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IMPACT ANALYSIS FOR SPATIAL

AUTOREGRESSIVE MODELS:

WITH APPLICATION TO AIR POLLUTION IN CHINA

Hsuan-Yu Chang and Jihai Yu

Chung-Hua Institution for Economic Research and Peking University

Abstract: We investigate impact analysis and its asymptotic inference for spatial

autoregressive models. We propose using the delta method, which enables us to

obtain the dispersion in an explicit form. In addition, we provide an element-wise

impact analysis. We first study the cross-sectional case, where various impacts are

introduced to measure the interaction and feedback effects in a space dimension. We

then study the spatial dynamic panel case, with simultaneous spatial and dynamic

feedback in the effects. Monte Carlo results show that the proposed impact analysis

has satisfactory finite-sample properties. Finally, we apply the impact analysis to

investigate how meteorological factors and air pollutants affect PM2.5 in Chinese

cities.
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autoregression.

1. Introduction

Considerable progress has been made in the past decade on the theoretical

aspects of spatial econometrics. In cross-sectional spatial econometrics, the spa-

tial autoregressive (SAR) model of Cliff and Ord (1973) has received the most

attention. Various estimation methods and their asymptotic analysis have been

developed, such as the 2SLS of Kelejian and Prucha (1998), the quasi-maximum

likelihood (QML) of Lee (2004), and the generalized method of moments (GMM)

of Lee (2007). For spatial panel data, fixed effects and random effects models can

be found in Baltagi, Song and Koh (2003); Baltagi et al. (2007), Kapoor, Kelejian

and Prucha (2007), and Lee and Yu (2010b, 2012), among others. When there is a

dynamic feature in the model, Elhorst (2005) and Su and Yang (2015) investigate

dynamic panel data with spatial disturbances, and Yu, de Jong and Lee (2008,

2012) and Yu and Lee (2010) study stable spatial cointegration and unit root

models that include individual time lags, spatial time lags, and contemporaneous
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spatial lags.

However, few studies in the applied literature examine impact analyses in

spatial econometric models (LeSage and Pace (2009)), that is, how a change in

a single region associated with any given explanatory variable affects the region

itself (direct impact) and potentially indirectly affects all other regions (indirect

impact). The two most important theoretical works are LeSage and Pace (2009)

and Debarsy, Ertur and LeSage (2012). In a cross-sectional setting, LeSage and

Pace (2009) provide a computationally efficient simulation approach for produc-

ing empirical estimates of the dispersion for the scalar summary measures of the

impacts, and then make a pseudo-inference based on either an MLE or a Bayesian

MCMC estimation. Debarsy, Ertur and LeSage (2012) extend the aforementioned

approach to spatial dynamic panel data (SDPD) models. The contribution of this

study is to establish the asymptotic properties of these impact estimates based

on the delta method, which enables researchers to explicitly obtain the vari-

ance matrix and is useful for empirical applications. In addition, we provide an

element-wise impact analysis to evaluate the unit-to-unit impact and to conduct

a corresponding inference. The asymptotic distribution of the effects using the

delta method has the advantage of an explicit variance formula for this dispersion

of the scalar impact, but it can be computationally burdensome to compute the

matrix inverse when the matrix dimension is very large. On the other hand, the

MCMC estimation of the dispersion in LeSage and Pace (2009) and Debarsy,

Ertur and LeSage (2012) does not require a matrix inversion computation, but

might produce posterior distributions that are heavily influenced by the priors.

The aim of this study is to provide a unified asymptotic inference method for

the estimated effects in various types of spatial econometric models, in both cross-

sectional and panel data settings, which could be helpful for applied researchers

and policy makers. Section 2 investigates the impact analysis for cross-sectional

SAR models. Section 3 covers spatial panel data models, where the SDPD case

is the main focus. Section 4 provides Monte Carlo results to evaluate the finite-

sample performance of the impact analysis. Section 5 investigates how various

pollutants and meteorological factors affect air pollution in Chinese cities. Section

6 concludes the paper. To conserve space, some algebra and additional simulation

and empirical results are provided in the Supplementary Material.

2. Impact Analysis for SAR Models

Let us first consider the following cross-sectional SAR model:
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Yn = α0ln + λ0WnYn +

H∑
k=1

βk0Xnk +

K∑
k=1

δk0WnXnk + εn, (2.1)

where Yn is an n × 1 vector of the dependent variable, ln is an n × 1 vector of

ones, Wn is the so-called spatial weights matrix or interaction matrix, WnYn is

the spatially lagged dependent variable, and λ0 is the scalar spatial autoregressive

coefficient. Here, Xnk is an n × 1 vector of exogenous variables, and βk0 is the

corresponding scalar coefficient. Compared with the standard SAR model in Cliff

and Ord (1973) and LeSage and Pace (2009), we allow exogenous regressors to

have additional cross-neighbor effects, the so-called spatial Durbin terms, where

the corresponding scalar coefficients are δk0. In contrast to the classical linear

model, it is straightforward to see that βk0 and δk0 cannot be interpreted as im-

pact coefficients, because the model is in an implicit form. To express the partial

derivatives, we first compute the reduced form of the model. In equilibrium,

assuming that In − λ0Wn is invertible, we have

Yn = α0(In − λ0Wn)−1ln + (In − λ0Wn)−1

(
H∑
k=1

βk0Xnk +

K∑
k=1

δk0WnXnk + εn

)
.

2.1. Definition of impacts

Following LeSage and Pace (2009), we take the partial derivatives of Yn
relative to Xnk, assuming that Wn does not depend on Xnk, for all k:

∂Yn
∂X ′nk

= (In − λ0Wn)−1Cnk = (In + λ0Wn + λ2W 2
n + · · · )Cnk,

where

Cnk =


βk0In + δk0Wn, for 1 ≤ k ≤ min(K,H)

βk0In, for K + 1 ≤ k ≤ H if H > K

δk0Wn, for H + 1 ≤ k ≤ K if H < K

(2.2)

This expression differs from that of a simple cross-sectional linear regression

model if there is no interaction (i.e., λ0 = 0, δ0 = 0), which would be βk0In.

The matrix (In − λ0Wn)−1 is the so-called global spatial multiplier or global

interaction multiplier. Note that if Wn is row-normalized, then

(In − λ0Wn)−1ln = (In + λ0Wn + λ2
0W

2
n + · · · )ln =

1

1− λ0
ln.

Define Rnk = (In − λ0Wn)−1Cnk as the impact matrix associated with the kth
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explanatory variable, with the following elements:

Rnk =


r11,k r12,k · · · r1n,k

r21,k r22,k · · · r2n,k
...

...
. . .

...

rn1,k rn2,k · · · rnn,k

 6= βk0In.

In contrast to the classical linear regression model, the diagonal elements of this

matrix are different from each other, the off-diagonal elements are non-null, and

the matrix is not symmetric.

The partial derivatives of yi relative to xik or xjk, for i, j = 1, . . . , n, j 6= i,

are then
∂yi
∂xik

= rii,k and
∂yi
∂xjk

= rij,k.

In general, rii,k 6= rjj,k and rij,k 6= rji,k, for i, j = 1, . . . , n, j 6= i. The diagonal

elements of this matrix, diag{Rnk}, represent the direct impacts, including feed-

back effects, where individuals i and j affect each other, and there are also longer

paths that can go from individual i to j to k and back to i. The feedback effects

corresponding to diag{Rnk} − βk0In are inherently heterogenous in the presence

of spatial autocorrelation, owing to differentiated interaction terms in the Wn

matrix. Note that the feedback effects are zero if there are no spatial effects.

The magnitudes of these direct effects depend on (1) the degree of interaction

between individuals, which is governed by the Wn matrix, (2) the parameter λ0,

measuring the strength of the spatial correlation between individuals, and (3) the

parameters βk0 and δk0.

Finally, the off-diagonal elements of the impact matrix Rnk − diag{Rnk}
represent indirect impacts. Note that because rij,k 6= rji,k, the impact of a unit

change in the kth explanatory variable for individual j on the dependent variable

for individual i will, in general, be different from that of a unit change in the kth

explanatory variable for individual i on the dependent variable for individual j.

Moreover, considering column j of matrix Rnk, note that a variation ∆xjk in

the kth explanatory variable for individual j affects each individual in the sample

differently. The sum of the jth column yields the total impact of a change of xjk
for individual j on all n individuals. The total impacts, direct and indirect, from

each of the individuals j = 1, . . . , n are then collected in the row vector l′nRnk.

The total indirect impacts from each unit j = 1, . . . , n are usefully collected in

the row vector l′n(Rnk − diag{Rnk}).
Considering row i of matrix Rnk, note that an identical variation ∆Xk in the
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kth explanatory variable across all individuals of the sample affects individual

i differently. The sum across the ith row represents the total impact on yi of

an identical change in xjk (j = 1, . . . , n) across all n individuals in the sample.

The total impacts, direct and indirect, on each individual i = 1, . . . , n are then

collected in the column vector Rnkln.

For notational convenience, we denote θ0 = (λ0, β
′
0, δ
′
0)′, where β0 = (β10, . . . ,

βH0)′ and δ0 = (δ10, . . . , δK0)′, and Rnk(θ) = (In − λWn)−1Cnk(θ), where Cnk(θ)

is from (2.2). When we are interested in an element-wise analysis, the subject of

interest is

rij,k(θ) = e′niRnk(θ)enj , (2.3)

where eni = (0, . . . , 0, 1, 0, . . . , 0)′, with one in its ith position. The (i, j) element

of Rnk(θ) measures how a one-unit change in the jth unit of Xnk influences the

ith unit in Yn.

Here, summary scalar measures for the direct, indirect, feedback, and total

effects are useful, given the complexity and amount of information available in

such n× n impact matrices. The average direct impact is defined as

fk,direct(θ) ≡ n−1trRnk(θ), (2.4)

and the average total impact is defined as

fk,total(θ) ≡ n−1l′nRnk(θ)ln. (2.5)

Finally, the average indirect impact is, by definition, the difference between the

average total impact and the average direct impact:

fk,indirect(θ) ≡ n−1l′nRnk(θ)ln − n−1trRnk(θ). (2.6)

We may also be interested in the average feedback effect:

fk,feedback(θ) ≡ n−1trRnk(θ)− βk, (2.7)

where (1/n)tr(Cnk) = βk0, because tr(Wn) = 0. The feedback effect can be

applied to test the significance of feedback loops, where observation i affects

observation j via a longer path that might go from observation i to j to k and

back to i.

2.2. Estimation and inference of impacts

Assume that we have already obtained the estimate θ̂n and its asymptotic

distribution such that
√
n(θ̂n− θ0)

d→ N(0, limn→∞Σθ0,n), where limn→∞Σθ0,n is
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nonsingular. For the cross-sectional SAR model in (2.1), the estimate θ̂n can be

obtained using a 2SLS, ML, or GMM estimation (see Kelejian and Prucha (1998),

Lee (2004), and Lee (2007), respectively). We wish to use the distributions

of rij,k(θ̂n), fk,direct(θ̂n), fk,total(θ̂n), fk,indirect(θ̂n), and fk,feedback(θ̂n) to make

statistical inferences for these impact estimates. In contrast to LeSage and Pace

(2009), we derive the asymptotic distribution of these impacts and provide an

explicit variance formula for empirical researchers.

If we are interested in how a one-unit change in the jth unit of Xnk influences

the ith unit in Yn, we can investigate the estimation and statistical inference of

(2.3). For rij,k(θ0) = e′niRnk(θ0)enj , we might obtain a superconsistent estimate,

because some elements of Rnk(θ0) will be of a smaller order. Because Rnk(θ0) is

row and column sum bounded, some elements must have a smaller order mag-

nitude; otherwise, the row or column sums of Rnk(θ0) would not be bounded.

However, we can still perform a statistical inference, regardless of the rate of con-

vergence for rij,k(θ̂n). Similarly to the analysis above, from the Taylor expansion,

we have rij,k(θ̂n) = rij,k(θ0) + ∂rij,k(θ̄n)/∂θ′(θ̂n − θ0), where θ̄n lies between θ̂n
and θ0, and ∂rij,k(θn)/∂θ′ has the form shown in (S1.1) in the Supplementary

Material. Here, ∂rij,k(θ̄n)/∂θ′ may be of a smaller order magnitude. Assume that

Υ(∂rij,k(θ̄n)/∂θ − ∂rij,k(θ0)/∂θ) = op(1) and Υ(∂rij,k(θ0)/∂θ) = O(1), where Υ

can be of a higher order magnitude so that ∂rij,k(θ̄n)/∂θ − ∂rij,k(θ0)/∂θ can be

superconsistent. As Υ(∂rij,k(θ̄n)/∂θ − ∂rij,k(θ0)/∂θ)
p→ 0,

Υ
√
n(rij,k(θ̂n)− rij,k(θ0))

d→ N

(
0, lim
n→∞

(
Υ2∂rij,k(θ0)

∂θ′
Σθ0,n

∂rij,k(θ0)

∂θ

))
. (2.8)

To test whether rij,k(θ̂n) is significantly different from zero, we construct a

z-test from (2.8). Here, although Υ is unknown, by using z ≡ (rij,k(θ̂n) −
rij,k(θ0))/

√
(1/n)(∂rij,k(θ0)/∂θ′)Σθ0,n(∂rij,k(θ0)/∂θ) = Υ

√
n(rij,k(θ̂n)− rij,k(θ0))

/
√

Υ2(∂rij,k(θ0)/∂θ′)Σθ0,n(∂rij,k(θ0)/∂θ)
d→ N(0, 1), the construction of z does

not depend on Υ. The above analysis can be extended to test the equivalence of

two element-wise impacts; see the Supplementary Material.

Using the Taylor expansion fk,direct(θ̂n) = fk,direct(θ0) + (∂fk,direct(θ̄n)/∂θ′)

(θ̂n − θ0), where θ̄n lies between θ̂n and θ0, we have

√
n(fk,direct(θ̂n)− fk,direct(θ0))

d→ N

(
0, lim
n→∞

(
∂fk,direct(θ0)

∂θ′
Σθ0,n

∂fk,direct(θ0)

∂θ

))
, (2.9)

where ∂fk,direct(θ0)/∂θ can be estimated from (S1.2) in the Supplementary Ma-
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terial and Σθ0,n is obtained from the corresponding 2SLS, ML, or GMM esti-

mate. Similarly, using ∂fk,total(θ)/∂θ in (S1.3) in the Supplementary Material

and ∂fk,indirect(θ)/∂θ = ∂fk,total(θ)/∂θ − ∂fk,direct(θ)/∂θ, we have

√
n(fk,total(θ̂n)− fk,total(θ0))

d→ N

(
0, lim
n→∞

(
∂fk,total(θ0)

∂θ′
Σθ0,n

∂fk,total(θ0)

∂θ

))
, and (2.10)

√
n(fk,indirect(θ̂n)− fk,indirect(θ0))

d→ N

(
0, lim
n→∞

(
∂fk,indirect(θ0)

∂θ′
Σθ0,n

∂fk,indirect(θ0)

∂θ

))
. (2.11)

For the average feedback effect in (2.7), we have ∂fk,feedback(θ)/∂θ = (∂fk,direct(θ)

/∂θ) −
(
0, 1,0(H−1)×1,0K×1

)′
, because the diagonal elements of Wn in typical

empirical applications are specified to be zero . Thus,

√
n(fk,feedback(θ̂n)− fk,feedback(θ0))

d→ N

(
0, lim
n→∞

(
∂fk,feedback(θ0)

∂θ′
Σθ0,n

∂fk,feedback(θ0)

∂θ

))
. (2.12)

Proposition 1. Under some regularity conditions, the estimates for the impacts

in (2.3)–(2.7) are consistent and asymptotically normally distributed, as in (2.8)–

(2.12)). Specifically, the estimates for the element-wise effects, direct effects, total

effects, indirect effects, and feedback effect are given in (2.8)–(2.12), respectively..

Note that the required regularity conditions are the assumptions used to

derive the asymptotic properties of the relevant estimators. Therefore, we might

have different conditions, depending on the estimators we use. For example, the

GMM and ML estimators have stronger conditions than the 2SLS estimators

in the boundedness of the higher moments of disturbances. See Kelejian and

Prucha (1998), Lee (2004), and Lee (2007) for the conditions for deriving the

2SLSE, MLE, and GMME, respectively.

If Wn is row normalized, we have (1/n)l′n[Rnk(θ0)]ln = (βk0 + δk0)/(1− λ0)

for 1 ≤ k ≤ min(K,H), (1/n)l′n[Rnk(θ0)]ln = βk0/(1− λ0) for K + 1 ≤ k ≤ H if

H > K, and (1/n)l′n[Rnk(θ0)]ln = δk0/(1− λ0) for H+1 ≤ k ≤ K if H < K. For

the empirical procedure, we first obtain a consistent and asymptotically normally

distributed estimate θ̂n. Using its variance matrix Σθ0,n, we can estimate and

make statistical inferences for the impact analyses in (2.8)–(2.12).
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3. Impact Analysis for Spatial Panel Models

The analysis in Section 2 can be generalized to panel data models:

Ynt = λ0WnYnt +

H∑
k=1

βk0Xnk,t +

K∑
k=1

δk0WnXnk,t + cn0 + αt0ln + Vnt, (3.1)

where Ynt = (y1t, y2t, . . . , ynt)
′ and Vnt = (v1t, v2t, . . . , vnt)

′ are n × 1 column

vectors, and vit are independent and identically (i.i.d.) across i and t with zero

mean. Furthermore, the spatial weights matrix Wn is nonstochastic, Xnk,t is an

n×1 vector of nonstochastic regressors, cn0 is an n×1 column vector of individual

effects, and αt0 is the time effect. Presuming that Sn ≡ (In−λ0Wn) is invertible,

(3.1) can be rewritten as

Ynt = S−1
n

(
H∑
k=1

βk0Xnk,t +

K∑
k=1

δk0WnXnk,t

)
+ S−1

n (cn0 + αt0ln + Vnt) .

Thus, a change in Xnt affects the dependent variable for the current period (Ynt),

but not for other periods. Therefore, the analysis in Section 2 for the cross-

sectional model can be extended straightforwardly to static spatial panel data

models. However, when we have dynamic features, changes in the exogenous

variables affects both current and future periods. In the following, we focus on

an impact analysis for an SDPD model.

The SDPD model is

Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1 (3.2)

+

H∑
k=1

βk0Xnk,t +

K∑
k=1

δk0WnXnk,t + cn0 + αt0ln + Vnt,

where γ0 is the dynamic effect coefficient and ρ0 is the spatial-dynamic coefficient.

For the DGP, we assume that the initial values in Yn0 are observable. When

T is large, the role of the initial observation Yn0 is not important. For the ML

estimation, we need n/T 3 → 0 for the bias-corrected estimates to work. However,

when T is small, the MLE is inconsistent and the GMM estimation requires that

the initial observation has some boundedness feature. The reduced form of (3.2)

is

Ynt = AnYn,t−1 + S−1
n

(
H∑
k=1

βk0Xnk,t +

K∑
k=1

δk0WnXnk,t + cn0 + αt0ln + Vnt

)
,
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where An = S−1
n (γ0In + ρ0Wn). Assuming that the process is stable, so that

infinite sums are well defined, by continuous substitution,

Ynt =

∞∑
h=0

AhnS
−1
n

(
H∑
k=1

βk0Xnk,t−h +

K∑
k=1

δk0WnXnk,t−h + cn0 + αt−h,0ln + Vn,t−h

)
.

(3.3)

Equation (3.3) expresses the model in terms of a space-time multiplier

(Anselin, LeGallo and Jayet (2008)) specifying how the joint determination of

the dependent variables is a function of both the spatial and the time lags of the

explanatory variables and disturbances at all locations of the spatial units. This

equation is useful for calculating the effects of changes of exogenous variables on

outcomes over time and across spatial units.

3.1. Definition of impacts for SDPD model

For analytical purposes, we assume that the time effects have zero means, so

that E(αt0) = 0. The regressors Xnt and weights matrix Wn are assumed to be

given. From (3.3), we have

E(Ynt) =

∞∑
h=0

AhnS
−1
n

(
H∑
k=1

βk0Xnk,t−h +

K∑
k=1

δk0WnXnk,t−h + cn0

)
.

As in LeSage and Pace (2009), we may be interested in the impact of changing

the regressor by the same amount across all spatial units at a time. In a more gen-

eral space-time setting, we consider changing the regressor by the same amount

across all spatial units in some consecutive periods, for instance, from period t1
to t2, where t1 ≤ t2 ≤ t. Hence, we have ∂E(Ynt)/∂Xk =

∑t−t1
h=t−t2 A

h
nS
−1
n Cnk,

where Cnk is defined in (2.2).

By denoting θ = (λ, γ, ρ, β′, δ′)′, the element-wise impact is

rij,kt(θ0) ≡ ∂[E(Ynt)]i
∂xkj,t1

=

t−t1∑
h=t−t2

[
e′niA

h
nS
−1
n Cnkenj

]
. (3.4)

In addition, the average direct impact fkt,direct(θ0) ≡ (1/n)tr [∂E(Ynt)/∂Xk] is

fkt,direct(θ0) =

t−t1∑
h=t−t2

1

n
tr
[
AhnS

−1
n Cnk

]
. (3.5)

Thus, marginal changes in a dynamic model also affect future periods. Here,

AhnS
−1
n Cnk provides the space-time multiplier of Xn,t−h at time period t − h on
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h-periods-ahead outcome Ynt, and (3.5) summarizes the average direct impact

of changing xk for all spatial units in the consecutive periods t1 to t2 on the

expected outcomes Ynt at time t. Similarly, we define the average total effect,

average indirect effect, and average feedback effect as follows:

fkt,total(θ0) =

t−t1∑
h=t−t2

1

n

[
l′nA

h
nS
−1
n Cnkln

]
, (3.6)

fkt,indirect(θ0) =

t−t1∑
h=t−t2

(
1

n

[
l′nA

h
nS
−1
n Cnkln

]
− 1

n
tr
[
AhnS

−1
n Cnk

])
, (3.7)

and

fkt,feedback(θ0) ≡
t−t1∑

h=t−t2

1

n
tr
[
AhnS

−1
n Cnk

]
−

t−t1∑
h=t−t2

γhβk0, (3.8)

respectively.

Instead of considering a change in the regressors in consecutive periods t1
to t2, where t1 ≤ t2 ≤ t, we might only be interested in how a current change

at time t influences the future outcome at (t + τ), where we can have either a

one-time change only at t, or a continuous change from t to t + τ . Here, the

average direct effect is (1/n)tr
[
AτnS

−1
n Cnk

]
and

∑τ
h=0(1/n)tr

[
AhnS

−1
n Cnk

]
for

the marginal and accumulative cases, respectively. Debarsy, Ertur and LeSage

(2012) study these cases to determine how a permanent change in Xnk,t affects

the future horizons (accumulatively). We investigate both the marginal and the

accumulative impacts in our Monte Carlo analysis in Section 4.

For the special case of t1 = t2 = t (so that we have a change in x only at

period t), the average total impact on the expected outcome E(Ynt) is simply

(1/n)l′nS
−1
n Cnkln, which is the same as the cross-sectional SAR model. When

the weights matrix Wn is row normalized, we have some interesting implications

for the effects. Under a row normalization of Wn, we have
∑t−t1

h=t−t2(1/n)l′nA
h
nS
−1
n

Cnkln = (βk0 + δk0)/(1− λ0)
∑t−t1

h=t−t2((γ0 + ρ0)/(1− λ0))h. Note that if we have

changes in xk for all times from the infinite past to t, that is, t1 = −∞ and t = t2,

the total impact is (βk0 + δk0)/(1− (λ0 + γ0 + ρ0)).

3.2. Estimation and inference of impacts for SDPD model

The impacts described in (3.4)–(3.8) are nonstochastic and depend on the

true parameter value. If we replace those unknown parameters with estimates,

we have an estimate of the expectation, and its variance can be obtained using

the delta method. Assume that we have initial estimate θ̂nT available so that
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√
nT (θ̂nT − θ0)

d→ N(0,Σθ0,nT ).

For the element-wise analysis, assume that Υ(∂rij,kt(θ̂n)/∂θ−∂rij,kt(θ0)/∂θ)

= op(1) and Υ(∂rij,kt(θ0)/∂θ) = O(1), where Υ can be of higher-order magnitude

so that ∂rij,kt(θ̂nT )/∂θ − ∂rij,kt(θ0)/∂θ can be superconsistent. We have

Υ
√
nT (rij,kt(θ̂nT )− rij,kt(θ0))

d→ N

(
0, lim
n,T→∞

(
Υ2∂rij,kt(θ0)

∂θ′
Σθ0,nT

∂rij,kt(θ0)

∂θ

))
, (3.9)

where ∂rij,kt(θ0)/∂θ′ can be found in the Supplementary Material. Similarly

to the cross-sectional case, the statistical inference of rij,kt does not depend on

Υ. The above analysis can be extended to test the equivalence of element-wise

impacts in different periods, which is provided in the Supplementary Material.

Similarly,

√
nT (fkt,direct(θ̂nT )− fkt,direct(θ0))

d→ N

(
0, lim
n,T→∞

(
∂fkt,direct(θ0)

∂θ′
Σθ0,nT

∂fkt,direct(θ0)

∂θ

))
, (3.10)

√
nT (fkt,total(θ̂nT )− fkt,total(θ0))

d→ N

(
0, lim
n,T→∞

(
∂fkt,total(θ0)

∂θ′
Σθ0,nT

∂fkt,total(θ0)

∂θ

))
, (3.11)

√
nT (fkt,indirect(θ̂nT )− fkt,indirect(θ0))

d→ N

(
0, lim
n,T→∞

(
∂fkt,indirect(θ0)

∂θ′
Σθ0,nT

∂fkt,indirect(θ0)

∂θ

))
, (3.12)

and √
nT (fkt,feedback(θ̂nT )− fkt,feedback(θ0))

d→ N

(
0, lim
n,T→∞

(
∂fkt,feedback(θ0)

∂θ′
Σθ0,nT

∂fkt,feedback(θ0)

∂θ

))
, (3.13)

where ∂fkt,direct(θ0)/∂θ′, ∂fkt,total(θ0)/∂θ′, ∂fkt,indirect(θ0)/∂θ′, and ∂fkt,feedback
(θ0)/∂θ′ can be found in the Supplementary Material.

Proposition 2. Under some regularity conditions, the estimates for the impacts

in (3.4)–(3.8) are consistent and asymptotically normally distributed, as in (3.9)–

(3.13). Specifically, the estimate for the element-wise effects is in (3.9), the esti-

mate for the direct effects is specified in (3.10), the estimate for the total effects

is in (3.11), the estimate for the indirect effects is in (3.12), and the estimate for

the feedback effect is in (3.13).
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Similarly to Proposition 1, these regularity conditions correspond to the as-

sumptions used to derive the asymptotic properties of the relevant estimators.

4. Monte Carlo

4.1. Impacts for cross-sectional SAR

We first investigate the cross-sectional case. The DGP is

Yn = α0ln + λ0WnYn +Xn,1β01 +Xn,2β02 +WnXn,1δ01 + εn, (4.1)

where Xn,1 and Xn,2 are two independently generated standard normal (vector)

variables and are i.i.d. for all i. Moreover, εni are drawn independently from the

standard normal distribution. We choose n = 49 and n = 400 as our sample size.

The spatial weights matrix we use is the rook matrix based on an r board (so that

n = r2). The rook matrix represents a square tessellation with a connectivity

of four for the inner fields on the chessboard, and two and three for the corner

and border fields, respectively. Most empirically observed regional structures in

spatial econometrics are made up of regions with connectivity close to the range of

the rook tessellation. Given a rook matrix, we normalize it by its maximum row

sum, and obtain the corresponding ML estimator of λ0. The impact estimates

are then based on the MLE. We compute the average direct, indirect, total, and

feedback effects for a unit change in Xn,1; we also compute these effects for a

change in Xn,2. In addition, we report the element-wise impact of how a change

of the j = 2 or j = 5 units in Xn,1 affects the i = 1 unit in Yn. Note that

because of the structure of a rook matrix, the (1,2) element of Wn is nonzero,

and its (1,5) element is zero. This choice of pair will help us to investigate

the magnitude of a pairwise impact from a directly connected neighbor and an

indirectly connected neighbor. The number of repetitions is 1,000 for each case.

We report the mean (Mean), theoretical standard deviation (T-SD), empirical

standard deviation (E-SD), and coverage probability (CP) at the 5% significance

level. The true parameter λ0 takes the value 0.5, and β01, β02, and δ01 are all set

to 1.

Table 1 shows that various impact estimates are close to the true values.

The estimate of the total impact is larger than the direct effect, as expected. We

observe that the variance of the total impact is larger than that of the direct

impact, because ∂fk,direct(θ)/∂λ = (1/n)tr(S−1
n (λ)Gn(λ)Cnk(θ)) is smaller than

∂fk,total(θ)/∂λ = (1/n)l′nS
−1
n (λ)Gn(λ)Cnk(θ)ln, and so are ∂fk,direct(θ)/∂β and

∂fk,total(θ)/∂β. The T-SD is similar to the E-SD, which implies that a statistical
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Table 1. Impact Analysis for SAR Model.

Normalized rook matrix Normalized distance matrix with φd= 10

n = 49 direct indirect total feedback (1,2) (1,5) direct indirect total feedback (1,2) (1,5)

Xn,1 Impact 0 1.1991 2.4086 3.6076 0.1991 0.4083 0.0020 Impact 0 1.1796 2.1393 3.3189 0.1796 0.4024 0.0010

Mean 1.2033 2.3415 3.5448 0.1802 0.4070 0.0021 Mean 1.1854 2.0941 3.2795 0.1636 0.4020 0.0011

T-SD 0.1610 0.6755 0.7572 0.0734 0.0887 0.0018 T-SD 0.1596 0.5987 0.6801 0.0685 0.0917 0.0010

E-SD 0.1739 0.6953 0.7832 0.0747 0.0944 0.0021 E-SD 0.1725 0.6200 0.7092 0.0706 0.0970 0.0011

CP 0.9350 0.9030 0.9140 0.9030 0.9230 0.7890 CP 0.9310 0.9140 0.9080 0.8880 0.9220 0.7860

Std1 0.0303 Std2 0.1138 Std1 0.0350 Std2 0.1091

n = 400 direct indirect total feedback (1,2) (1,5) direct indirect total feedback (1,2) (1,5)

Xn,1 Impact 0 1.2129 2.6582 3.8712 0.2129 0.4083 0.0010 Impact 0 1.2022 2.5506 3.7529 0.2022 0.4024 0.0010

Mean 1.2139 2.6480 3.8619 0.2103 0.4089 0.0010 Mean 1.2033 2.5415 3.7448 0.1996 0.4034 0.0010

T-SD 0.0557 0.2450 0.2718 0.0251 0.0287 0.0003 T-SD 0.0554 0.2354 0.2621 0.0243 0.0290 0.0003

E-SD 0.0554 0.2461 0.2727 0.0254 0.0286 0.0003 E-SD 0.0552 0.2366 0.2633 0.0246 0.0287 0.0003

CP 0.9550 0.9440 0.9480 0.9460 0.9460 0.9130 CP 0.9530 0.9450 0.9490 0.9380 0.9510 0.9030

Std1 0.0195 Std2 0.0447 Std1 0.0252 Std2 0.0436

Note: 1. Std1 is the standard deviation of the diagonal elements, and Std2 is that of the off-diagonal
elements. 2. The weights matrix is normalized by its maximum row sum.

inference based on the T-SD would be reliable. This is confirmed from the CP

values, which are close to the 95% theoretical value. When n is larger, the T-SD

and E-SD are smaller, which is consistent with the theoretical prediction for a

larger sample size; also, CPs would improve under a larger n. Furthermore, the

variation of the off-diagonal elements in the impact matrix is larger than that of

the diagonal elements in the impact matrix.

In addition to using a sparse weights matrix, such as the rook matrix, we

investigate the impact analysis under a less sparse weights matrix. We construct

Euclidean distances for the units on a regular lattice (dij =
√

(yi−yj)2+(xi−xj)2,

where (xi, yi) are the coordinates of the ith unit), and then use an exponential

decay function to construct the weights (wij = e−φddij with φd = 10). The results

are reported in Table 1, and are similar to those for the rook matrix. However,

the variation of the diagonal elements and off-diagonal elements in the impact

matrix are larger in the distance weights matrix setting.

To investigate how the variance of the disturbances and the sparseness of

Wn affect the performance of the impact coefficients, we increase the variance

of the disturbances to four, and change φd from 10 to 5 and 1. With a larger

variance of disturbances, the means of estimates are basically the same, but the

E-SD becomes larger. As a result, the CPs become slightly smaller. Additionally,

under a less sparse spatial weights matrix (φd is smaller), the CPs are slightly

smaller, on average, whereas the biases and SDs are similar. Note that under

a less sparse weights matrix, the variances of the elements in the direct and
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Table 2. Direct and Indirect Effects for Spatial Dynamic Panel

Direct Effect Marginal impacts Accumulative impacts

Impact 0 Mean T-SD E-SD CP Impact 0 Mean T-SD E-SD CP

Xnt,1 τ=0 1.0590 1.0571 0.0241 0.0243 0.955 1.0590 1.0571 0.0241 0.0243 0.955

1 0.2976 0.2969 0.0163 0.0172 0.944 1.3566 1.3540 0.0344 0.0354 0.945

2 0.0974 0.0979 0.0098 0.0103 0.938 1.4540 1.4519 0.0412 0.0426 0.941

3 0.0352 0.0358 0.0054 0.0057 0.934 1.4892 1.4877 0.0451 0.0467 0.941

4 0.0136 0.0140 0.0029 0.0031 0.932 1.5028 1.5017 0.0472 0.0488 0.944

5 0.0055 0.0058 0.0015 0.0016 0.931 1.5083 1.5075 0.0482 0.0500 0.945

6 0.0023 0.0025 0.0008 0.0009 0.930 1.5106 1.5100 0.0488 0.0506 0.944

7 0.0010 0.0011 0.0004 0.0005 0.924 1.5116 1.5111 0.0491 0.0509 0.944

8 0.0004 0.0005 0.0002 0.0002 0.919 1.5120 1.5116 0.0492 0.0510 0.944

9 0.0002 0.0002 0.0001 0.0001 0.912 1.5122 1.5118 0.0493 0.0511 0.945

10 0.0001 0.0001 0.0001 0.0001 0.908 1.5123 1.5119 0.0493 0.0511 0.945

Indirect Effect Marginal impacts Accumulative impacts

Impact 0 Mean T-SD E-SD CP Impact 0 Mean T-SD E-SD CP

Xnt,1 τ=0 1.3737 1.3774 0.0644 0.0679 0.932 1.3737 1.3774 0.0644 0.0679 0.932

1 0.8910 0.8992 0.0724 0.0804 0.926 2.2647 2.2766 0.1197 0.1323 0.924

2 0.4849 0.4938 0.0653 0.0719 0.931 2.7497 2.7704 0.1755 0.1956 0.926

3 0.2507 0.2587 0.0483 0.0532 0.938 3.0003 3.0290 0.2187 0.2440 0.929

4 0.1269 0.1333 0.0323 0.0357 0.933 3.1273 3.1623 0.2482 0.2770 0.932

5 0.0636 0.0683 0.0203 0.0227 0.934 3.1909 3.2306 0.2669 0.2980 0.930

6 0.0318 0.0349 0.0124 0.0140 0.923 3.2227 3.2655 0.2783 0.3109 0.932

7 0.0158 0.0179 0.0073 0.0084 0.920 3.2385 3.2834 0.2851 0.3186 0.932

8 0.0079 0.0092 0.0043 0.0050 0.912 3.2463 3.2926 0.2890 0.3232 0.932

9 0.0039 0.0047 0.0025 0.0029 0.910 3.2502 3.2973 0.2913 0.3258 0.932

10 0.0019 0.0024 0.0014 0.0017 0.903 3.2521 3.2998 0.2926 0.3273 0.932

indirect impact matrices are much smaller. Detailed results are provided in the

Supplementary Material.

4.2. Impacts for SDPD models

Here, we investigate the SDPD case, where the data are generated from

Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1

+Xnt,1β01 +Xnt,2β02 +WnXnt,1δ01 + cn0 + αt0ln + Vnt,

using θ0 = (0.2, 0.2, 1, 1, 1, 0.2)′, where θ0 = (γ0, ρ0, β
′
0, δ
′
0, λ0)′, and Xnt, cn0,

αT0 = (α1, α2, . . . , αT ), and Vnt are generated from independent standard nor-

mal distributions. We use a rook matrix as the spatial weights matrix. We

generate the spatial panel data with 20 + T periods, where the starting value is
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from N(0, In), and then take the last T periods as our sample. We use n = 196,

and the number of periods in the sample is T = 10. For each generated sample

observation, we calculate the bias-corrected ML estimator θ̂nT of Lee and Yu

(2010a), and construct the average and element-wise impact analysis. We inves-

tigate how a one-time change in Xnt affects future values of Yn,t+τ , for τ ≥ 0, and

how a permanent change in Xnt affects Yn,t+τ . We conduct the simulation under

different horizons so that τ ranges from 0 to 10, and repeat the simulation 1,000

times. We construct the T-SD, E-SD, and CP of these impact estimates. Table

2 contains the results for the direct and indirect effects. Results for the total,

feedback, and element-wise effects are provided in the Supplementary Material

in order to conserve space.

We find that the average impacts and element-wise impacts have good finite-

sample properties. The estimates are close to the true value, and the T-SD is

close to the E-SD. The CPs for n = 49 are lower than 95%, partially because of

the limited sample size, while the CPs perform much better when n = 400. The

CP of the impact for the (1,5) pair is small, mainly owing to scaling imprecision,

because the estimated value is very small.

The element-wise impacts have smaller values than the average impacts; how-

ever, a statistical inference based on element-wise impacts is still valid and has

satisfactory finite-sample performance. The downward trend of the CPs for the

marginal impacts in Table 2 is also the result of scaling imprecision, because the

marginal estimates become negligible over time. We see that the CPs for the

accumulative effects are still satisfactory. For all average and element-wise im-

pacts, the estimates are close to zero if the time horizon is 10. This means that

the influence of a current change in exogenous variables will have diminishing

impacts on the future of dependent variables, over time.

5. Impact Analysis of Air Pollution in China

China has been experiencing severe air pollution in recent years, with the

public becoming increasingly aware of this issue and paying more attention to

pollution indices, such as the air quality index (AQI). The overall AQI is based

on individual AQIs constructed from the pollutant concentrations of SO2, NO2,

PM10, PM2.5, O3, and CO, where the dominant AQI is reported for the location.

PM2.5 is defined as fine particulate matter with a diameter of 2.5 micrometers

or less, and can affect human health and cause many diseases, such as lung

morbidity and respiratory and cardiovascular diseases (see Schwartz and Neas

(2000); Pope III et.al. (2002)). Because the concentration of PM10 includes that
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of PM2.5 (PM2.5 accounts for 55% of PM10, on average, in our sample) and the

public is more concerned with PM2.5, we focus on PM2.5. Thus, it is important

to understand the key factors that contribute to PM2.5 in order for central and

local governments to adopt effective tools to reduce air pollution. For example,

China’s State Council targeted a 25% reduction of PM2.5 by 2017 from the 2012

level for Beijing, which resulted in considerably improved air quality for Beijing

in 2018.

Our aim is to identify the key factors that contribute to PM2.5 in Chinese

cities. Then, we conduct an intercity impact analysis to determine how these

factors affect air pollution in neighboring cities. Because the central government

of China is considering environmental factors when evaluating the performance

of local officials, intercity impact analyses would improve the design of promotion

schemes for local officials.

5.1. Estimation equation and data

We link the PM2.5 pollution level of a city to its meteorological factors and

neighboring cities. To consider secondary atmospheric chemical reactions, we also

include several air pollutants in the regression. Thus, the full regression equation

is

Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1 + cn0 + αt0ln + Vnt

+SO2,ntβ01 + NO2,ntβ02 + COntβ03 +Xntβ04,

where Ynt is the PM2.5 level, cn0 represents city fixed effects, αt0 represents time

fixed effects, and SO2,nt, NO2,nt, and COnt are air pollutants included to allow

for atmospheric chemical reactions. In addition, Xnt is a vector of meteorological

factors, including temperature (oC), relative humidity (%), wind speed in differ-

ent directions (meters per second), precipitation (millimeters), and atmospheric

pressure (hPa, i.e., 100 pascals). Because wind moving in different directions can

have heterogenous effects on air pollution, depending on the region (i.e., north or

south) and season (i.e., we define the winter heating season as the period when

the northern cities provide collective heating), we have four variables for each

wind direction. For example, the regressors associated with northeast winds are

NE-NorWint, NE-NorSumm, NE-SouWint, and NE-SouSumm, which correspond

to combinations of regions and seasons.

For the spatial weights matrix in our empirical analysis, the baseline is con-
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structed from the geographical distance dij , so that

wgij =
exp(−φddij)

maxi(
∑n

j=1 exp(−φddij))
, (5.1)

where 100dij is the distance between prefectural cities in kilometers and

maxi(
∑n

j=1 exp(−φddij)) is for row normalization. By searching over different φd,

we choose φd = 1.8, which maximizes the log likelihood of the estimation equa-

tion. Because the spillover effect of air pollution can be hindered by mountains,

we also construct a more realistic spatial weights matrix to consider mountain

barriers. To do so, we first obtain the difference in the average elevation of city

j and that of the mountains between city i and city j. Denote this difference

by hij . We then construct an index matrix Wm
n , with element wmij equal to zero

if hij > h∗, where h∗ is the critical value for the mountain barrier to hinder air

pollution spillover. The (i, j) element of the matrix W g◦m
n = W g

n ◦Wm
n is

wg◦mij =

{
wgij , if hij ≤ h∗

0, if hij > h∗
, (5.2)

where ◦ is the Hadamard product with an element-wise product. By searching

over φd and h∗ simultaneously to maximize the log-likelihood function, we specify

φd = 1.6 and h∗ = 1,400 meters.

Note that it is possible to combine time-varying wind features with time-

invariant geographical information to construct a time-varying spatial weights

matrix Wnt in the estimation. However, this combination might cause Wnt to be

endogenous. For example, if wind blows from city j to city i, the correspond-

ing spatial weight could be positive or negative, depending on whether the air

pollution level in city j is higher or lower than that in city i; this causes the cor-

responding spatial weight wij,t to be endogenous. We leave this issue for future

research.

We have daily air pollution data with meteorological facts for 363 prefectural-

level cities in China for 2016–2018. These data are from 1,630 weather stations

and 2,253 monitor stations for air pollution. The pollution data are from the

air-quality real-time release system of the Environmental Monitoring Station by

MEP of China. The meteorological data are from the China Meteorological Ad-

ministration. Although the PM2.5 data for prefectural cities are available from

2013 for 74 cities, they are not available for the majority of prefectural cities

until December 2014 (289 cities). From December 2015, nearly all prefectural

cities provide air pollution data (328 cities). Summary statistics for the air pol-
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lution and meteorological factors in 2016, 2017, and 2018 are provided in the

Supplementary Material. These data sources provide panel data with n = 336

and T = 1,096. We use the bias corrected MLE of Lee and Yu (2010a) to obtain

the estimates for the SDPD model, and use (3.9)–(3.13) to compute the vari-

ance matrices of the various impacts. Given the the sample size n = 336, the

computational burden is not an issue.

5.2. Empirical results

The results with W g
n are presented in Table 3. We see that the spatial effect

is significant, so that PM2.5 has a significant spillover effect on neighboring cities.

The dynamic coefficient of 0.498 indicates moderate state dependence, meaning

that PM2.5 today will partially affect air pollution tomorrow. We find that all

meteorological factors are significant, where temperature and humidity contribute

to air pollution, whereas precipitation and atmospheric pressure can alleviate it.

For wind speed from different directions, we see that winds from most directions

do not alleviate air pollution, except for the northeast wind for northern cities in

the winter, southeast wind for southern cities in the winter, and southwest wind

for cities in the south during the summer. We also see that the direct and indirect

effects are similar in our empirical results, indicating that a one-unit change in

xit has a similar impact on its final change in yit and the equilibrium change in

yjt.

In the element-wise impact analysis, we assess the impact of different cities

on Beijing, where wind plays an important role. The wind in Beijing comes

mainly from the northwest (NW) and southeast (SE), where the winter season

mainly has NW winds and the summer season has SE winds. Moreover, Beijing

has the Yan Mountains to its north and Taihang Mountains to its west. Because

the areas to the north and west of Beijing are less industrialized, and thus less

polluted, the NW wind usually helps to reduce air pollution in Beijing. However,

because the areas to the south and east of Beijing are more populated and have

more industries, SW winds usually accelerate air pollution, especially in winter.

Additionally, the mountains to the north and west block pollution diffusion in the

presence of a SE wind. We can investigate how northern cities, such as Zhangji-

akou and Chengde, and southern cities, such as Baoding, Langfang, Tianjin, and

Tangshan, affect the air pollution in Beijing (see Figure 1, where darker color

indicates higher altitude). Shenyang and Shanghai are far from Beijing and can

be used as a robustness check. From the right columns in Table 3, we see that

changes in the variables in neighboring cities affect the air pollution in Chinese

cities. Furthermore, wind speed plays an important role in meteorological factors.
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Table 3. Air Pollution Spillover and Impact Analysis with W g
n .

Coefficient Direct Indirect Total Feedback Zhangjiakou Chengde Baoding Shenyang

Yn,t−1 0.498

(0.001)

WnYnt 0.618

(0.006)

WnYn,t−1 −0.325

(0.004)

Temp 0.111 0.122 0.169 0.292 0.011 0.005 0.006 0.012 0.000

(0.009) (0.009) (0.013) (0.022) (0.001) (0.000) (0.000 (0.001) (0.000)

Humi 0.087 0.096 0.133 0.229 0.008 0.004 0.005 0.009 0.000

(0.002) (0.003) (0.004) (0.006) (0.000) (0.000) (0.000) (0.000) (0.000)

Prec −0.015 −0.017 −0.023 −0.040 −0.001 −0.001 −0.001 −0.002 0.000

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Pres −0.010 −0.011 −0.015 −0.025 −0.001 0.000 −0.001 −0.001 0.000

(0.005) (0.006) (0.008) (0.013) (0.000) (0.000) (0.000) (0.001) (0.000)

NE-NorWint 0.101 0.110 0.153 0.263 0.010 0.004 0.006 0.010 0.000

(0.078) (0.085) (0.118) (0.203) (0.007) (0.003) (0.004) (0.008) (0.000)

NW-NorWint 0.640 0.701 0.973 1.674 0.061 0.027 0.037 0.066 0.001

(0.072) (0.079) (0.110) (0.189) (0.007) (0.003) (0.004) (0.007) (0.000)

SE-NorWint −0.054 −0.059 −0.082 −0.141 −0.005 −0.002 −0.003 −0.006 0.000

(0.068) (0.074) (0.103) (0.178) (0.007) (0.003) (0.004) (0.007) (0.000)

SW-NorWint 0.199 0.218 0.303 0.521 0.019 0.008 0.011 0.021 0.000

(0.059) (0.065) (0.090) (0.154) (0.006) (0.003) (0.003) (0.006) (0.000)

NE-NorSumm 0.745 0.817 1.134 1.951 0.072 0.032 0.043 0.077 0.002

(0.079) (0.086) (0.120) (0.206) (0.008) (0.003) (0.005) (0.008) (0.000)

NW-NorSumm 0.243 0.266 0.369 0.635 0.023 0.010 0.014 0.025 0.001

(0.071) (0.078) (0.108) (0.186) (0.007) (0.003) (0.004) (0.007) (0.000)

SE-NorSumm 0.311 0.341 0.473 0.815 0.030 0.013 0.018 0.032 0.001

(0.061) (0.065) (0.091) (0.156) (0.006) (0.003) (0.003) (0.006) (0.000)

SW-NorSumm 0.647 0.709 0.984 1.693 0.062 0.028 0.037 0.067 0.001

(0.050) (0.055) (0.076) (0.131) (0.005) (0.002) (0.003) (0.005) (0.000)

NE-SouWint −0.638 −0.699 −0.971 −1.670 −0.061 −0.027 −0.037 −0.066 −0.001

(0.082) (0.090) (0.125) (0.214) (0.008) (0.003) (0.005) (0.009) (0.000)

NW-SouWint 0.290 0.317 0.441 0.758 0.028 0.012 0.017 0.030 0.001

(0.073) (0.080) (0.111) (0.190) (0.007) (0.003) (0.004) (0.008) (0.000)

SE-SouWint 0.092 0.100 0.139 0.240 0.009 0.004 0.005 0.010 0.000

(0.078) (0.085) (0.118) (0.204) (0.007) (0.003) (0.004) (0.008) (0.000)

SW-SouWint 0.524 0.574 0.797 1.371 0.050 0.022 0.030 0.054 0.001

(0.066) (0.072) (0.100) (0.173) (0.006) (0.003) (0.004) (0.007) (0.000)

NE-SouSumm 0.046 0.050 0.070 0.120 0.004 0.002 0.003 0.005 0.000

(0.078) (0.085) (0.119) (0.204) (0.007) (0.003) (0.004) (0.008) (0.000)

NW-SouSumm 0.052 0.057 0.079 0.135 0.005 0.002 0.003 0.005 0.000

(0.066) (0.073) (0.101) (0.174) (0.006) (0.003) (0.004) (0.007) (0.000)

SE-SouSumm 0.153 0.167 0.232 0.399 0.015 0.007 0.009 0.016 0.000

(0.069) (0.075) (0.104) (0.179) (0.007) (0.003) (0.004) (0.007) (0.000)

SW-SouSumm 0.571 0.626 0.870 1.496 0.055 0.024 0.033 0.059 0.001

(0.057) (0.063) (0.087) (0.150) (0.006) (0.002) (0.003) (0.006) (0.000)

SO2 0.094 0.103 0.143 0.246 0.009 0.004 0.005 0.010 0.000

(0.002) (0.002) (0.003) (0.005) (0.000) (0.000) (0.000) (0.000) (0.000)

NO2 0.427 0.468 0.650 1.118 0.041 0.018 0.024 0.044 0.001

(0.004) (0.003) (0.005) (0.008) (0.000) (0.000) (0.000) (0.000) (0.000)

CO 5.039 5.523 7.668 13.191 0.484 0.215 0.289 0.523 0.011

(0.063) (0.065) (0.099) (0.160) (0.006) (0.003) (0.004) (0.006) (0.000)

Note: 1. Standard deviations in parentheses. 2. Due to space limit, the element-wise impacts for
Langfang, Tianjin, Tangshan, and Shanghai are provided in the Supplementary Material.
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Figure 1. Map of Beijing and Its Neighboring Cities.

For the wind in Zhangjiakou, a one-unit increase in the wind speed from the NW

or SW increases the pollution level in Beijing by 0.001 and 0.028, respectively, in

summer. For other cities that are south of Beijing and are more polluted, these

effects are more prominent. For example, in Baoding, a one-unit increase in wind

speed from the NW or SW increases the PM2.5 in Beijing by 0.025 and 0.067,

respectively, in summer. In terms of air pollutants, we find that CO dominates

other air pollutants in terms of affecting neighboring cities. Similarly to the case

of wind speed, the cities to the south have a larger effect than those from the

north.

We also report results that account for the barrier effect of mountains. Owing

to space limitations, the details are provided in the Supplementary Material.

With a more precise spatial weights matrix, the spatial effects increase from 0.618

to 0.756 in the levels regression. Intuitively, the misspecification of the positive

weights from the true zero weights dilutes the spatial effect coefficient, because λ

is a measure of the average effect given the spatial weights matrix. Consequently,

the element-wise analysis shows that a one-unit change in the meteorological

variables in neighboring cities has a larger effect on PM2.5 in Beijing.

6. Conclusion

We have proposed an impact analysis for spatial models and investigated their

statistical inference. With scalar effects defined, the effect of a one-unit change

in the exogenous variables on the dependent variable can be better evaluated
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than in a structural SAR model representation. The proposed impact effects

have satisfactory finite-sample performance. We applied the proposed analysis

to study air pollution in China, finding that PM2.5 is moderately persistent and

strongly spatially correlated. All meteorological factors have significant effects

on PM2.5, especially wind direction and wind speed.

Two topics are left to future research. First, in obtaining the impact analysis,

the spatial weights matrix is given exogenously. It would be of interest to extend

the analysis to the setting of an endogenous spatial weights matrix, as in Qu and

Lee (2015) and Qu, Lee and Yu (2017). Second, for the spatial panel data model,

if the underlying regression coefficients are time varying, a corresponding impact

analysis based on a time-varying approach is also needed.

Supplementary Material

The online Supplementary Material contains some algebra for the impact

analysis, further simulation results, summary statistics, and additional empirical

results.
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