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A Proof of Theorem 3.1

For notational simplicity, we suppress the dependence of the oracle estimator

(µ̃(So), β̃(So)) on So and denote it as (µ̃, β̃) when no confusion is caused. We

first introduce some notation and present two lemmas that are needed to prove

Theorem 3.1. We consider penalized objective functions belonging to the class

F = {f(x) : f(x) = g(x) − h(x), g and h are both convex}. Let dom(g) =

{x : g(x) < ∞} be the effective domain of g, and ∂g(x0) = {t : g(x) ≥

g(x0) + (x− x0)
T t,∀x} be the subderivative of a convex function g(x) at x0.

Note that the concave pairwise penalized quantile objective function Q(µ,β)

can be written as the difference of two convex functions in µ and β:

Q(µ,β) = g(µ,β)− h(µ,β),

where g(µ,β) = n−1
∑n

i=1 |yi−µi−xT
i β|+λ

∑
1≤i<j≤n |µi−µj|, and h(µ,β) =
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1≤i<j≤n Hλ(µi − µj) with Hλ(x) = [(x2/(2a)]I(0 ≤ |x| ≤ aλ) + [λ|x| −

aλ2/2]I(|x| > aλ) for the MCP, and

Hλ(x) = [(x2 − 2λ|x|+ λ2)/(2(a− 1))]I(λ ≤ |x| ≤ aλ)

+[λ|x| − (a+ 1)λ2/2]I(|x| > aλ)

for the SCAD penalty.

Lemma A.1. (Lemma 2.1 in Wang et al. (2012)) If there exists a neighborhood

U around the point x∗ such that ∂h(x) ∩ ∂g(x∗) ̸= ∅, ∀x ∈ U ∩ dom(g). Then

x∗ is a local minimizer of g(x)− h(x).

Lemma A.2. Assume that conditions C1-C4 are satisfied and λ = o(n−(1−c2)/2).

The oracle estimator satisfies ∥(α̃, β̃)−(α0,β0)∥ = Op(
√
(K0 + pn)/n), where

(α0,β0) = (α01, . . . , α0K0 ,β
T )T is the true parameter and (α̃, β̃) is the corre-

sponding oracle estimator defined in the main paper. Moreover, |µ̃i − µ̃j| ≥

(a + 1/2)λ for all i ∈ Gk′ , j ∈ Gk, k
′
≠ k, with probability approaching 1,

where a is the parameter in the penalty function.

Proof. The first result can be established by applying Theorem 2.1 in He and

Shao (2000). The second result can be proven by using similar arguments as in

Lemma 2.2 of Wang et al. (2012). Note that if i and j are from different groups,

minij |µ̃i−µ̃j| ≥ minij |µ0i−µ0j|−maxij |(µ̃i−µ̃j)−(µ0i−µ0j)|. Furthermore,
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minij |µ0i−µ0j| ≥ M3n
−(1−c2)/2 by condition C4, and maxij |(µ̃i− µ̃j)−(µ0i−

µ0j)| ≤ ∥α̃−α0∥ = Op(
√

K0+p
n

) = Op(n
−(1−c1)/2) = op(n

−(1−c2)/2) by the first

result. Thus for λ = o(n−(1−c2)/2), we have that with probability approaching

one, |µ̃i − µ̃j| ≥ (a+ 1/2)λ for all i and j from different groups.

�

We now present the proof of Theorem 3.1 for the SCAD penalty; the proof

for the MCP is similar and thus is omitted. First, we characterize the subderiva-

tives of g(µ,β) and h(µ,β), respectively. Second, we study the property of the

oracle estimator. At last, we verify that the oracle estimator satisfies the condi-

tion in Lemma A.1 with probability approaching one. We emphasize that (µ̂, β̂)

represents the concave fusion penalized estimator and (µ̃, β̃) represents the ora-

cle estimator. We denote the sign function as sgn(·) in the following proof.

Proof of Theorem 3.1.

Step 1: We characterize the subderivatives of g(µ,β) and h(µ,β), respectively.

The subderivatives of g(µ,β) at h(µ,β) are defined as the following collection

of vectors:

∂g(µ,β) =
{
(ξ1, . . . , ξn+p) ∈ Rn+p :

ξj = sj + λ

j−1∑
i=1

lij + λ
n∑

i=j+1

lji for j = 1, . . . , n;

ξn+t = sn+t for t = 1, . . . , p
}
,
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where

sj =
[
I(yj − µj − xT

j β < 0)− 1/2− vj
]
/n for j = 1, . . . , n, and sn+t =∑n

i=1 xitsi for t = 1, . . . , p.

Furthermore, vi = 0 if yi−µi−xT
i β ̸= 0 and vi ∈ [−0.5, 0.5] otherwise; for

1 ≤ i < j, lij = −sgn(µi −µj) = sgn(µj −µi) if µi −µj ̸= 0 and lij ∈ [−1, 1]

otherwise; for j < i ≤ n, lji = sgn(µj − µi) if µi − µj ̸= 0 and lji ∈ [−1, 1]

otherwise.

For both the MCP and SCAD penalty, h(µ,β) is differentiable everywhere.

Thus, the subderivative of h(µ,β) is a singleton:

∂h(µ,β) = {(ζ1, . . . , ζn+p) ∈ Rn+p : for j = 1, . . . , n,

ζj =
n∑

i=1

[(µj − µi)− λsgn(µj − µi)

a− 1
I(λ < |µi − µj| < aλ)

+λsgn(µj − µi)I(|µj − µi| ≥ aλ)
]
;

ζn+t = 0 for t = 1, . . . , p}.

For the MCP, ζj should be replaced by

ζj =
n∑

i=1

[µj − µi

a
I(0 ≤ |µi − µj| < aλ)

+λsgn(µj − µi)I(|µj − µi| ≥ aλ)
]
.

Step 2: To build a bridge between the subderivative of g(·), h(·) and the oracle



A. PROOF OF THEOREM 3.1 5

estimator, we express the oracle estimator as an equivalent constrained estimator:

argmin
µ,β

1

n

n∑
i=1

|yi − µi − xT
i β|,

subject to µi = µj for i < j ∈ Gk, for all 1 ≤ k ≤ K0.

By introducing a set of Lagrange multipliers γ = {γijk, i < j ∈ Gk} for con-

straints, we get the Lagrange function:

L(µ,β,γ) =
1

n

n∑
i=1

|yi − µi − xT
i β|+

K0∑
k=1

∑
i<j∈Gk

γijk(µi − µj).

This Lagrange objective function is a convex function with subderivatives

∂L(µ,β,γ) =
{
(π1, . . . , πn+p, πijk) for i < j ∈ Gk :

πj = sj −
∑

i<j∈Gk

γijk +
∑

j<i∈Gk

γjik for j ∈ Gk,

πn+t = sn+t for t = 1, . . . , p,

πijk = µi − µj for i < j ∈ Gk, 1 ≤ k ≤ K0

}
.

Since the Lagrange function is convex, by the convex optimization theory, 0 ∈

∂L(µ,β,γ)|µ̃,β̃,γ̃ . Then µ̃i = µ̃j for i < j ∈ Gk. Moreover, there exists a v∗i

such that πj(µ̃, β̃, γ̃) = 0 and πn+t(µ̃, β̃, γ̃) = 0.

Step 3: Finally we will prove that any (µ,β) ∈ B{(µ̃, β̃), λ/4} (the ball with
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center (µ̃, β̃) and radius λ/4) satisfies ∂h(µ,β)
∩

∂g(µ̃, β̃) ̸= ∅ with high prob-

ability. It then follows by Lemma A.1 that the oracle estimator (µ̃, β̃) is a local

minimizer of the concave pairwise penalized quantile loss function with high

probability.

Consider any (µ,β) ∈ B((µ̃, β̃), λ/4). For subjects i and j in the same

subgroup, |µi − µj| < |(µi − µj) − (µ̃i − µ̃j)| + |µ̃i − µ̃j| < λ/2 + 0 = λ/2.

For subjects i and j from different groups, by Lemma A.2, we have |µi − µj| >

|µ̃i − µ̃j| − |(µ̃i − µ̃j)− (µi −µj)| > (a+1/2)λ−λ/2 = aλ. So for the SCAD

penalty, the subderivative ∂h(µ,β) is a singleton {ζj = λ
∑

i/∈Gk
sgn(µj − µi)

for j ∈ Gk, ζn+t = 0}.

We now show that ∂g(µ̃, β̃)
∩

∂h(µ,β) ̸= ∅. First, by letting v = v∗, from

the subderivatives of the Lagrange function, we can easily get ξn+t(µ̃, β̃; v
∗) =

ζn+t = 0. We need identify l that makes ξj(µ̃, β̃; v
∗, l) = ζj . Through some

calculation, we can show that l is required to satisfy that for all j ∈ Gk:

sj(µ̃, β̃; v
∗) + λ

∑
i/∈Gk

sgn(µ̃j − µ̃i) + λ
∑

i<j∈Gk

lij + λ
∑

j<i∈Gk

lji

= λ
∑
i/∈Gk

sgn(µj − µi). (A.1)

To solve (A.1), we observe two facts:

(i) P (sgn(µ̃j − µ̃i) = sgn(µj − µi) for i /∈ Gk) → 1;
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(ii) πj(µ̃, β̃, γ̃; v
∗) = sj(µ̃, β̃; v

∗)−
∑

i<j∈Gk

γ̃ijk +
∑

j<i∈Gk

γ̃jik = 0.

If there exists an l ∈ [−1, 1] such that

λ
∑

i<j∈Gk

lij + λ
∑

j<i∈Gk

lji = −
∑

i<j∈Gk

γ̃ijk +
∑

j<i∈Gk

γ̃jik, (A.2)

then ∂g(µ̃, β̃)
∩
∂h(µ,β) ̸= ∅ is verified. We can calculate that the minimum

and maximum of λ
∑

i<j∈Gk

lij + λ
∑

j<i∈Gk

lji in equation (A.2) are −λ × (|Gk| −

1) and λ × (|Gk| − 1), respectively. Applying the fact that | −
∑

i<j∈Gk

γ̃ijk +∑
j<i∈Gk

γ̃jik| = |sj| ≤ 1/n and the condition λ ≥ 1/(nGmin), we conclude that

the equation (A.2) has solutions in the region l ∈ [−1, 1]. The proof is thus

complete.

B Proof of Theorem 3.2

Recall that K0 denotes the true number of groups. Let S be any candidate model

with K number of groups. We consider three classes of models: (1) overfitted

model (OF) for which K > K0 and each cluster contains only units from the

same group; (2) underfitted model (UF) for which K < K0 and at least one

cluster contains all units from more than one group; (3) wrongly-assigned model

(WA) if the model is neither OF nor UF. Any candidate model S must belong to

one of the three classes.



8 YINGYING ZHANG, HUIXIA JUDY WANG AND ZHONGYI ZHU

Under the true model So, we can express the linear regression model as

Y = (Z,X)(αT ,βT )T + ε, (B.1)

where Z = {zik} is a n ×K0 matrix with zik = 1 for i ∈ Gk and 0 otherwise.

For any overfitted model S, we can construct a larger regression model that nests

(B.1) by augmenting (Z,X). For instance, suppose that So = {G1, G2;K0 =

2}, but in the candidate model S, G1 is divided as G11 and G12, so that S =

{G11, G12, G2;K = 3}. Then we can introduce a vector A = (a1, · · · , an)T

with ai = 1 for i ∈ G12 and 0 otherwise, and write the corresponding linear

regression model as

Y = (A,Z,X)(θ,αT ,βT )T + ε,

where θ represents the median difference between G12 and G11. When θ = 0,

this regression model reduce to model (B.1) corresponding to the true model So.

In general, for any overfitted model S, we can construct A in the same spirit

and we denote the augmented design matrix as US = (A,Z,X). On the other

hand, the linear regression model corresponding to any underfitted model S can

be expressed as a submodel of (B.1) by setting some parameters to zero. With

such constructions, the model selection problem can be transformed to variable
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selection in linear regression.

Let SOF ,SUF ,SWA denote the class of overfitted, underfitted and wrongly-

assigned models respectively. We assume the following additional conditions,

where C2+ is an enhanced version of the condition C2, and C5 is an identifiabil-

ity condition.

C2+. The conditional density of εi is f(·|zi,xi) for all i. Moreover, there exists

a constant A0 such that for all u, sup(z,x) |f(u|z,x)− f(0|z,x)| ≤ A0|u|.

C5. Let KU ∈ (K0,∞) be a positive constant, denoting the upper bound of the

number of groups. Then for every n > N (SOF and US depends on n), where

N is a large constant,

Λmin := inf
S∈SOF ,||ψ||0≤KU+p,ψ ̸=0

ψTE[USU
T
S ]ψ

||ψ||2
> 0,

Λmax := sup
S∈SOF ,||ψ||0≤KU+p,ψ ̸=0

ψTE[USU
T
S ]ψ

||ψ||2
< ∞,

and

q
′
:= inf

S∈SOF ,||ψ||0≤KU+p,ψ ̸=0

E[(UT
Sψ)

2]3/2

E[|UT
Sψ|3]

> 0,

where || · ||0 denotes the L0 norm and ψ is a vector whose dimension varies with

the matrix US .

Under any model S, define σ̃S = n−1
∑n

i=1 |yi − µ̃i(S) − xT
i β̃(S)|, σ =

n−1
∑n

i=1 |yi − µi0 − xT
i β0|, and δ̃(S) = (µ̃1(S), . . . , µ̃n(S), β̃(S)

T )T as the
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unpenalized estimator obtained under model S.

Proof of Theorem 3.2: This is a direct implication of Lemmas B.1, B.2 and B.3.

Lemma B.1. Under conditions C1-C5 and C2+, we have

P
{

inf
S∈SOF ,|S|<KU+p

BIC{δ̃(S)} > BIC{δ̃(So)}
}
→ 1.

Proof: For any candidate model S ∈ SOF with K > K0 subgroups, we can

construct the corresponding linear regression Y = (A,Z,X)(θT ,αT ,βT )T + ε

as discussed before, where A is a n× (K−K0) matrix and θ is a (K−K0)× 1

vector. When θ = 0, this reduces to the true model So. We have with probability

approaching 1,

inf
S∈SOF ,|S|<KU+p

BIC{δ̃(S)} −BIC{δ̃(So)}

= inf
S∈SOF ,|S|<KU+p

[log(σ̃S)− log(σ̃So)] + (K −K0)ϕn

≥ inf
S∈SOF ,|S|<KU+p

min(log 2,
1

2

σ̃S − σ̃So

σ̃So − σ + σ
) + (K −K0)ϕn

≥ −C5(fΛminn)
−1(K −K0) log(K + p) + (K −K0)ϕn

> 0, (B.2)

where the first inequality follows from log(1+u) ≥ min(log 2, u/2); under con-

ditions C2, C2+ and C5+, the second inequality stems from the same arguments

for inequality (25) in Lemma 7.8 of Zheng et al. (2015) with C5 a constant and
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f as the uniform lower bound for f(0|z,x), and the last inequality follows from

log(n+ p)/n = o(ϕn) and K > K0 for overfitted models.

Lemma B.2. Under conditions C1-C5 and C2+, we have

P
{

inf
S∈SUF ,|S|<KU+p

BIC{δ̃(S)} > BIC{δ̃(So)}
}
→ 1.

Proof: Since any underfitted model S is constructed by merging some true clus-

ters and K0 < ∞, there are a finite number of candidate models in SUF . Thus,

proving Lemma B.2 is equivalent to proving

P
{
BIC{δ̃(S)} > BIC{δ̃(So)}

}
→ 1 (B.3)

for an arbitrary underfitted model S. Without loss of generality, we can take

a simple example for illustration. Suppose that So = {G1, G2} with K0 = 2

and S = {G1 ∪ G2} with K = 1. Then the corresponding linear regression

for S can be written as Y = (ZS,X)(αT
S ,β

T )T + ε where ZS is a n × 1 vec-

tor with all elements 1. We now reparameterize the true model So as Y =

(AS,ZS,X)(θTS ,α
T
S ,β

T )T + ε where AS is a n × 1 vector with elements 1 if

i ∈ G2 and 0 otherwise. The augmented AS is constructed to introduce a new

group effect. When θS = 0, the true model reduces to model S. So model S is

underfitted for the true model So, and we can denote S $ So. Similar construc-



12 YINGYING ZHANG, HUIXIA JUDY WANG AND ZHONGYI ZHU

tion can be used for more general cases. By the definition, we have

BIC{δ̃(S)} −BIC{δ̃(So)}

= log(σ̃S)− log(σ̃So) + (K −K0)ϕn.

According to Lemma 1 in Lian (2012) and the law of large numbers, the first part

is positive bounded away from 0, and the second part is op(1). This completes

the proof.

Lemma B.3. Under conditions C1-C5 and C2+, we have

P
{

inf
S∈SWA,|S|<KU+p

BIC{δ̃(S)} > BI{δ̃(So)}
}
→ 1.

Proof: For any wrongly-assigned model S, we can construct an intermediate

model SM such that SM is overfitted for So and S is underfitted for SM . Without

loss of generality, we assume that So = {G1, G2, G3} with K0 = 3. However, in

the candidate model S, G3 is divided into G31 and G32, G31 is merged with G1,

and G32 is merged with G2, so S = {G1 ∪ G31, G2 ∪ G32} with K = 2. In this

situation, we can introduce an intermediate model SM = {G1, G2, G31, G32}

with K = 4. Then



Robust subgroup identification 13

inf
S∈SWA,|S|<KU+p

BIC{δ̃(S)} −BIC{δ̃(So)}

= inf
S∈SWA,|S|<KU+p

[log(σ̃S)− log(σ̃So)] + (K −K0)ϕn

≥ inf
S∈SWA,|S|<KU+p

[log(σ̃S)− log(σ̃SM
)]

+ inf
SM∈SOF ,|SM |<K′

U+p
[log(σ̃SM

)− log(σ̃So)] + (K −K0)ϕn (B.4)

> 0,

where K ′
U ≤ KUK0 is a new upper bound for SM . In (B.4), the first part is

positive bounded away from 0 with the same argument as in Lemma (B.2), the

second part is op(1) because of Lemma (B.1) and the third part is o(1). Thus this

proves the last inequality and Lemma B.3.
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