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Appendix A: Proof of Theorem 1

A. 1. Preliminaries

Throughout Appendices A and B, we denote by the same letters ¢, C', any positive constants,

without distinction in each case. Detailed proof is given in Wang and Yang (2006).

Lemma A.1 Under Assumptions (A3) and (A4), there exists ag > 0 such that the sequence

{D,} = {n*} satisfies

log” ” (2+n) Vnh —np—1/2
\/_ OZD " 00, ) —0,D;"h"1% 0.

For such a sequence {D,}, P{w|3N (w),2|e;| < D,,1 <i<n,n>N(w)}=1.

Denote the theoretical norms of the basis ¢;,, = ||bj,1||; and d;,, = Hbj72||§ by

b b T —tiiq
i = / I (@) f (a) do,d;,, = / K (Tt)f () da.

c
Lemma A.2 Under Assumptions (A2) and (A3), as n — oo,
Cjn = f (t]) h (1 + rjﬂl) ) <bj,17 bj’,1> = 07.] 7£ j,

1+rj,n,2 j:O,...jN—l,

2
dip=—=f(tix1)h X
s 3f(.7+1) { 1/2_‘_7/.]7”72 J: —1’N7

L+7ne |7 —Jl=1,

1
bio,bio) = =F(tis1) h X
<372 ]72> 6f( ]+1) { 0 7= > 1,
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where

maxXo<j<n |Tjn1| +Max_1<jcn {|7jn2] + [Fjn2l} < Cw(f,h). (A.5)

In particular,

1 2

ST () (L= o (1)} < dy € 2F () B{L+ Co (£ 1)) (A.6)
ProOF OF LEMMA 3.1. For brevity, we give only the proof of (3.1) for A, ;. Take any

j=0,1,..,N
9 o n
1Bl -1 =37 &

with K¢, = 0 and for any k£ > 2. Minkowski’s inequality implies that

&= {Bl (X)) = 1}pn

9 k
Ele)f = n B |B2, (X) - 1[° < 2B [B2 (X)) +1] < {%} Coh,

while (A.2) implies that B¢ > n~2E [L1B2, (X;) — 1] > {2/ (nh)}*Cih. One can then find a

constant ¢ > 0 such that for k > 2, E|&,]* < (en'h "))  ?KIE|¢,]>. Applying Bernstein’s
inequality, we conclude that P {|Z:”:1 &| > nglog? (n) (nh)_1/2} < 2n73 for large enough
1o > 0. Thus,

> P {suPOSJ'SN ’”Bﬁ:l”;n — 1| > nlog"”? (n) (nh)_m} <00

for such n, > 0, so that (3.1) follows. O

A. 2. Proof of Theorem 1

In this section, we investigate the behavior of &, (x) defined in (3.4). Since (B;/;(X),B;1(X)), =
0 unless j = 7', &1 (x) can be written as & (z) = z;\fzo ;B (z) ||Bj71||2_i7 in which ¢} =
(E,B;; (X)), =n"" 3L Bia (Xi) o (Xy) e

Lemma A.3 Let & (z) = ZN

=0

eiBj1 (r),x € [a,b], for A, defined in (5.1)
E1 (2) = &1 (2)] < Auy (1= A1) a1 ()], € [a,B].
Thus, sup,c(, ) €1 ()| and sup,¢(, 4 [€1 ()] have the same asymptotic behavior.

Lemma A.4 The pointwise variance of &, (x) is the function op | () defined in (2.6) which

satisfies for sup,e(q |71 ()| — 0

0’ (x)

f () nh

E{& (:U)}2 = ‘73171 () = {1+ m1(2)}, 2 € a,b]. (A.7)



Lemma A.5 Let the sequence {D,} satisfy (A.1), then as n — oo

ényl(x)—éil(x)” —O< 1+")\/_> =o(1), w p. 1,

where, for x € |a, b,

N
e (@) = 00a ()71 ) Bja (2) (6] — Eej) Iel<p,)- (A.8)
PROOF. Notice that Eer = E{n~'Y_" | B;1 (X;) 0 (X;)&;} = 0, so that

Ena ( {anl ) Ve n} // v)edZ, (v,€)

according to the definition of Z, (v,¢) in (3.9). The truncated part éil (x) is defined in (A.8).
The tail part &, () — &5, (z) is bounded uniformly over [a,b] by

{Unl \/_cj(x } // J(x 51{\8|>D }dZ (U 5)
11
{Unl Cj(x n} ' _ZI' ‘)U(Xz‘) si]{\£¢|2Dn}

{on1 () Cjayn} // (@) (v) 0 (v) elfe>p,})dF (v,€)|.

By Lemma A.1, the term (A.9) is 0 almost surely. The term (A.10) is bounded by

SUPgzea,b]

< SUPxe [a,b]

+ SUPme [a,b]

sup {0, () Cj(z),n}_l/]j(:v) (v)o (v) f (v) [/|€!f{|e|zpn}dF (€|U)} dv

z€[a,b]
M, Vnh
Lj@) (v) o (v) f (v >d”D1+n <Com-

< sup {01 () Cjayn } /

The lemma follows immediately by the third condition in (A.1). O
Lemma A.6 Define for x € [a,b]

= {01 (2) Vicjmn} // v) eljei<p,ydB{M (v,€)}

then as n — o0

‘ = O (072D, log? n)=o(l), w. p. 1




PROOF. First,

2)1 (x) — é‘D (a:)‘ can be written as

{on1 (@) Vi) // i) (V) 0 (v) elyej<p,yd[Zy (v,€) — B{M (v,€)}]|,

which becomes the following via integration by parts

{001 (@) Vicjmyn} // — B{M (v,e)} d{Ij 81’{|s|<Dn}}'

<A{on1(2) \/ﬁcj(z),n}l// | Zn (v, €) = B{M (v,e)} d{eljej<p,y } d{Lja) (v) o (v)} .
Next, by Lemma A.4, the bounded variation of the function o (z) in Assumption (A2), the

strong approximation result (3.10), and the first condition in (A.1), é,(g)l (x) — 5D (:z:)‘

is bounded as
O {(nh)1/2 n~Y2pt (n’l/2 log®n) Dn} =0 (n’1/2h’1/2Dn log”n) = o(1)

with probability 1, thus completing the proof of the lemma. O
The next lemma finds a process ég)l (x) defined in terms of the 2-dimensional Brownian

motion to approximate &?7(3)1 (x).

Lemma A.7 Define for x € [a,b]
et (@) = {001 (2) Vicimyn} // v) elyje<p,ydW {M (v, )}

2 @) el @) =0 (hl/?D;M) —o(1) wp 1.

then as n — o0,

OM(z,e)
Oze)

ProOOF. Based on the Rosenblatt transformation M (x,¢) defined in (3.8), and
f(x,e), é‘nl’l (x) — 653)1 (x)H is bounded by

sup

z€lab] {Un’l ) Vi ”} // v) || Ifjej<pydM (v, ) W (1,1)
< sup {Un,l (fﬂ) \/ECj(x)yn}’l /]j(a:) (’U) o ('U) f (U) dv

z€la,b]

| el tgacpdr e o) b w )

vnh M, _
<C (\/_h D”" W (1,1)| = O (h'?D,; ") =0 (1) w. p. L.
The last step is obtained by applying the third condition in (A.1). O

The next lemma expresses the distribution of ég’)l (x) in terms of 1-dimensional Brownian

motion.
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n

N

Lemma A.8 The process () has the same distribution as

£ @) = {ons () Viteyon} ™ [ L (0)0 (0) 50 (0) £ (0)dW () € o}

where 9

Sn ("U) = /521{5<Dn}dF (5 ’U) (A.ll)

PROOF. According to Ito’s Isometry Theorem, var {é(l) (x)} and var {

n,1 é
same for any z € [a,b]. Hence, the two Gaussian processes &V () and
distribution. U

Lemma A.9 Define for any x € |a, b

@) = {on @ Viton} ! [ Lo @)e0) 1 @)aw )

then as n — oo, énz)l (x) — éf’% (m)H =0 (D,"h"'?) =0(1) w. p. 1.
PROOF. By the fourth condition in (A.1) , sup,¢(, 4 |£ 51)1 (x) — ng)l (x)| is almost surely bounded
by
- - - 1

sup |s2 (v) — 1| sup |0} (z) cj(i)mn 1/2/_7]-(5,;) (v)o (v) f2 (v)dW (v)

v€l[a,b] z€[a,b]

=0 (D;”h_l/Q) =o0(1). w.p. 1 O
Lemma A.10 The process ¢ Af’)l (x ) is a Gaussian process with mean 0, variance 1, and covari-
ance cov {31(13)1 (x) ,é,(f)l( )} 0j(2).j(y), VT, Y € [a,b].
PRrROOF. This follows from It6’s Isometry Theorem and (A.7). O

PROOF OF PROPOSITION 3.1. The proof follows immediately from Lemmas A.3, A.5, A.6,
A7, A8, A9 and A.10. O

PROOF OF THEOREM 1. It is clear from Proposition 3.1 that the Gaussian process U ()
consists of (N + 1) ii.d. standard normal variables U (ty),...,U (ty). Hence Theorem 3.4

implies that as n — oo

P {Supxe[a,b] U (x)] < 7/ant1+ by} — exp (—2¢77).

By letting 7 = —log {—% log (1 — a)}, and using the definition of ay,; and by, 1, we obtain

1
lim P |sup,e(,4 |U ()] < —log {—§log(1 — a)} {2log (N + 1)}—1/2

n—oo

1
+{2log (N + 1)}/* — 5 {21log (N + 1)} * {loglog (N + 1)+log 47} | =1—a.



Replacing U (z) with 0,1 (z)” & (z) (Proposition 3.1), and the definition of d,, in (2.9) implies

that
lim P [supxe[a,b] | (2) 7 1 (2)] < {2log (N +1)}/? dn} =1-a

n—oo

As (3.5) implies that y/nh/log (N + 1) ||y (x) — m ()]

=0, (1). According to (3.3),

(e 9]

lim P [m (z) € ry () £ oy (2) {21og (N + 1)}/2d,, Va € [a, b]]

= lim P |{2log(N + D} 2d ! sup o, (@) |21 (2) +my (x) —m(2)] < 1

n—oo z€la,b]
— lim P [{2log (N + 1)} Y2 d; sup,coy ok (2) |21 (2)] < 1} —1-a O

Appendix B: Proof of Theorem 2

B. 1. Preliminaries

In this subsection we examine matrices used in (2.10) of Theorem 2. In what follows, we use
|T| to denote the maximal absolute value of any matrix 7', and My is the tridiagonal matrix
as defined in (4.9).

Lemma B.1 The inner product matriz V of the B-spline basis { B, 2 (:E)};szl defined as V =

(vj/j);vj,:_l = ((Bjr 2, Bj72>)§vj,:_1 , has the following decomposition

V =My + (ﬁj/j)j‘\,fj’:ﬂ = My + 14
where 5, = 0 if |j — /| > 1, and )V‘ < Cw(fh).

PROOF. By (A.3), (A.4) and (A.5), the inner product of (b 2, b;2) can be replaced by ¢ f (t;41) h
if [j' = j| =1,and 3 f (t;41) hor 2f (t;41) h when j/ = j, plus some uniformly infinitesimal differ-
ences dominated by w (f, h) . Based on the definition of B, (), the lemma follows immediately.
U

The next lemma shows that multiplication by My, o behaves similarly to multiplication by

a constant.

Lemma B.2 Given the matriz 2 = My,o + 1", for which I' = (ij’);\;fzq satisfies v, = 0 if
j— 4| > 1 and || 2 0, there exist constants ¢, C' > 0 independent of n and T, such that in
probability

cle] < Q€ < Clel,C7 gl < Q'€ < M E] VE € RV (B.1)



PROOF. In (4.9), My,2 has diagonal elements 1, and the sum of the absolute values of off-
diagonal elements in each row does not exceed 1/1/2. Hence it follows that (1 — 1/v/2 — 3|T|) [£] <
192&] <3(14 |T'|) |€], which implies the first inequality of (B.1), and the second one follows by
switching the roles of £ and Q€. O

As an application of Lemma B.2, consider the matrix S = V! defined in (2.5). Let
éj/ = {sgn (sj/j)}j.vzfl, then there exists a positive Cy such that

N ~
Zj:_l |81 < ‘SEJ-/

The matrix S in the construction of the confidence band can not be computed exactly as it

<Oy |€;| = Oy, V5 = —1,0,..., N. (B.2)

involves the unknown density f (x). We approximate S by the inverse of My o, with a simpler,
distribution-free form in (4.9). This approximation is uniform for S; in (2.5) and Z; in (4.8) as

well.
Lemma B.3 Asn — oo, |MX,}F2 — S‘ — 0 and maxo< <y |Z; — S| — 0.

PRrROOF. By definition, MN+2M1:7}F2 =]I=VS= (MN+2 + I~/> S. Denote by e; the unit vector
with ¢-th element 1. Applying Lemma B.2 with 2 = My,
c |M]§}r2 - S‘ = cmax ‘(]\4]\_&L2 ) ei‘

< max? | Mz (Myhy = 8) ei] < e V] (M54, = 8]+ [MyLa])

Since Lemma B.1 implies

f/‘ < Cw(f,h), as n — oo, |Myl, — S| = O{w(f,h)} — 0. By

definition of submatrices S; and Z;, maxo<;j<n [Z; — S| < |My4, — S|. The lemma follows. [J

B. 2. Variance calculation

We now examine the asymptotic behavior of
N

& (z) = Projo E=> 4By (2) @ € [a, 1) (B.3)

=

where the coefficient vector a = (a_, ..., a N)T is the solution to the normal equations
N ~ \N — n N
((Bja, Byra)y); ey (@)= = (” 'Y Bia(Xi)o (Xz')&')

=1 j=—1

In other words

a=(@)_,=(v+ B)_l (Y B (x)=) (B.4)

where ‘é’ < A,2=0, (n‘l/Qh_l/Q log!/? (n)) by (3.2).

7



-1
Now define the a;’s by replacing (V + B) with V! = S in above formula, i.e.

a= (dj)j'vz—l - (ZN

=

n N
. Sj/jnfl 21:1 Bj,Q (X1> g (Xz) 82‘) 3 (B5)

j__

and define for = € [a, b]

Z CLJ/B i’ 2 Z Sj ]TL Zz 1 J2 (Xz) E:’L‘Bj/72 (37) . (B6)

J'=-1 33'==1

The next lemma is a special case of the unconditional version of (6.2) in Huang (2003).

Lemma B.4 The pointwise variance of & (x) is the function o7, (z) defined in (2.6), which

satisfies
B{E(0)} = 0% (0) = 5 1) JpAT (1) Sy A (2) 1+ 1o (0))

With SUP e (o4 [Tn2 (2)| — 0, j (x) in (2.5), A(x) in (4.7) and matriz S; in (2.5). Consequently,
there exist 0 < ¢, < C, such that for n large enough

o (nh) V2 < 05 (x) < C,p (nh) ™ V€ [ab]. (B.7)

PROOF. See Wang and Yang (2006). O

B. 3. Proof of Theorem 2

The next several lemmas are needed for the proof of Proposition 3.2.

Lemma B.5 Define for x € [a, ]

N
Ena (1) = o (0)E (@) =0ub (@) ), apBya (@),

N
€f,2 (x) = Uﬁ,lz(li)zj,:_laj'Bj',z () Lje|<Dny-

where D,, satisfies (A.1). Then with probability 1

Ena(T) — 332 (x)HOO =0 (n1/2h1/2D;(1+”)) =o0(1).

PROOF. Since obviously Fé, 5 (x) =0, Vz € [a,b],

i)

Ena(z) =00 (z) 071/ Z o ( Zs“// 2 (V) 0 (v) edZ, (v, ¢€)

J'=j(x)— Jj==1

where Z, (x,¢) is defined in (3.9). The technical proof is very similar to Lemma A.5, except
that we employ (B.2) to deal with Z 1 8575- The same order is also achieved. 0



Lemma B.6 Let M be the Rosenblatt transformation given in (3.8) and define

N

(0 1
52% (z) = m = Bj s () 551 // 2 ( 5]{\6\<Dn}dB {M (v,e)}

VRY)

for x € [a,b]. Then as n — oo

sup ég); (x) — é32 (x)‘ =0 (n_l/Qh_1/2Dn log’n) =o(1) w. p. 1.

z€[a,b]

PROOF. See Lemma A.6.

Lemma B.7 Define for x € [a, ]

—1 N
~ O'n,2<x>
@) =22 S Bua@ sy [ [ Ba)o () eliaena (M (.0},
j/7j:_

then as n — oo

sup
z€[a,b]

£} () — &% ()] = O (WD) =0 (1) w. p. 1.

Lemma B.8 The process 6511)2 (), € [a,b] has the same distribution as
N 1
2@ = @n Y Bra @y [ [ Ba)o )5, ) £ ) dW
for x € [a,b], where s2 (v) is as defined in (A.11).
PROOF. Similar to that of Lemma A.8, see Wang and Yang (2006) for details.

Lemma B.9 Define for any x € |a,b]

i () = \/_an2 ]fyz—:—lB'Q Sj/a'/sz("U)U(U)fé (v) AW (v)

then var {éf’% (x)} = 1,Vz € [a,b], and as n — o0

(@)~ e @) =0 @D =0(1) wop. 1.

n,

PrROOF. Using (A.1) in the last step, the term sup, i,y |€

51)2 (x) — é(?’% (a:)’ is bounded by

[N

0,5 (1) o i
sup |1 —s2 x>\sup{ S 2 Bra(@) sy /Bj,z(v)ﬁ(v)f <v>dW<v>}

z€[a,b] z€[a,b] Jj=—1



(SIS

< MnD;"hl/zC‘/a(v)f (v)dW (v)| = O (h™?D;") =0 (1) w. p. 1.

Meanwhile, directly from (2.7) and (2.6), for any = € [a, b]

=

var {20 <x>}=E{""j§”) S Byale)sy, [0 @)1t @yaw <v>} -1

Now define for any j' = —1,..., N and = € [a, b], the functions

Cpr(x) =0 o (@) Bya (2), € () = (Ciay—1 (@) Gy (@)

and the random vector A = (A_1, A, ... ,AN)T where

A= 3 s [ Bia@)o @) £ (0)dW o).

j=—1

Then A ~ N(0,5)°S) as FAjy = 0,Vj’ = —1,..,N, and the covariance is EAjy\y =
Z;.VJ:_I sjjousw, for any 5,1 = —1,.., N, and o0 is defined in (2.7). Notice that

éiz?:)Q (I) = Z Cj’ ([E) Aj/ = &(x)T Aj(x)7Aj = (Aj—17Aj)Taj = Oa >N

J'=i(z)=1,j(x)

Since Lemma B.9 states that the variance of éfg (x) =1, it follows that

s T
£9) () = ¢ @) iy (B.9)

Ve {eov (Ajm) } ()

Lemma B.10 For any given 0 < a < 1,

n—oo z€[a,b]

liminf P < sup |&n2 (2)] < [2{log (N + 1) — log a}]1/2> >1—a. (B.9)

PROOF. Define for any 0 < j < N,Q; = AJ {cov (Aj)}_1 A;j. Result 4.7 (a), page 140 of
Johnson and Wichern (1992) ensures that @; is distributed as x3, hence
o'

PlQ; > 2{log(N +1) —loga}| = N1

V0<j<N.

Then (B.8) and the Maximization Lemma of Johnson and Wichern (1992), page 66, ensures
that

@ 2 ‘&(@T Aja) 2
{5"’2 ( )} N &(x)T {COV (Aj(x))} & (z)

< AT {eov (M)} Ajn) = Qo).
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2
e (x)‘ < maxog;<n {Q} and

for any x € [a,b]. Therefore sup,¢(,

P

z€[a,b]

2
sup ‘é‘f’% (x)) < 2{log (N +1) —log a}]

> P {max {Q;} <2{log (N +1) —loga}} >1-—a.

0<j<N
Equation (B.9) follows from Lemmas B.5, B.6 B.7, B.8, B.9. O
Lemma B.11
£ () &y (2) [logn
sup — =0 —— | =0,(1).
z€[a,b] | On,2 (l‘) z€la,b] | On,2 ([L’) g n 8
PROOF. Recall the definition for & = (d_1, g, ..., ay)" and & = (4_y, do, . ..,ay)" in (B.4) and

(B.5). Then <V + B) a = Va. Based on Lemma B.2 and (3.2), there exists a constant ¢ such

that ¢|a— &) < |V (5 —&)| = ’Ba‘ < Ans(Ja—a| + |a]), it implies that |a — & < 22 |3|,

c—An2
From the definitions of &, (z) in (B.3) and &; (x) in (B.6), plus (B.7) and (A.6), as n — o0
|20 B | e BB @] e Aue
z€la,b] On,2 ([E) On2 (l’) z€[a,b] J=-1 On,2 (ZE) c— An,Q

Using (A.6) again, we conclude that as n — oo

&q () vnh R )
Supfﬂe[aub] O (l’) > Co Supze[a,b} ‘aBg (l’)‘ > C\/ﬁ|a‘

where B2 (ZE) = {B_LQ (ZE) s ey BN72 (I)}T, bQ (I) = {b_LQ (I) g eeey bN’Q (ZL’)}T .

The desired result follows, i.e.

sup E2(z) & (z) <C Ao &q () _o, [logn ‘ 0
z€la,b] | On,2 (33') On,2 (i[)) Cc— An,2 z€la,b] | On,2 (l‘) n
PRrRoOOF OF PROPOSITION 3.2. This follows from Lemma B.10 and Lemma B.11. [l

PrROOF OF THEOREM 2. Now (3.5) implies that

Vil log (N +1) [t () = m (2)]|e = Op { /ah*[og (N + 1) } = 0, (1) .

Applying (3.6) in Proposition 3.2

lim inf P [m () € 1hs () £ 0ps (x) {2log (N + 1) — 2loga}'/? vz € [a, b]}

n—oo

= liminf P | sup 0,4 (z) |2 (x)+me (z)—m (z)| < {2log (N + 1)—2log a}lﬂ

no lagla)
= liminf P | sup =2 (2) < {2log (N +1) — 2loga}"?| > 1 —«. O
n—00 _ace[a,b] On2 (l’)
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