\right) + \tilde{m}_{1}\left(x\right) - m\left(x\right)| \leq 1\right]$$ $$= \lim_{n \to \infty} P\left[\left\{2\log\left(N+1\right)\right\}^{-1/2} d_{n}^{-1} \sup_{x \in [a,b]} \sigma_{n,1}^{-1}\left(x\right) |\tilde{\varepsilon}_{1}\left(x\right)| \leq 1\right] = 1 - \alpha. \quad \Box$$ # Appendix B: Proof of Theorem 2 ## B. 1. Preliminaries In this subsection we examine matrices used in (2.10) of Theorem 2. In what follows, we use |T| to denote the maximal absolute value of any matrix T, and M_{N+2} is the tridiagonal matrix as defined in (4.9). **Lemma B.1** The inner product matrix V of the B-spline basis $\{B_{j,2}(x)\}_{j=-1}^N$ defined as $V = (v_{j'j})_{j,j'=-1}^N = (\langle B_{j',2}, B_{j,2} \rangle)_{j,j'=-1}^N$, has the following decomposition $$V = M_{N+2} + (\tilde{v}_{j'j})_{j,j'=-1}^{N} = M_{N+2} + \tilde{V}$$ where $\tilde{v}_{j'j} \equiv 0$ if $|j - j'| \ge 1$, and $|\tilde{V}| \le C\omega(f, h)$. PROOF. By (A.3), (A.4) and (A.5), the inner product of $\langle b_{j',2}, b_{j,2} \rangle$ can be replaced by $\frac{1}{6}f(t_{j+1})h$ if |j'-j|=1, and $\frac{1}{3}f(t_{j+1})h$ or $\frac{2}{3}f(t_{j+1})h$ when j'=j, plus some uniformly infinitesimal differences dominated by $\omega(f,h)$. Based on the definition of $B_{j,2}(x)$, the lemma follows immediately. The next lemma shows that multiplication by M_{N+2} behaves similarly to multiplication by a constant. **Lemma B.2** Given the matrix $\Omega = M_{N+2} + \Gamma$, for which $\Gamma = (\gamma_{jj'})_{j,j'=-1}^N$ satisfies $\gamma_{jj'} \equiv 0$ if $|j-j'| \geq 1$ and $|\Gamma| \stackrel{p}{\to} 0$, there exist constants c, C > 0 independent of n and Γ , such that in probability $$c|\boldsymbol{\xi}| \le |\Omega \boldsymbol{\xi}| \le C|\boldsymbol{\xi}|, C^{-1}|\boldsymbol{\xi}| \le |\Omega^{-1} \boldsymbol{\xi}| \le c^{-1}|\boldsymbol{\xi}|, \forall \boldsymbol{\xi} \in \mathbb{R}^{N+2}.$$ (B.1) PROOF. In (4.9), M_{N+2} has diagonal elements 1, and the sum of the absolute values of off-diagonal elements in each row does not exceed $1/\sqrt{2}$. Hence it follows that $(1-1/\sqrt{2}-3|\Gamma|)|\xi| \le |\Omega \xi| \le 3(1+|\Gamma|)|\xi|$, which implies the first inequality of (B.1), and the second one follows by switching the roles of ξ and $\Omega \xi$. As an application of Lemma B.2, consider the matrix $S = V^{-1}$ defined in (2.5). Let $\tilde{\boldsymbol{\xi}}_{j'} = \{\operatorname{sgn}(s_{j'j})\}_{j=-1}^N$, then there exists a positive C_s such that $$\sum_{j=-1}^{N} |s_{j'j}| \le \left| S\tilde{\xi}_{j'} \right| \le C_s \left| \tilde{\xi}_{j'} \right| = C_s, \forall j' = -1, 0, ..., N.$$ (B.2) The matrix S in the construction of the confidence band can not be computed exactly as it involves the unknown density f(x). We approximate S by the inverse of M_{N+2} , with a simpler, distribution-free form in (4.9). This approximation is uniform for S_j in (2.5) and Ξ_j in (4.8) as well. **Lemma B.3** As $n \to \infty$, $\left| M_{N+2}^{-1} - S \right| \to 0$ and $\max_{0 \le j \le N} |\Xi_j - S_j| \to 0$. PROOF. By definition, $M_{N+2}M_{N+2}^{-1} = I = VS = \left(M_{N+2} + \tilde{V}\right)S$. Denote by e_i the unit vector with *i*-th element 1. Applying Lemma B.2 with $\Omega = M_{N+2}$, $$c \left| M_{N+2}^{-1} - S \right| = c \max_{i=1}^{N+2} \left| \left(M_{N+2}^{-1} - S \right) e_i \right|$$ $$\leq \max_{i=1}^{N+2} \left| M_{N+2} \left(M_{N+2}^{-1} - S \right) e_i \right| \leq c \left| \tilde{V} \right| \left(\left| M_{N+2}^{-1} - S \right| + \left| M_{N+2}^{-1} \right| \right)$$ Since Lemma B.1 implies $\left|\tilde{V}\right| \leq C\omega\left(f,h\right)$, as $n \to \infty$, $\left|M_{N+2}^{-1} - S\right| = O\left\{\omega\left(f,h\right)\right\} \to 0$. By definition of submatrices S_j and Ξ_j , $\max_{0 \leq j \leq N} |\Xi_j - S_j| \leq \left|M_{N+2}^{-1} - S\right|$. The lemma follows. \square ### B. 2. Variance calculation We now examine the asymptotic behavior of $$\tilde{\varepsilon}_{2}(x) = \operatorname{Proj}_{G_{n}^{(0)}} \mathbf{E} = \sum_{j=-1}^{N} \tilde{a}_{j} B_{j,2}(x), x \in [a, b]$$ (B.3) where the coefficient vector $\tilde{\mathbf{a}} = (\tilde{a}_{-1}, ..., \tilde{a}_{N})^{T}$ is the solution to the normal equations $$\left(\left\langle B_{j,2},B_{j',2}\right\rangle _{n}\right)_{j,j'=-1}^{N}\left(\tilde{a}_{j}\right)_{j=-1}^{N}=\left(n^{-1}\sum\nolimits_{i=1}^{n}B_{j,2}\left(X_{i}\right)\sigma\left(X_{i}\right)\varepsilon_{i}\right)_{j=-1}^{N}.$$ In other words $$\tilde{\mathbf{a}} = (\tilde{a}_j)_{j=-1}^N = (V + \tilde{B})^{-1} \left(n^{-1} \sum_{i=1}^n B_{j,2}(X_i) \, \sigma(X_i) \, \varepsilon_i \right)_{i=-1}^N, \tag{B.4}$$ where $|\tilde{B}| \le A_{n,2} = O_p(n^{-1/2}h^{-1/2}\log^{1/2}(n))$ by (3.2). Now define the \hat{a}_j 's by replacing $\left(V + \tilde{B}\right)^{-1}$ with $V^{-1} = S$ in above formula, i.e. $$\hat{\mathbf{a}} = (\hat{a}_j)_{j=-1}^N = \left(\sum_{j=-1}^N s_{j'j} n^{-1} \sum_{i=1}^n B_{j,2}(X_i) \,\sigma(X_i) \,\varepsilon_i\right)_{j=-1}^N \tag{B.5}$$ and define for $x \in [a, b]$ $$\hat{\varepsilon}_{2}(x) = \sum_{j'=-1}^{N} \hat{a}_{j'} B_{j',2}(x) = \sum_{i,j'=-1}^{N} s_{j'j} n^{-1} \sum_{i=1}^{n} B_{j,2}(X_{i}) \sigma(X_{i}) \varepsilon_{i} B_{j',2}(x).$$ (B.6) The next lemma is a special case of the unconditional version of (6.2) in Huang (2003). **Lemma B.4** The pointwise variance of $\hat{\varepsilon}_2(x)$ is the function $\sigma_{n,2}^2(x)$ defined in (2.6), which satisfies $$E\left\{\hat{\varepsilon}_{2}^{2}\left(x\right)\right\} \equiv \sigma_{n,2}^{2}\left(x\right) = \frac{3\sigma^{2}\left(x\right)}{2f\left(x\right)nh} \boldsymbol{\Delta}^{T}\left(x\right) S_{j(x)} \boldsymbol{\Delta}\left(x\right) \left\{1 + r_{n,2}\left(x\right)\right\}$$ with $\sup_{x \in [a,b]} |r_{n,2}(x)| \to 0$, j(x) in (2.3), $\Delta(x)$ in (4.7) and matrix S_j in (2.5). Consequently, there exist $0 < c_{\sigma} < C_{\sigma}$ such that for n large enough $$c_{\sigma}(nh)^{-1/2} \le \sigma_{n,2}(x) \le C_{\sigma}(nh)^{-1/2}, \forall x \in [a,b].$$ (B.7) PROOF. See Wang and Yang (2006). ## B. 3. Proof of Theorem 2 The next several lemmas are needed for the proof of Proposition 3.2. **Lemma B.5** Define for $x \in [a, b]$ $$\hat{\varepsilon}_{n,2}(x) = \sigma_{n,2}^{-1}(x)\,\hat{\varepsilon}_{2}(x) = \sigma_{n,2}^{-1}(x)\sum_{j'=-1}^{N}\hat{a}_{j'}B_{j',2}(x),$$ $$\hat{\varepsilon}_{n,2}^{D}(x) = \sigma_{n,2}^{-1}(x)\sum_{j'=-1}^{N}\hat{a}_{j'}B_{j',2}(x)I_{\{|\varepsilon|< D_{n}\}}.$$ where D_n satisfies (A.1). Then with probability 1 $$\left\| \hat{\varepsilon}_{n,2} \left(x \right) - \hat{\varepsilon}_{n,2}^{D} \left(x \right) \right\|_{\infty} = O \left(n^{1/2} h^{1/2} D_{n}^{-(1+\eta)} \right) = o \left(1 \right).$$ PROOF. Since obviously $E\hat{\varepsilon}_{n,2}(x) = 0, \forall x \in [a, b],$ $$\hat{\varepsilon}_{n,2}(x) = \sigma_{n,2}^{-1}(x) n^{-1/2} \sum_{j'=j(x)-1}^{j(x)} B_{j',2}(x) \sum_{j=-1}^{N} s_{j'j} \int \int B_{j,2}(v) \sigma(v) \varepsilon dZ_n(v, \varepsilon)$$ where $Z_n(x,\varepsilon)$ is defined in (3.9). The technical proof is very similar to Lemma A.5, except that we employ (B.2) to deal with $\sum_{j=-1}^{N} s_{j'j}$. The same order is also achieved. **Lemma B.6** Let M be the Rosenblatt transformation given in (3.8) and define $$\hat{\varepsilon}_{n,2}^{(0)}(x) = \frac{1}{\sqrt{n}\sigma_{n,2}(x)} \sum_{j',j=-1}^{N} B_{j',2}(x) \, s_{j'j} \int \int B_{j,2}(v) \, \sigma(v) \, \varepsilon I_{\{|\varepsilon| < D_n\}} dB \, \{M(v,\varepsilon)\}$$ for $x \in [a, b]$. Then as $n \to \infty$ $$\sup_{x \in [a,b]} \left| \hat{\varepsilon}_{n,2}^{(0)}(x) - \hat{\varepsilon}_{n,2}^{D}(x) \right| = O\left(n^{-1/2}h^{-1/2}D_n \log^2 n\right) = o(1) \quad w. \ p. \ 1.$$ Proof. See Lemma A.6. **Lemma B.7** Define for $x \in [a, b]$ $$\hat{\varepsilon}_{n,2}^{(1)}(x) = \frac{\sigma_{n,2}^{-1}(x)}{\sqrt{n}} \sum_{j',j=-1}^{N} B_{j',2}(x) \, s_{j'j} \int \int B_{j,2}(v) \, \sigma(v) \, \varepsilon I_{\{|\varepsilon| < D_n\}} dW \, \{M(v,\varepsilon)\},$$ then as $n \to \infty$ $$\sup_{x \in [a,b]} \left| \hat{\varepsilon}_{n,2}^{(1)}(x) - \hat{\varepsilon}_{n,2}^{(0)}(x) \right| = O\left(h^{1/2} D_n^{-(1+\eta)}\right) = o(1) \ w. \ p. \ 1.$$ **Lemma B.8** The process $\hat{\varepsilon}_{n,2}^{(1)}(x)$, $x \in [a,b]$ has the same distribution as $$\hat{\varepsilon}_{n,2}^{(2)}(x) = \sigma_{n,2}^{-1}(x) \, n^{-1/2} \sum_{j',j=-1}^{N} B_{j',2}(x) \, s_{j'j} \iint B_{j,2}(v) \, \sigma(v) \, s_n(v) \, f^{\frac{1}{2}}(v) \, dW(v)$$ for $x \in [a, b]$, where $s_n^2(v)$ is as defined in (A.11). PROOF. Similar to that of Lemma A.8, see Wang and Yang (2006) for details. **Lemma B.9** Define for any $x \in [a, b]$ $$\hat{\varepsilon}_{n,2}^{(3)}(x) = \frac{1}{\sqrt{n}\sigma_{n,2}(x)} \sum_{j',j=-1}^{N} B_{j',2}(x) \, s_{j'j} \int B_{j,2}(v) \, \sigma(v) \, f^{\frac{1}{2}}(v) \, dW(v)$$ then var $\left\{\hat{\varepsilon}_{n,2}^{(3)}(x)\right\} \equiv 1, \forall x \in [a,b], \text{ and as } n \to \infty$ $$\left\| \hat{\varepsilon}_{n,2}^{(2)}(x) - \hat{\varepsilon}_{n,2}^{(3)}(x) \right\|_{\infty} = O\left(h^{-1/2}D_n^{-\eta}\right) = o(1) \ w. \ p. \ 1.$$ PROOF. Using (A.1) in the last step, the term $\sup_{x \in [a,b]} \left| \hat{\varepsilon}_{n,2}^{(2)}(x) - \hat{\varepsilon}_{n,2}^{(3)}(x) \right|$ is bounded by $$\sup_{x \in [a,b]} \left| 1 - s_n^2(x) \right| \sup_{x \in [a,b]} \left\{ \frac{\sigma_{n,2}^{-1}(x)}{\sqrt{n}} \sum_{j',j=-1}^{N} B_{j',2}(x) \left| s_{j'j} \right| \int B_{j,2}(v) \, \sigma(v) \, f^{\frac{1}{2}}(v) \, dW(v) \right\}$$ $$\leq M_{\eta}D_{n}^{-\eta}h^{1/2}C\left|\int\sigma\left(v\right)f^{\frac{1}{2}}\left(v\right)dW\left(v\right)\right|=O\left(h^{-1/2}D_{n}^{-\eta}\right)=o\left(1\right) \text{ w. p. }1.$$ Meanwhile, directly from (2.7) and (2.6), for any $x \in [a, b]$ $$\operatorname{var}\left\{\hat{\varepsilon}_{n,2}^{(3)}\left(x\right)\right\} = E\left\{\frac{\sigma_{n,2}^{-1}\left(x\right)}{\sqrt{n}} \sum_{j',j=-1}^{N} B_{j',2}\left(x\right) s_{j'j} \int B_{j,2}\left(v\right) \sigma\left(v\right) f^{\frac{1}{2}}\left(v\right) dW\left(v\right)\right\}^{2} = 1.$$ Now define for any j' = -1, ..., N and $x \in [a, b]$, the functions $$\zeta_{j'}(x) = n^{-1/2} \sigma_{n,2}^{-1}(x) B_{j',2}(x), \tilde{\zeta}(x) = (\zeta_{j(x)-1}(x), \zeta_{j(x)}(x))^T$$ and the random vector $\mathbf{\Lambda} = (\Lambda_{-1}, \Lambda_0, \dots, \Lambda_N)^T$ where $$\Lambda_{j'} = \sum_{i=-1}^{N} s_{j'j} \int B_{j,2}(v) \sigma(v) f^{\frac{1}{2}}(v) dW(v).$$ Then $\Lambda \sim \mathbf{N}(\mathbf{0}, S \sum S)$ as $E\Lambda_{j'} = 0, \forall j' = -1, ..., N$, and the covariance is $E\Lambda_{j'}\Lambda_{l'} = \sum_{j,l=-1}^{N} s_{j'j}\sigma_{jl}s_{ll'}$, for any j', l' = -1, ..., N, and σ_{jl} is defined in (2.7). Notice that $$\hat{\varepsilon}_{n,2}^{(3)}\left(x\right) \equiv \sum_{j'=j(x)-1,j(x)} \zeta_{j'}\left(x\right) \Lambda_{j'} = \tilde{\boldsymbol{\zeta}}\left(x\right)^{T} \boldsymbol{\Lambda}_{j(x)}, \boldsymbol{\Lambda}_{j} = \left(\Lambda_{j-1}, \Lambda_{j}\right)^{T}, j = 0, ..., N.$$ Since Lemma B.9 states that the variance of $\hat{\varepsilon}_{n,2}^{(3)}(x) \equiv 1$, it follows that $$\hat{\varepsilon}_{n,2}^{(3)}(x) = \frac{\tilde{\boldsymbol{\zeta}}(x)^T \boldsymbol{\Lambda}_{j(x)}}{\sqrt{\tilde{\boldsymbol{\zeta}}(x)^T \left\{ \operatorname{cov}\left(\boldsymbol{\Lambda}_{j(x)}\right) \right\} \tilde{\boldsymbol{\zeta}}(x)}}.$$ (B.8) **Lemma B.10** For any given $0 < \alpha < 1$, $$\liminf_{n \to \infty} P\left(\sup_{x \in [a,b]} |\hat{\varepsilon}_{n,2}(x)| \le \left[2\left\{\log(N+1) - \log\alpha\right\}\right]^{1/2}\right) \ge 1 - \alpha.$$ (B.9) PROOF. Define for any $0 \le j \le N, Q_j = \mathbf{\Lambda}_j^T \{\text{cov}(\mathbf{\Lambda}_j)\}^{-1} \mathbf{\Lambda}_j$. Result 4.7 (a), page 140 of Johnson and Wichern (1992) ensures that Q_j is distributed as χ_2^2 , hence $$P[Q_j > 2\{\log(N+1) - \log \alpha\}] = \frac{\alpha}{N+1}, \forall \ 0 \le j \le N.$$ Then (B.8) and the Maximization Lemma of Johnson and Wichern (1992), page 66, ensures that $$\left\{\hat{\varepsilon}_{n,2}^{(3)}\left(x\right)\right\}^{2} = \frac{\left|\tilde{\boldsymbol{\zeta}}\left(x\right)^{T}\boldsymbol{\Lambda}_{j(x)}\right|^{2}}{\tilde{\boldsymbol{\zeta}}\left(x\right)^{T}\left\{\operatorname{cov}\left(\boldsymbol{\Lambda}_{j(x)}\right)\right\}\tilde{\boldsymbol{\zeta}}\left(x\right)} \leq \boldsymbol{\Lambda}_{j(x)}^{T}\left\{\operatorname{cov}\left(\boldsymbol{\Lambda}_{j(x)}\right)\right\}^{-1}\boldsymbol{\Lambda}_{j(x)} = Q_{j(x)},$$ for any $x \in [a, b]$. Therefore $\sup_{x \in [a, b]} \left| \hat{\varepsilon}_{n, 2}^{(3)}\left(x\right) \right|^2 \leq \max_{0 \leq j \leq N} \left\{ Q_j \right\}$ and $$P\left[\sup_{x\in[a,b]}\left|\hat{\varepsilon}_{n,2}^{(3)}\left(x\right)\right|^{2} \leq 2\left\{\log\left(N+1\right) - \log\alpha\right\}\right]$$ $$\geq P\left[\max_{0\leq j\leq N}\left\{Q_{j}\right\} \leq 2\left\{\log\left(N+1\right) - \log\alpha\right\}\right] \geq 1 - \alpha.$$ Equation (B.9) follows from Lemmas B.5, B.6 B.7, B.8, B.9. #### Lemma B.11 $$\left| \sup_{x \in [a,b]} \left| \frac{\hat{\varepsilon}_2(x)}{\sigma_{n,2}(x)} \right| - \sup_{x \in [a,b]} \left| \frac{\tilde{\varepsilon}_2(x)}{\sigma_{n,2}(x)} \right| \right| = O_p\left(\sqrt{\frac{\log n}{nh}}\right) = o_p(1).$$ PROOF. Recall the definition for $\tilde{\mathbf{a}} = (\tilde{a}_{-1}, \tilde{a}_0, ..., \tilde{a}_N)^T$ and $\hat{\mathbf{a}} = (\hat{a}_{-1}, \hat{a}_0, ..., \hat{a}_N)^T$ in (B.4) and (B.5). Then $\left(V + \tilde{B}\right)\tilde{\mathbf{a}} = V\hat{\mathbf{a}}$. Based on Lemma B.2 and (3.2), there exists a constant c such that $c |\hat{\mathbf{a}} - \tilde{\mathbf{a}}| \leq |V(\hat{\mathbf{a}} - \tilde{\mathbf{a}})| = \left|\tilde{B}\tilde{\mathbf{a}}\right| \leq A_{n,2} \left(|\hat{\mathbf{a}} - \tilde{\mathbf{a}}| + |\hat{\mathbf{a}}|\right)$, it implies that $|\hat{\mathbf{a}} - \tilde{\mathbf{a}}| \leq \frac{A_{n,2}}{c - A_{n,2}} |\hat{\mathbf{a}}|$. From the definitions of $\tilde{\varepsilon}_2(x)$ in (B.3) and $\hat{\varepsilon}_2(x)$ in (B.6), plus (B.7) and (A.6), as $n \to \infty$ $$\sup_{x \in [a,b]} \left| \frac{\hat{\varepsilon}_2\left(x\right)}{\sigma_{n,2}\left(x\right)} - \frac{\tilde{\varepsilon}_2\left(x\right)}{\sigma_{n,2}\left(x\right)} \right| \leq \sup_{x \in [a,b]} \left| \sum_{j=-1}^{N} \frac{\left| \widehat{\mathbf{a}} - \widetilde{\mathbf{a}} \right| B_{j,2}\left(x\right)}{\sigma_{n,2}\left(x\right)} \right| \leq C n^{1/2} \frac{A_{n,2}}{c - A_{n,2}} \left| \widehat{\mathbf{a}} \right|.$$ Using (A.6) again, we conclude that as $n \to \infty$ $$\sup_{x \in [a,b]} \left| \frac{\hat{\varepsilon}_{2}(x)}{\sigma_{n,2}(x)} \right| \ge \frac{\sqrt{nh}}{C_{\sigma}} \sup_{x \in [a,b]} \left| \mathbf{\hat{a}B}_{2}^{T}(x) \right| \ge C\sqrt{n} \left| \mathbf{\hat{a}} \right|$$ where $\mathbf{B}_{2}(x) = \{B_{-1,2}(x), ..., B_{N,2}(x)\}^{T}, \mathbf{b}_{2}(x) = \{b_{-1,2}(x), ..., b_{N,2}(x)\}^{T}.$ The desired result follows, i.e. $$\sup_{x \in [a,b]} \left| \frac{\hat{\varepsilon}_2(x)}{\sigma_{n,2}(x)} - \frac{\tilde{\varepsilon}_2(x)}{\sigma_{n,2}(x)} \right| \le C \frac{A_{n,2}}{c - A_{n,2}} \sup_{x \in [a,b]} \left| \frac{\hat{\varepsilon}_2(x)}{\sigma_{n,2}(x)} \right| = O_p\left(\sqrt{\frac{\log n}{nh}}\right). \quad \Box$$ PROOF OF PROPOSITION 3.2. This follows from Lemma B.10 and Lemma B.11. PROOF OF THEOREM 2. Now (3.5) implies that $$\sqrt{nh/\log(N+1)} \|\tilde{m}_2(x) - m(x)\|_{\infty} = O_p \left\{ \sqrt{nh^5/\log(N+1)} \right\} = o_p(1).$$ Applying (3.6) in Proposition 3.2 $$\lim_{n \to \infty} \inf P\left[m(x) \in \hat{m}_{2}(x) \pm \sigma_{n,2}(x) \left\{2 \log (N+1) - 2 \log \alpha\right\}^{1/2}, \forall x \in [a,b]\right] \\ = \lim_{n \to \infty} \inf P\left[\sup_{x \in [a,b]} \sigma_{n,2}^{-1}(x) |\tilde{\varepsilon}_{2}(x) + \tilde{m}_{2}(x) - m(x)| \le \left\{2 \log (N+1) - 2 \log \alpha\right\}^{1/2}\right] \\ = \lim_{n \to \infty} \inf P\left[\sup_{x \in [a,b]} \left|\frac{\tilde{\varepsilon}_{2}(x)}{\sigma_{n,2}(x)}\right| \le \left\{2 \log (N+1) - 2 \log \alpha\right\}^{1/2}\right] \ge 1 - \alpha. \quad \square$$