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Abstract: The problem of estimating the number of change points in a sequence
of independent random variables is considered in a Bayesian framework. We find
that, under mild assumptions and with respect to a suitable prior distribution, the
posterior mode of the number of change points converges to the true number of
change points in the frequentist sense. Furthermore, the posterior mode of the
locations of the change points is shown to be within Op(log n) of the true locations
of the change points where n is the sample size. The prior distribution on the
locations of the change points may be taken to be uniform. Finally, some simulated
results are given, showing that the method works well in estimating the number of
change points.
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1. Introduction

Consider a sequence of independent random variables X = X(n) = (x1, . . . ,
xn) with the following distribution :

xi ∼



f(·; θ1), if 1 ≤ i ≤ J1,

f(·; θr), if Jr−1 < i ≤ Jr, r = 2, . . . , k,

f(·; θk+1), if Jk < i ≤ n,

(1.1)

where {f(·; θ) : θ ∈ Θ} is a family of densities (with respect to Lebesgue measure
µ), and θ(k+1) = (θ1, . . . , θk+1), J (k) = (J1, . . . , Jk) and k are unknown parame-
ters. Here k is the number of change points in the sequence X(n), J (k) consists
of the locations of the k change points, and the parameters θi satisfy θi �= θi+1

for i = 1, . . . , k.
We are mainly concerned with estimating the number k of change points as

well as their locations J (k). Adopting the Bayesian approach, we will place a
suitable prior distribution π on k and J (k) and estimate them by the posterior
mode. The marginal posterior mode k̂ of k maximizes the posterior density of k
(given X(n)) which takes the form

π(k | X(n)) ∝
∑
J(k)

[ ∫
f(X(n); θ(k+1), k, J (k))π(θ(k+1) | k, J (k))dθ(k+1)

]
π(k, J (k)),

(1.2)
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where f(X(n); θ(k+1), k, J (k)) denotes the joint density of x1, . . . , xn given θ(k+1),
k, J (k). The main result of this paper is that, under regularity assumptions,
k̂ converges in probability to the true value of k (to be denoted by k0) in the

frequentist sense. Furthermore, let Ĵ
(k)

= (Ĵ (k)
1 , . . . , Ĵ

(k)
k ) maximize π(k, J (k) |

X(n)) over J (k) with k fixed. We also show that ‖Ĵ (k0) − J0‖ ≡ [
∑k0

i=1(Ĵ
(k0)
i −

J0
i )2]1/2 = Op(log n) where J0 = (J0

1 , . . . , J0
k0

) denotes the true locations of the

change points. Note that k0 and J0 are estimated by k̂ and Ĵ
(k̂)

, respectively.
Schwarz (1978) considers the problem of model selection, based on decision

theory, for the exponential family with parameters of various dimensions. He uses
decision theory to find that the Bayes solution is to choose k which maximizes

S(X(n), k) ∝
∫

f(X(n); θ(k))π(θ(k))dθ(k)π(k), (1.3)

where f(X(n); θ(k)) is the joint density of X(n) = (x1, . . . , xn) in an exponential
family with k-dimensional parameter θk for model k and π(k) is a prior proba-
bility for model k. For n sufficiently large, he derives an asymptotically optimal
solution that is to choose k which maximizes

SC(X(n), k) = log f(X(n); θ̂
(k)

) − k log n/2, (1.4)

where θ̂
(k)

is the maximum likelihood estimator (m.l.e.) of θ(k).
Yao (1988) uses Schwarz’s criterion for the problem of estimating the number

of change points in a sequence of independent normal random variables with
common variance σ2. He finds that, under mild conditions, the estimator k̂

which maximizes

SC(X(n), k) = −n log σ̂2
k/2 − k log n (1.5)

converges to k0 in probability where σ̂2
k is the m.l.e. of σ2 given k. Note that

given k, the total number of parameters in θ(k+1), J (k) and σ2 equals 2k + 2.
Our method is to find k which maximizes the integrated likelihood function

over θ(k+1) and J (k). While this idea in dealing with parameters θ(k+1) and J (k)

may be considered as an extension of (1.3) in Schwarz’s work, our method is
somewhat different from that given by Yao (1988), which directly comes from
(1.4) of Schwarz (1978) and may be interpreted as finding k that maximizes

SC∗(X(n), k) ∝ max
θ(k+1),J(k)

log f(X(n); θ(k+1), k, J (k)) − k log n.

Barry and Hartigan (1992) consider the product partition model and give a
Bayesian analysis for the problem of multiple change points. They show that,
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under suitable choice of prior cohesions and mild assumptions, if there is no
change point (i.e. k0 = 0), the posterior probability of k = 0 converges to 1
in probability (in the frequentist sense). They also compare, by simulation, the
product partition method with that given by Yao (1988) and find that Yao’s
method is better at detecting the number of change points , but they suggest
that this defect may be overcome by considering different cohesions. Our study
attempts to find a large class of suitable prior distributions for which the number
of change points can be estimated consistently. Our simulation results show that
the precision of estimating the number of change points can be improved greatly
by using the uniform prior.

Other references about estimating the number of change points from a Bay-
esian point of view are given by Chernoff and Zacks (1964), Yao (1984) and Barry
and Hartigan (1993) in the context of independent normal random variables.

The present paper is organized as follows. In section 2, assumptions and
notations are given. In section 3, the consistency of the posterior mode k̂ is
proved. Section 4 contains simulation results. The proofs of several lemmas in
section 3 are relegated to the appendix.

2. Assumptions and Notations

2.1. Assumptions

Suppose X(n) = (x1, . . . , xn) is a sequence of n independent random variables
from model (1.1) satisfying the following conditions :
(A1) The true number k0 of change points is bounded by a known constant R0

and the true change point locations J0 = (J0
1 , . . . , J0

k0
) satisfy 0 < J0

1 <

J0
2 < · · · < J0

k0
< n and min1≤i≤k0+1[(J0

i − J0
i−1)/ log n] → ∞, as n → ∞,

where J0
0 = 0 and J0

k0+1 = n.
(A2) Let Θ ⊂ R be an open interval and Θ̄ the closure of Θ. ∀θ ∈ Θ and θ′ ∈ Θ̄,

provided θ �= θ′,
∫ ∞
−∞ | f(x; θ) − f(x; θ′) | dµ(x) > 0.

(A3) f(x; θ) is jointly measurable in (x, θ).
(A4) ∀θ ∈ Θ, the derivatives ∂ log f(x;θ)

∂θ , ∂2 log f(x;θ)
∂θ2 and ∂3 log f(x;θ)

∂θ3 exist, ∀x; and
are continuous in θ.

(A5) Let θ0
i denote the true parameter value in the interval (J0

i−1, J
0
i ], i = 1, . . . , k0

+1. Then there exist functions G1(x), G2(x) and H(x) such that

∣∣∣∂ log f(x; θ)
∂θ

∣∣∣ ≤ G1(x),
∣∣∣∂

2 log f(x; θ)
∂θ2

∣∣∣ ≤ G2(x),
∣∣∣∂

3 log f(x; θ)
∂θ3

∣∣∣ ≤ H(x),

for all x and for all θ in a neighborhood of θ0
i , i = 1, . . . , k0 + 1; and

Eθ0
i
[G1(x)] < ∞, Eθ0

i
[G2(x)] < ∞ and Eθ0

i
[H(x)] < ∞.
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(A6) The measures
∏n

i=1f(xi; θ) are mutually absolutely continuous for each n =
1, 2, . . . Therefore, a null set will have probability zero for all θ.

(A7) lim|θ|→∞f(x; θ) = 0 a.e. w.r.t. Lebesgue measure.
(A8) ∀θ ∈ Θ, Eθ | log f(x; θ) |< ∞ and 0 < I(θ) = −Eθ[ ∂2

∂θ2 log f(x; θ)].
(A9) ∀θ ∈ Θ, ρ, r > 0, f(x; θ, ρ)=sup|θ′−θ|≤ρf(x; θ′) and Q(x; r) = sup|θ|>rf(x; θ)

are measurable functions of x, and for i = 1, . . . , k0 + 1, sufficiently small ρ

and sufficiently large r,

Eθ0
i
[log f(x; θ, ρ)]+ < ∞, Eθ0

i
[log Q(x; r)]+ < ∞.

We now state two assumptions on the prior distribution π which consists of
two parts π(k, J (k)) and π(θ(k+1) | k, J (k)). We assume
(B1) The prior density π(k) > 0, for k = 0, 1, . . . , R0, and π(J (k) | k) = 1/

(n−1
k

)
for each possible location vector J (k)( i.e. π(J (k) | k) is uniform).

(B2) Given k and J (k), the conditional prior of θ(k+1) is such that the k + 1
components of θ(k+1) are independent with marginal probability density
functions not depending on k and J (k), which will be denoted by π′ , i.e.

π(θ(k+1) | k, J (k)) = π′(θ1) · · · π′(θk+1).

Furthermore, π′(θ) is positive and differentiable in a neighborhood of θ0
i , for

each i = 1, . . . , k0 + 1.

Remark 1. Conditions (A2)-(A9) are essentially those of Johnson (1970), which
are just one set of the many variants (cf. Wald (1949), Wolfowitz (1965), Walker
(1969)) to ensure that, (i) when θ0 is the true value of θ for a random sample
{x1, . . . , xn},

∏n
i=1

f(xi;θ)
f(xi;θ0)

will be sufficiently small for all values of θ outside
a neighborhood of the true parameter θ0, and (ii) the posterior distribution of√

n(θ̂−θ) is asymptotically normal, where θ̂ is the m.l.e. of θ. Thus, if there are a
large number of x′

is coming from one distribution and a large number of x′
is com-

ing from another distribution, say (x1, . . . , xj) from f(·; θ1), and (xj+1, . . . , xn)
from f(·; θ2) with both j and n− j large, it follows from the first result that the
value

∏n
i=1f(xi; θ)/[

∏j
i=1f(xi; θ1)·∏n

i=j+1f(xi; θ2)] is small for all values of θ; and
if the random variables (x1, . . . , xn) have the same distribution, the second result
implies that the integral

∫ ∏n
i=1

f(xi;θ)

f(xi;θ̂)
π(θ)dθ is of order O(1/

√
n) almost surely.

By Taylor’s expansion, the condition on the third derivative of the log-likelihood
function in (A5) implies that θ̂ is asymptotically normal and log

∏n
i=1

f(xi;θ̂)
f(xi;θ0)

behaves like 1/(2n) times the square of the sum of a sequence of independent
random variables with mean 0 and variance 1 (cf. lemma 3) so that it is domi-
nated by O(log log n) almost surely by the law of the iterated logarithm.

Remark 2. The assumption (B1) on the prior π may be relaxed (cf. AppendixB).
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Remark 3. Note that the dependence of J0 on n has been suppressed. Strictly
speaking, k0 and θ0 should depend on n as well. To avoid further assumptions
and messy notation, we keep k0 and θ0 fixed as n increases. For the same reason,
the prior π′ on θ is kept fixed as n increases.

2.2. Notation

For convenience, we define the following notation:
(1) ∀θ ∈ Θ, for any integers a and b,

∏
(a,b]\D

f(X ;θ)

f(X ;θ0)
≡




1, if set D ⊃ (a, b],∏b
i=a+1
i�∈D

f(xi;θ)
f(xi;θ0

δ(i)
)
, otherwise,

where δ(i) = r if J0
r−1 < i ≤ J0

r , r = 1, . . . , k0 + 1. Note that (a, b] denotes
the set of integers between a and b (including b).

(2) If set D = {(ai, bi] | i = 1, . . . , d} is a collection of disjoint intervals, then

∏
(a,b]\D

f(X ;θ)

f(X ;θ0)
≡

∏
(a,b]\{

⋃d

i=1
(ai,bi]}

f(X ;θ)

f(X ;θ0)

and
∏
D

f(X ;θ̂)

f(X ;θ0)
≡

d∏
i=1

[ ∏
(ai,bi]

f(X ;θ̂i)

f(X ;θ0)

]
,

where θ̂i is the m.l.e. of θ given observations {xt, t ∈ (ai, bi]}.
(3) Let p(J (k)) = {(0, J1], (J1, J2], . . . , (Jk−1, Jk], (Jk, n]} denote the partition of

the interval (0, n] induced by J (k) = (J1, . . . , Jk).
(4) Let A∗ =

⋃k0
r=1{A−

r , A+
r } be a collection of 2k0 disjoint intervals, where A−

r =
(J−

r , J0
r ] and A+

r = (J0
r , J+

r ] with integers J−
r = J0

r − [α log n] and J+
r =

J0
r + [α log n], r = 1, . . . , k0. Here α is some large constant (cf. lemma 1) and

[α log n] is the largest integer not beyond α log n.
(5) Let Ek = {J (k) = (J1, . . . , Jk) | ∀r = 1, . . . , k0,∃ i such that Ji ∈ A−

r ∪ A+
r }

and Ec
k denotes the complement of Ek.

3. Consistency

In this section, we prove the following theorem.

Theorem. Under assumptions (A1)-(A9), as n → ∞, the posterior mode k̂ with
respective to a prior distribution π satisfying (B1)-(B2) converges in probability

to k0. Furthermore, ‖Ĵ (k0) − J0‖ = Op(log n).
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We need several lemmas to establish the theorem. Note that the right hand
side of (1.2), divided by f(X; θ0) =

∏k0+1
i=1 [

∏J0
i

r=J0
i−1+1

f(xr; θ0
i )], equals

π(k | X(n)) ∝
∑

J(k)∈Ek

[ ∏
(a,b]∈p(J (k))

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]
π(k, J (k))

+
∑

J(k)∈Ec
k

[ ∏
(a,b]∈p(J (k))

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]
π(k, J (k)).

Lemma 1. ∀B > 0, for sufficiently large α,

P
{∫ ∏

(a,b]

f(X ;θ)

f(X;θ0)
π′(θ)dθ > n−B

[∫ ∏
(a,b]\A−

r

f(X ;θ)

f(X ;θ0)
π′(θ)dθ+

∫ ∏
(a,b]\A+

r

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]
,

∀ 0 ≤ a < b ≤ n with A−
r ∪ A+

r ⊂ (a, b]
}

converges to 0 as n → ∞.

Lemma 2. ∀ε > 0 and any k,

P{π(k, J (k) ∈ Ec
k | X(n)) > επ(k0, J

0 | X(n))} → 0 as n → ∞.

By assumption (A1), for large n, we have Ek = φ if k < k0. It follows from
lemma 2 that, for each k < k0, P{π(k | X(n)) < π(k0 | X(n))} converges to
1 as n → ∞. Hence P (k̂ ≥ k0) converges to 1 as n → ∞. Also, by lemma
2, as n → ∞, P{π(k0, J

(k0) ∈ Ec
k0

| X(n)) < π(k0, J
0 | X(n))} converges to 1,

so that P (Ĵ
(k0) ∈ Ek0) converges to 1, proving the second part of the theorem.

It remains to show that P (k̂ > k0) converges to 0 as n → ∞, or equivalently
P (k̂ = k) converges to 0 for each k0 < k ≤ R0.

Fix k0 < k ≤ R0. By lemma 2, it suffices to show that for each ε > 0,
P{π(k, J (k) ∈ Ek | X(n)) > επ(k0, J

0 | X(n))} → 0 as n → ∞. For each J (k) ∈
Ek, and i = 1, . . . , k0, let ci be the component of J (k) that is closest to J0

i . ( In
case that two components of J (k) are both closest to J0

i , let ci be the smaller one.)
By the definition of Ek, we have | ci − J0

i |≤ α log n. Let J∗(ri) = (J∗
i1, . . . , J

∗
iri

)
denote the points of J (k) in the interval (J0

i−1, J
0
i ] (excluding c1, . . . , ck0). Thus,

we have J (k) = (J∗(r1), c1, J
∗(r2), c2, . . . , J

∗(rk0
), ck0 , J

∗(rk0+1)) and
∑k0+1

i=1 ri = k−
k0. Note that J∗(ri) = φ if ri = 0. Denote by < ci, J

0
i > the interval (ci, J

0
i ] if ci ≤

J0
i , or the interval (J0

i , ci] if ci > J0
i . Let D(J (k)) = {< ci, J

0
i >| i = 1, . . . , k0},

and let I(J∗(ri)) be the partition of (max(J0
i−1, ci−1),min(J0

i , ci)] induced by the
points in J∗(ri) where c0 = 0 and ck0+1 = n. Clearly,

⋃k0+1
i=1 I(J∗(ri))∪{< ci, J

0
i >|

i = 1, . . . , k0} is the partition of (0, n] induced by the points in J (k) and J0.
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Now, for each (a, b] ∈ p(J (k)), (a, b]∩D(J (k)) may be empty or < ci, J
0
i > or

< ci−1, J
0
i−1 > ∪ < ci, J

0
i > for some i, and (a, b]\D(J (k)) is an interval (possibly

empty). Since
∏

(a,b]∩D(J(k))
f(X ;θ)

f(X ;θ0)
≤ ∏

(a,b]∩D(J (k))
f(X ;θ̂)

f(X ;θ0)
, we have

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ ≤

[ ∏
(a,b]∩D(J(k))

f(X ;θ̂)

f(X ;θ0)

][ ∫ ∏
(a,b]\D(J (k))

f(X;θ)

f(X ;θ0)
π′(θ)dθ

]
.

It follows that
∏

(a,b]∈p(J (k))

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

≤
[ ∏

D(J(k))

f(X ;θ̂)

f(X ;θ0)

] k0+1∏
i=1

[ ∏
(c,d]∈I(J∗(ri))

∫ ∏
(c,d]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]

≤
[ k0∏

i=1

[Ti(X)]
] k0+1∏

i=1

[ ∏
(c,d]∈I(J∗(ri))

∫ ∏
(c,d]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]
, (3.1)

where

Ti(X) = max
{

max
J−

i ≤m<J0
i

sup
θ

[ ∏
(m,J0

i ]

f(X ;θ)

f(X ;θ0)

]
, max
J0

i <m≤J+
i

sup
θ

[ ∏
(J0

i ,m]

f(X ;θ)

f(X ;θ0)

]}
.

We now deal with the term inside the second pair of brackets on the right-
most side of (3.1). For each I(J∗(ri)), i = 1, . . . , k0 + 1, consider the first interval
(denoted (ai1, bi1]), and the final interval (denoted (ai2, bi2]). Note that ai1 =
max(J0

i−1, ci−1), bi1 = J∗
i1, ai2 = J∗

iri
, bi2 = min(J0

i , ci) and that (
√

bi1 − ai1)−1 ≤
O(

√
log n)/

√
J∗

i1 − J0
i−1 and (

√
bi2 − ai2)−1 ≤ O(

√
log n)/

√
J0

i − J∗
iri

. Thus

∫ ∏
(ai1,bi1]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ ≤ O(

√
log n)Si1(X)/

√
J∗

i1 − J0
i−1 (3.2)

and ∫ ∏
(ai2,bi2]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ ≤ O(

√
log n)Si2(X)/

√
J0

i − J∗
iri

, (3.3)

where Si1(X)=max{1,maxJ0
i−1≤a≤J+

i−1
maxa<b≤J0

i

√
b − a

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ}

and Si2(X) = max{1,maxJ−
i ≤b≤J0

i
maxJ0

i−1≤a<b

√
b − a

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ}.

If ri = 0, then I(J∗(ri)) = {(max(J0
i−1, ci−1), min(J0

i , ci)]} = {(ai1, bi1]} =

{(ai2, bi2]}, and (
√

bi1 − ai1)−1≤O(1)/
√

J0
i − J0

i−1 . Let L(J∗(ri)) =
√

J0
i − J0

i−1/
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(
√

J∗
i1 − J0

i−1

√
J0

i − J∗
iri

) if ri ≥ 1, = 1 if ri = 0. By (3.2) and (3.3), for ri > 0,

2∏
j=1

∫ ∏
(aij ,bij ]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ ≤ O(log n)L(J∗(ri))Si1(X)Si2(X)/

√
J0

i − J0
i−1

and for ri = 0,∫ ∏
(ai1,bi1]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ ≤ O(1)L(J∗(ri))Si1(X)Si2(X)/

√
J0

i − J0
i−1.

So,
∏

(c,d]∈I(J∗(ri))

∫ ∏
(c,d]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ ≤

[
O(log n)Si1(X)Si2(X)/

√
J0

i − J0
i−1

]

·
[
L(J∗(ri))

∏
(c,d]∈I0(J∗(ri))

∫ ∏
(c,d]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]
, (3.4)

where I0(J∗(ri)) = I(J∗(ri))\{(ai1, bi1], (ai2, bi2]} depends only on J∗(ri). By (3.1)
and (3.4), we get

∑
J(k)∈Ek

∏
(a,b]∈p(J (k))

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ · π(k, J (k))

≤
[ k0∏

i=1

Ti(X)
][ k0+1∏

i=1

O(log n)√
J0

i −J0
i−1

Si1(X)Si2(X)
]

·
[ ∑

C

∑
J

(k−k0)
∗

{ k0+1∏
i=1

[L(J∗(ri))
∏

(c,d]∈I0(J∗(ri))

∫ ∏
(c,d]

f(X;θ)

f(X ;θ0)
π′(θ)dθ]

}
π(k,C, J

(k−k0)∗ )
]
,

where C = (c1, . . . , ck0) and J
(k−k0)∗ = (J∗(r1), . . . , J∗(rk0+1)). From (A.5) in

Appendix A, we can find a constant ε∗0 > 0 such that

∏
(a,b]∈p(J0)

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ · π(k0, J

0) ≥ ε∗0
( k0+1∏

i=1

[J0
i − J0

i−1]
− 1

2

)
π(k0, J

0)

with probability approaching 1 as n → ∞. It follows that

π(k, J (k) ∈ Ek | X(n))
π(k0, J

0 | X(n))
≤ O

(
[log n]k0+1

)[ k0∏
i=1

Ti(X)
][ k0+1∏

i=1

Si1(X)Si2(X)
]

·
[ ∑

C

∑
J

(k−k0)
∗

{ k0+1∏
i=1

[L(J∗(ri))
∏

(c,d]∈I0(J∗(ri))

∫ ∏
(c,d]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ]

}π(k,C, J
(k−k0)
∗ )

π(k0, J
0)

]
.

(3.5)
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Since E[
∫ ∏

(c,d]
f(X ;θ)

f(X ;θ0)
π′(θ)dθ] = 1, it follows from Markov’s inequality that

the term in the last pair of brackets of (3.5) is Op(
∑

C

∑
J

(k−k0)
∗

[
∏k0+1

i=1 L(J∗(ri))]

π(k,C,J
(k−k0)
∗ )

π(k0,J0)
), which is Op(n−ε0) for some ε0 > 0 by Appendix B. By lemmas

3-5 below,
∏k0

i=1 Ti(X) and
∏k0+1

i=1 Si1(X)Si2(X) are Op([log n]5(k0+1)). Thus we
conclude that, ∀ε > 0, the probability of {π(k, J (k) ∈ Ek | X(n)) < επ(k0, J

0 |
X(n))} will converge to 1 as n → ∞. The proof of the theorem is complete.

Lemma 3. If xi, i = 1, . . . , n, are i.i.d. random variables having density fθ0(·)
with respect to Lebesgue measure µ, then,

lim
n→∞

L(X ; θ̂) − L(X; θ0)
log log n

= 1 a.s.

where L(X ; θ0) =
∑n

i=1 log f(xi; θ0) and L(X; θ̂) =
∑n

i=1 log f(xi; θ̂). Here θ̂ is
the m.l.e. of θ based on observation X = (x1, . . . , xn).

Lemma 4. If xi, i = 1, . . . , n, are i.i.d. random variables having density fθ0(·)
with respect to Lebesgue measure µ , then, ∀ε > 0

max
1≤m≤n

[ ∏
[1,m]

f(X ;θ̂m)
f(X ;θ0)

]
= Op([log n]1+ε),

where θ̂m is the m.l.e. of θ based on observations (x1, . . . , xm).
By lemma 4, we have

∏k0
i=1[Ti(X)] = Op([log n]k0+ε) for any ε > 0.

Lemma 5. If xi, i = 1, . . . , n, are i.i.d. random variables having density fθ0(·)
with respect to Lebesgue measure µ, then

max
0≤a≤j+

max
a<m≤n

[√
m − a

∫ ∏
(a,m]

f(X ;θ)
f(X ;θ0)

π′(θ)dθ
]

= Op([log n]
5
2 ),

where j+ = [α log n].
By lemma 5, we have

∏k0+1
i=1 [Si1(X) · Si2(X)] = Op([log n]5(k0+1)).

Remark. While we have established the result ‖Ĵ (k0) − J0‖ = Op(log n), it is of
interest to see if this can be pared down to Op(1).

4. Simulation

In this section, we use Monte Carlo simulation to study the behavior of the
posterior mode k̂ which maximizes (1.2) and compare its precision with that given
by Yao’s method in (1.5) for a sequence of independent normal random variables
with known common variance σ2 = 1. We considered two cases, namely, k0 = 1
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(one change point) and k0 = 2 (two change points) with known upper bound
R0 = 3. For k0 = 1, we set J0

1 = n/2 and [n/4] with θ0
1 = 0 and θ0

2 = 0, 1, 2, 3, 5, 7
where n = 30, 60, 100, and for k0 = 2, we set (J0

1 , J0
2 ) = ([n/3], [2n/3]) with

(θ0
1, θ

0
2, θ

0
3) = (0, 1, 2), (0, 2, 4) and (0, 3, 6), with sample size n = 60, 100, 150. We

assumed a normal prior with mean µ0 and variance σ2
0 for the parameter θ, and

selected σ2
0 = 16 and µ0 = X̄, which were used by Barry and Hartigan (1992),

but σ2 is set equal to 1. We also took π(k, J (k)) = (1/4)
(n−1

k

)−1
. Each case was

simulated 1000 times and the results are listed in Table 1 and Table 2. In Table
1, it is evident that our method works very well and is better at detecting the
number of change points than Yao’s method, especially when the sample size is
small (n = 30). In Table 2, we observe that Yao’s method is better at detecting
the two true change points except for the case when the change of means is small
like (0, 1, 2).

Table 1. Frequencies of the estimated number of change points

(1)Sample size n = 30 with a true changed position = 15 (7)

The estimated number of change points

Mean change 0 1 2 3

0 951 (958) 042 (038) 007 (004) 000 (000)
782 (761) 095 (112) 079 (079) 044 (048)

1 404 (552) 543 (404) 048 (038) 005 (006)
239 (349) 512 (427) 140 (130) 109 (094)

2 004 (029) 861 (839) 109 (105) 026 (027)
001 (014) 719 (716) 173 (150) 107 (120)

3 000 (000) 850 (854) 122 (123) 028 (023)
000 (000) 730 (741) 160 (170) 109 (089)

5 000 (000) 861 (870) 116 (111) 023 (019)
000 (000) 718 (737) 173 (153) 109 (110)

7 000 (000) 904 (885) 085 (100) 011 (015)
000 (000) 728 (733) 159 (170) 113 (097)

(2)Sample size n = 60 with a true changed position = 30 (15)

The estimated number of change points

Mean change 0 1 2 3

0 978 (964) 018 (034) 003 (002) 001 (000)
884 (862) 070 (085) 037 (041) 009 (012)

1 121 (304) 817 (648) 057 (042) 005 (006)
074 (191) 763 (652) 122 (122) 041 (035)

2 000 (000) 900 (918) 091 (071) 009 (011)
000 (000) 838 (853) 108 (091) 054 (056)

3 000 (000) 908 (897) 081 (086) 011 (017)
000 (000) 835 (819) 112 (124) 053 (057)

5 000 (000) 924 (917) 065 (075) 011 (008)
000 (000) 858 (836) 098 (111) 044 (053)

7 000 (000) 936 (938) 057 (059) 007 (003)
000 (000) 830 (866) 115 (089) 055 (045)
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(3)Sample size n = 100 with a true changed position = 50 (25)

The estimated number of change points

Mean change 0 1 2 3

0 977 (979) 021 (020) 002 (001) 000 (000)
919 (914) 056 (054) 022 (026) 003 (006)

1 016 (083) 929 (868) 050 (043) 005 (006)
010 (051) 860 (837) 097 (088) 033 (024)

2 000 (000) 928 (927) 068 (069) 004 (004)
000 (000) 883 (899) 085 (080) 032 (021)

3 000 (000) 932 (925) 057 (066) 011 (009)
000 (000) 898 (890) 074 (082) 028 (028)

5 000 (000) 931 (935) 066 (059) 003 (006)
000 (000) 878 (883) 094 (089) 028 (028)

7 000 (000) 937 (946) 056 (051) 007 (003)
000 (000) 864 (896) 105 (074) 031 (030)

The data are simulated 1000 times with means changing from θ0
1 = 0 to θ0

2 = 0, 1, 2, 3, 5, 7.

The values in the upper and lower sides of each box are under the posterior mode and

Yao’s estimator, respectively.

Table 2. Frequencies of the estimated number of change points for the two
true change points

Sample Change Mean The estimated number of change points

size position change 0 1 2 3

(0,1,2) 000 526 420 054

000 485 376 139

60 (20, 40) (0,2,4) 000 000 781 219

000 000 832 168

(0,3,6) 000 000 759 241

000 000 816 184

(0,1,2) 000 188 738 074

000 229 640 131

100 (33, 66) (0,2,4) 000 000 819 181

000 000 865 135

(0,3,6) 000 000 833 167

000 000 870 130

(0,1,2) 000 044 851 105

000 071 808 121

150 (50,100) (0,2,4) 000 000 856 144

000 000 896 104

(0,3,6) 000 000 881 119

000 000 919 081

The data are simulated 1000 times and the values in the upper and lower sides of each box

are under the posterior mode and Yao’s estimator, respectively.

Barry and Hartigan (1992) also compare Yao’s (1988) method with the prod-
uct partition model by using prior probability g(i) = 4

i(i+1)(i+2) of the jump vari-
able and find that Yao’s method is better at identifying the number of change
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points. Especially, when the true model has only “one change point”, the detec-
tion will not be precise (cf. Table 1 of Barry and Hartigan (1992)). They also
suggest that this defect may be overcome by considering different prior cohe-
sions. For this purpose the uniform prior considered in our method may be used
to substantially improve the precision of detecting the number of change points.
However, the uniform prior does not meet the assumptions in the work of Barry
and Hartigan (1992).
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Appendix A.

Proof of Lemma 1. Since θ0
r �= θ0

r+1, there exists a δ > 0 such that the
intersection of the neighborhood Nδ(θ0

r) of θ0
r and the neighborhood Nδ(θ0

r+1) of
θ0
r+1 is empty. Hence, for any a, b in [0, n] and A−

r ∪ A+
r ⊂ (a, b], we have, ∀X

and θ,
∏
(a,b]

f(X ;θ)

f(X ;θ0)
≤

[
sup

θ∈Nc
δ
(θ0

r)

∏
A−

r

f(X ;θ)
f(X ;θ0

r)

] ∏
(a,b]\A−

r

f(X ;θ)

f(X ;θ0)

+
[

sup
θ∈Nc

δ
(θ0

r+1)

∏
A+

r

f(X ;θ)
f(X;θ0

r+1)

] ∏
(a,b]\A+

r

f(X ;θ)

f(X ;θ0)
, (A.1)

where N c
δ (θ0

r) and N c
δ (θ0

r+1) are the complement of Nδ(θ0
r) and Nδ(θ0

r+1), respec-
tively. Multiplying by π′(θ) and integrating out θ in (A.1), we obtain

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ ≤

[
sup

θ∈Nc
δ
(θ0

r)

∏
A−

r

f(X ;θ)
f(X ;θ0

r)

] ∫ ∏
(a,b]\A−

r

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

+
[

sup
θ∈Nc

δ
(θ0

r+1)

∏
A+

r

f(X ;θ)
f(X ;θ0

r+1)

] ∫ ∏
(a,b]\A+

r

f(X ;θ)

f(X ;θ0)
π′(θ)dθ. (A.2)

The terms in the two pairs of brackets of (A.2) do not depend on a or b. By
Theorem 1 of Wolfowitz (1949) or the argument given by Wald (1949), we can
find a small positive value h < 1 such that

sup
θ∈Nc

δ
(θ0

r)

∏
A−

r

f(X ;θ)
f(X ;θ0

r) ≤ nα log h and sup
θ∈Nc

δ
(θ0

r+1)

∏
A+

r

f(X ;θ)
f(X ;θ0

r+1)
≤ nα log h (A.3)

with probability approaching 1 as n → ∞ . Hence, let α be sufficiently large to
satisfy α log h < −B. Then, from (A.2) and (A.3), the lemma is obtained.



BAYESIAN ESTIMATION OF THE NUMBER OF CHANGE POINTS 935

Proof of Lemma 2. Let Ec
r,k be the set {J (k) = (J1, . . . , Jk) | Ji �∈ A−

r ∪
A+

r ,∀ i = 1, . . . , k}. Since Ec
k =

⋃k0
r=1 Ec

r,k and k0 is finite, it suffices to show that,
∀ ε > 0, the probability of the set {π(k, J (k) ∈ Ec

r,k | X(n)) > επ(k0, J
0 | X(n))}

will converge to 0 as n → ∞. For any J (k) = (J1, . . . , Jk) ∈ Ec
r,k, there exists i

such that A−
r ∪ A+

r ⊂ (Ji−1, Ji] and, by lemma 1, for any B > 0 and sufficiently
large α, the probability of the event

∏
(a,b]∈p(J(k))

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

=
[ ∏

(a,b]∈p(J (k))\(Ji−1,Ji]

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

][ ∫ ∏
(Ji−1,Ji]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]

≤ n−B−1
∏

(a,b]∈p(J (k))\(Ji−1,Ji]

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

·
[ ∫ ∏

(Ji−1,Ji]\A−
r

f(X ;θ)

f(X ;θ0)
π′(θ)dθ +

∫ ∏
(Ji−1,Ji]\A+

r

f(X ;θ)

f(X ;θ0)
π′(θ)dθ

]

for all J (k) ∈ Ec
r,k converges to 1 as n → ∞. Noting that the expectation of the

right hand side of the above inequality equals 2n−B−1, it follows from Markov’s
inequality that, for any B > 0 and sufficiently large α,

∑
J(k)∈Ec

r,k

[ ∏
(a,b]∈p(J(k))

∫ ∏
(a,b]

f(X;θ)

f(X ;θ0)
π′(θ)dθ

]
π(k, J (k)) = op(n−B). (A.4)

Since
∏

(a,b]∈p(J0)

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ =

∏k0+1
i=1 [

∫ ∏
(J0

i−1,J0
i ]

f(X ;θ)
f(X ;θ0

i )
π′(θ)dθ] is

greater than
∏k0+1

i=1 [
∫ ∏

(J0
i−1,J0

i ]
f(X ;θ)

f(X ;θ̂i)
π′(θ)dθ] for θ̂i being the m.l.e. of θ based

on the observations {xt, t ∈ (J0
i−1, J

0
i ]}, from Johnson (1970) (page 857, (2.21)),

we have, for each i = 1, . . . , k0 + 1,

lim
n→∞

√
J0

i − J0
i−1

∫ ∏
(J0

i−1,J0
i ]

f(X ;θ)

f(X ;θ̂i)
π′(θ)dθ =

√
2ππ′(θ0

i )/I
1
2 (θ0

i ) in probability,

where I(θ0
i ) is the Fisher information of a random variable x with density fθ0

i
(·).

Thus we can find a constant ε∗0 > 0 such that

∏
(a,b]∈p(J0)

∫ ∏
(a,b]

f(X ;θ)

f(X ;θ0)
π′(θ)dθ · π(k0, J

0)≥ε∗0
( k0+1∏

i=1

[J0
i − J0

i−1]
− 1

2

)
π(k0, J

0)

(A.5)
with probability approaching 1 as n → ∞. By assumption (B1), (A.4) and

(A.5), we establish the lemma by setting B > R0 + (R0 + 1)/2.
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Proof of Lemma 3. Since θ̂ converges to θ0 almost surely, for each δ > 0, we
can find sufficiently large n so that θ̂ is in the neighborhood Nδ(θ0) of θ0. By the

Taylor expansion of L(X ; θ), and ∂2L(X;θ̂)
∂θ2 at θ̂ and θ0, respectively, we obtain

L(X ; θ0) − L(X ; θ̂)

=
1
2!

∂2L(X; θ̂)
∂θ2

(θ0 − θ̂)2 +
1
3!

∂3L(X ; θ∗1)
∂θ3

(θ0 − θ̂)3

=
1
2!

[∂2L(X; θ0)
∂θ2

(θ̂ − θ0)2 +
∂3L(X; θ∗2)

∂θ3
(θ̂ − θ0)3

]
+

1
3!

∂3L(X ; θ∗1)
∂θ3

(θ0 − θ̂)3

=
1
2!

∂2L(X; θ0)
∂θ2

(θ̂ − θ0)2 +
1
2!

∂3L(X ; θ∗2)
∂θ3

(θ̂ − θ0)3 − 1
3!

∂3L(X ; θ∗1)
∂θ3

(θ̂ − θ0)3,

where θ∗1 and θ∗2 are between θ0 and θ̂. Let

V̄n = − 1
n

∂2L(X; θ0)
∂θ2

= − 1
n

n∑
i=1

∂2

∂θ2
log f(xi; θ0)

and

D̄n =
1
2!

1
n

∂3L(X ; θ∗2)
∂θ3

(θ̂ − θ0) − 1
3!

1
n

∂3L(X ; θ∗1)
∂θ3

(θ̂ − θ0).

Then, as n → ∞, V̄n converges to I(θ0) (Fisher information of x1) with probabil-
ity 1 by the law of large numbers, and D̄n converges to 0 with probability 1 by
the fact (assumption (A5)) that D̄n is dominated by H̄n | θ̂ − θ0 | converging to
0 almost surely as n → ∞. Here H̄n = 1

n

∑n
i=1 H(xi) converges to some positive

value almost surely. Hence, for large n,

L(X ; θ0) − L(X; θ̂) = − n

2!
(θ̂ − θ0)2V̄n(1 − 2D̄n/V̄n). (A.6)

Also, by the Taylor expansion of ∂L(X ;θ̂)
∂θ at θ0, we obtain

∂L(X ; θ̂)
∂θ

− ∂L(X ; θ0)
∂θ

=
∂2L(X ; θ0)

∂θ2
(θ̂ − θ0) +

1
2!

· ∂3L(X ; θ∗3)
∂θ3

(θ̂ − θ0)2,

where θ∗3 is between θ0 and θ̂. Let

S̄n =
1
n

∂L(X ; θ0)
∂θ

=
1
n

n∑
i=1

∂ log f(xi; θ0)
∂θ

and Ēn =
1

2!n
∂3L(X ; θ∗3)

∂θ3
(θ̂ − θ0).

Then Ēn is also dominated by H̄n | θ̂ − θ0 | and will converge to 0 almost surely
as n → ∞. Thus, for large n,

S̄n = V̄n(θ̂ − θ0)(1 − Ēn/V̄n). (A.7)
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From (A.6) and (A.7), we have, for large n,

L(X ; θ0) − L(X ; θ̂) = − n

2!
S̄2

n

V̄n
(1 − 2D̄n/V̄n)(1 − Ēn/V̄n)2.

This implies that, for large n,

L(X ; θ̂) − L(X ; θ0) =
n

2!
S̄2

n

I(θ0)
I(θ0)
V̄n

(1 − 2D̄n/V̄n)
(1 − Ēn/V̄n)2

. (A.8)

Since V̄n converges to I(θ0) almost surely and D̄n and Ēn both converge to 0
almost surely as n → ∞,

lim
n→∞

(1 − 2D̄n/V̄n)
(1 − Ēn/V̄n)2

= 1 a.s.

Also, S̄n is the sample mean of random variables ∂ log f(xi;θ0)
∂θ , i = 1, . . . , n, with

mean 0 and variance I(θ0)/n. By the law of the iterated logarithm, we obtain,

lim
n→∞

| nS̄n |√
2n(log log n)I(θ0)

= 1 a.s.

Therefore, it follows from (A.8) that

lim
n→∞

L(X ; θ̂) − L(X; θ0)
log log n

= 1 a.s.

Proof of Lemma 4. ∀N and ε, the event {maxN≤m≤n[
∏

[1,m]
f(X ;θ̂m)
f(X ;θ0)

] >

(log n)1+ε} is contained in {maxN≤m≤n{[log
∏

[1,m]
f(X ;θ̂m)
f(X ;θ0)

]/[log log m]} > 1+ε}.
By lemma 3, we establish the lemma.

Proof of Lemma 5. Consider the two cases m ≤ 2j+ and m > 2j+. If m ≤ 2j+,
by Markov’s inequality and observing that E[

∫ ∏
(a,m]

f(X ;θ)
f(X ;θ0)

π′(θ)dθ] = 1, we

have max0≤a≤j+ maxa<m≤2j+

√
m − a

∫ ∏
(a,m]

f(X ;θ)
f(X ;θ0)

π′(θ)dθ = Op([log n]
5
2 ). If

m > 2j+, by m − a ≤ 2(m − j+), we have

max
0≤a≤j+

max
2j+<m≤n

√
m − a

∫ ∏
(a,m]

f(X;θ)
f(X ;θ0)

π′(θ)dθ ≤ O(1)
[

max
0≤a≤j+

∏
(a,j+]

f(X ;θ̂a)
f(X ;θ0)

]

·
[

max
2j+<m≤n

∏
(j+,m]

f(X ;θ̂m)
f(X ;θ0)

][
max

2j+<m≤n

√
m − j+

∫ ∏
(j+,m]

f(X ;θ)

f(X ;θ̂m)
π′(θ)dθ

]
,

where θ̂a and θ̂m are the m.l.e.’s of θ given observations {xt, t ∈ (a, j+]} and
{xt, t ∈ (j+,m]}, respectively. By lemma 4, the terms in the first and second
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pairs of brackets are both Op([log n]1+ε) ∀ε > 0. By Johnson (1970) (page 857,
(2.21)), we obtain the term in the last pair of brackets is Op(1). Thus we establish
the lemma.

Appendix B.

1. For the uniform prior π(k, J (k)) = O(n−k), using the fact that
∑

1≤J1<···<Jr<n√
n·n

J1(n−Jr)
1
nr converges as n → ∞, we obtain, for each fixed ri,

∑
J0

i−1<J∗
i1<···<J∗

iri
<J0

i

L(J∗(ri)) ≤ O
(
[J0

i − J0
i−1]

ri− 1
2

)
= O

(
nri− 1

2

)
if ri ≥ 1

= O(1) if ri = 0

so that

∑
C

∑
J

(k−ko)
∗

[ k0+1∏
i=1

L(J∗(ri))
]π(k,C, J

(k−k0)∗ )
π(k0, J

0)

≤
{ ∑

r1+···+rk0+1=k−k0

k0+1∏
i=1

[ ∑
J∗(ri)

L(J∗(ri))
]}

O([log n]k0/nk−k0)

= O
({ k0+1∏

i=1

[n]max(ri− 1
2
,0)

}
· [log n]k0/nk−k0

)

= O
(
nk−k0− 1

2 · [log n]k0/nk−k0

)
= O(n−ε0) for some ε0 > 0.

2. From (3.5), the theorem still holds if we replace the assumption (B1) by the
assumption (B1)′ that the prior information π(k, J (k)) satisfies the condition

∑
C

∑
J

(k−ko)
∗

[ k0+1∏
i=1

L(J∗(ri))
]π(k,C, J

(k−k0)
∗ )

π(k0, J
0)

= O(n−ε0) for some ε0 > 0.
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