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Abstract: Time series from a large number of sources are ubiquitous, and may

incur structural changes during data acquisition. For example, in fMRI analysis,

brain regions associated with task-related stimuli or in a resting state become

active. An activated time series can comprise readings from an activated region. Of

interest is to control the uncertainty of discovering time series in activation (viz.,

activated regions in fMRI analysis) by using the false discovery rate (FDR) tool.

We propose a simple, yet effective method that incorporates unknown asynchronous

change patterns and spatial dependence. We justify the validity of our method in

controlling the FDR using an asymptotic analysis. The results of our numerical

experiments indicate that the proposed method is both accurate and powerful. An

implementation is provided in the R package SLIP.

Key words and phrases: Change-point analysis, data splitting, false discovery rate,

fMRI, regions of interest.

1. Introduction

Time series from many sources are ubiquitous, and the underlying distribu-

tion of each time series may change during data acquisition, owing to external

stimuli or internal evolution. A good example is functional magnetic resonance

imaging, or functional MRI (fMRI), an image acquisition modality used to study

the brain invivo. Research on fMRI focuses on changes in the blood oxygen

level-dependent (BOLD) response (Ogawa et al. (1990)), a surrogate measure

of brain activity, typically caused by an externally controlled stimulus or task.

Recently, researchers have begun paying greater attention to studying the BOLD

response during rest, which reflects the brain’s neuronal baseline activity; see,

for example, Damoiseaux et al. (2006). During a task-related or resting-state

fMRI experiment, the data comprise a series of magnetic resonance brain images:

the BOLD responses over time from a large number of uniformly spaced volume

elements (or voxels). A time series can be composed of readings from a voxel or

a region of spatially contiguous voxels.

One fundamental goal of fMRI analysis is to discover regions or points of

interest (ROIs or POIs), namely, regions or voxels activated by a task, or even in a

baseline state. Excluding those consisting solely of background noise, not all time
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series are activated in a specific scene, and the time series in activation may react

at different times during the experiment. Moreover, precise times of component-

wise activations are usually unknown, owing to possible lags after a stimulus, or

when the data are acquired in a resting state. A natural statistical approach is to

use change-point or process control theory; see, for example, Lindquist, Waugh

and Wager (2007) and Aston and Kirch (2012). These studies focus on modeling

the fMRI data, voxelwise or treated as a whole. Few works focus on the inferential

side, that is, the uncertainty of discovered voxels or regions in activation. This

amounts to performing a component-wise hypothesis test of whether a change in

the BOLD response occurs during an fMRI experiment, and provides a threshold

for the resulting activation map of test statistics to meet for specific error rate

control (Genovese, Lazar and Nichols (2002); Nichols and Holmes (2002)).

An appealing statistical notion of the error rate is the false discovery rate

(Benjamini and Hochberg (1995, FDR)), that is, the expected proportion of

falsely rejected hypotheses. The authors also propose a procedure known as

the Benjamini–Hochberg (BH) method, which controls the FDR for independent

p-values corresponding to all null hypotheses. The BH method is widely used for

neuroimaging data to determine the threshold of an activation map in a task-

related fMRI with a known activation time (Genovese, Lazar and Nichols (2002);

Kriegeskorte, Goebel and Bandettini (2006)), where each time series is associated

with a statistic based on the BOLD responses before and after some stimulus (e.g.,

t-statistic). There are two problems with using this method in practical fMRI

studies: (i) the precise time of activation is often unavailable for each region,

especially for resting-state experiments, and need not be the same across regions;

and (ii) component-wise comparisons are usually spatially correlated, which may

cause the BH method to become conservative.

In this study, we borrow ideas from recent developments of FDR control

methodologies, and propose a simple, yet effective procedure for discovering

activated time series in an fMRI analysis with proper FDR control, while

incorporating unknown asynchronous change patterns and spatial dependence.

We call the proposed method SLIP, which comprises a sequence of steps: Splitting

the data into two parts, Locating component-wise activation times based on one

sample, Incorporating spatial dependence among time series, and Pooling the

summary statistics from both samples. The SLIP method controls the FDR in

the discovery of time series in activation.

Applications for the SLIP method are fairly widespread beyond fMRI data.

For example, in studies on the effects of government policies (or unprecedented

events, such as COVID-19) on the stock market, researchers often wish to

discover which stocks or stock market sectors are affected from among a

large number of candidates (Mazur, Dang and Vega (2021)). In addition,

in modern manufacturing processes, transitions between multiple operating or

environmental conditions may affect the product quality, and thus it would
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be helpful to find related quality characteristics that describe the underlying

variations (Zou and Qiu (2009); Capizzi (2015)). In both examples, we need to

detect “activated” time series from among many candidates, where the reaction

times of different time series corresponding to a policy release or some out-of-

control state may differ. We can apply the proposed SLIP method to such

scenarios with slight modifications, to control the FDR simultaneously. In this

study, we focus on fMRI data analysis.

1.1. Problem formulation

Suppose p parallel time series are recorded at T time points, {Zij, i =

1, . . . , T}pj=1. In fMRI, Zij can stand for the measured BOLD response at the

jth voxel or region in the brain during the ith scan. We consider the mean-level

change model

Zij = µi,j + εij, i = 1, . . . , T, j = 1, . . . , p,

µ1,j = · · · = µτ∗
j ,j

̸= µτ∗
j +1,j = · · · = µT,j, j = 1, . . . , p, (1.1)

where, for the jth time series (data sequence), the mean level of the BOLD signal

remains unchanged if τ ∗
j = T , and experiences some change at τ ∗

j if 1 ≤ τ ∗
j < T ,

due to a reaction to a stimulus or intrinsic evolution under a resting state, and

εij are random errors. We assume that εi := (εi1, . . . , εip)
⊤, for i = 1, . . . , n, are

independent, with mean vector 0 and covariance matrix Σ, where Σ reflects the

spatial dependence structure among all time series. A discussion of temporal

correlation is deferred to Section 4.5. We say a time series is activated or in

activation if the associated τ ∗
j < T , such that a mean-level signal change occurs,

where we borrow the terminology from fMRI applications. Our primary interest

is to discover the set of activated time series, that is, A = {1 ≤ j ≤ p : τ ∗
j < T}.

Any discovery procedure, say Â, can commit two kinds of errors, that is,

it may include an inactivated time series, or it may exclude an activated one,

referred to as a false positive and a false negative, respectively, in the terminology

of multiple testing, where we conduct a sequence of hypothesis tests

H0j : τ
∗
j = T versus H1j : τ

∗
j < T, j = 1, . . . , p. (1.2)

Researchers tend to be reluctant to miss any true positives (e.g., activated

regions), and so prefer a slight overestimation of A, while guaranteeing the

number (or rate) of false positives (i.e., inactivated regions in the selected set)

at a prescribed level. Therefore, we use the FDR tool to control the expected

proportion of false discoveries to handle the uncertainty in identifying A.
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1.2. Connection with the literature on change-point detection

Recently, testing for the existence and estimating the times of activations

(or change-points) for large-scale (or high-dimensional) time series have received

much attention in the literature on change-point detection, where the locations of

change-points, if they exist, are assumed to be shared across the time series; see,

for example, Bai (2010), Cho and Fryzlewicz (2015), Wang, Zou and Yin (2018),

and Wang and Samworth (2018). These methods study either global testing for

the existence of common change-points, or provide a consistent estimation of

the number and locations of change-points. In contrast, we aim to identify time

series that have encountered changes, rather than the change-points themselves.

Moreover, we allow component-wise asynchronous change-points.

A more related work is that of Jirak (2015), who considers a consistent

identification of the activation set A, such that the probability of making even

one false rejection, that is, the family-wise error rate (FWER), is controlled

asymptotically. However, FWER-oriented procedures are known to be very

conservative, motivating us to consider other uncertainty measures, such as the

FDR.

Prior studies have used the FDR tool to detect multiple change-points for a

single data sequence, with varying definitions of false discoveries associated with

the estimated change-points; see, for example, Hao, Niu and Zhang (2013), Li,

Munk and Sieling (2016), and Wang, Zou and Qiu (2022). Specifically, Wang,

Zou and Qiu (2022) determined the number of jumps in a regression curve, and

quantified the uncertainty of the estimated change-points using the FDR.

Quantifying the uncertainty in multiple change-point detection has become

an active research topic. Leveraging the approach of selective inference (Fithian,

Sun and Taylor (2014); Lee et al. (2016)), Hyun, G’Sell and Tibshirani (2018),

Hyun et al. (2021) and Jewell, Fearnhead and Witten (2022) developed valid tests

for a change in the mean associated with estimated change-points for univariate

data sequences, and Sugiyama et al. (2021) investigate multivariate scenarios.

Furthermore, Fryzlewicz (2023) detects localized regions in a data sequence, with

each region containing a change-point at a prescribed global significance level.

1.3. Developments of FDR methodologies

Benjamini and Hochberg (1995) originally proposed the notion of FDR, and

provided a procedure (called the BH method) that guarantees FDR control when

p-values are independent. The effect of dependence on the FDR control of the

BH method has been investigated widely in the literature; see, for example,

Benjamini and Yekutieli (2001), Storey, Taylor and Siegmund (2004), and Clarke

and Hall (2009). They suggest that the BH method could be valid under specific

dependence, but may become very conservative. On the other hand, some recent

studies have shown that the dependence structure can sometimes be informative,
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and could be used to improve the power; see Efron (2007) and Fan, Han and Gu

(2012).

Component-wise p-values are needed to apply the BHmethod (or its variants)

to current fMRI studies. For a time series in which a change may occur, we cannot

calculate the p-value precisely. However, we can approximate it asymptotically

using change-point theory (Csörgő and Horváth (1997)). Unfortunately, the

convergence to the asymptotic null distribution of the component-wise test

statistic is relatively slow, which may cause inaccurate approximations for

finite-sample applications. Although Jirak (2015) provides simulation-based

remedies, they rely heavily on the normality of the data distribution, and can

be computationally heavy for large-scale multiple testing. In addition, it remains

unknown how to incorporate spatial dependence among time series for better

FDR control and power enhancement.

New FDR control procedures for simultaneously testing p null hypotheses

have been proposed by abandoning direct usages of p-values; see, for example,

Barber and Candès (2015) and Du et al. (2023). The idea is to construct a

sequence of test statistics Wj, for j = 1, . . . , p, that fulfills the ranking property,

that is, Wj > 0, and tends to be large with a high probability if the index j

corresponds to a true non-null hypothesis. Furthermore, the symmetry property,

that is, the Wj corresponding to true null hypotheses are (asymptotically)

symmetric about zero. Then, for a given threshold L > 0, the number of false

discoveries can be approximated by #{j : Wj < −L}. Consequently, by choosing

the threshold

L̂ = L̂(W1, . . . ,Wp) = inf
L>0

{
#{j : Wj < −L}
#{j : Wj > L} ∨ 1

≤ α

}
, (1.3)

with the convention of inf ∅ = +∞, for a prescribed FDR level α, the procedure

rejects all null hypotheses corresponding to Wj > L̂, where a ∨ b stands for the

maximum of a and b. This controls the FDR under some mild conditions. Du

et al. (2023) propose using data-splitting strategies to construct Wj, providing

a novel mechanism to enhance the detection power by exploiting the underlying

dependence information, which directly motivates our method. However, our

contributions are still nontrivial from methodological, theoretical, and practical

aspects: (i) our null hypotheses incorporate temporal change patterns, and thus

the approach of Du et al. (2023) is not directly applicable; (ii) adding change-point

theory makes a theoretical analysis of the FDR validity much more complicated;

and (iii) the current problem is relevant in real applications such as fMRI data

analysis, and can be modified easily to meet different practical tasks; see Section

4 for further discussions.
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1.4. Organization of the paper

The rest of this paper is organized as follows. In Section 2, we introduce the

proposed SLIP method for discovering activated data sequences. Its asymptotic

validity on the FDR control is presented in Section 3. Section 4 includes its

variants for practical applications. Numerical studies are conducted in Section

5. Several concluding remarks are given in Section 6. Proofs of all theoretical

conclusions and additional numerical results are deferred to the Supplementary

Material.

1.5. Notation

For a ∈ R, ⌊a⌋ is the maximal integer less than or equal to a. Let 1(·)
be the indicator function. The cardinality of a set S is denoted by |S|. For

v = (v1, . . . , vp)
⊤∈ Rp, define diag(v) = diag(v1, . . . , vp) as a diagonal matrix with

diagonal elements v. Denote ∥v∥2 = (
∑p

j=1 v
2
j )

1/2 and ∥v∥∞ = max1≤j≤p |vj|. Let
vS be the sub-vector of v consisting of elements with indices that are in the set S.
For a square matrix M ∈ Rp×p, denote by λmax(M) and λmin(M) the maximum

and minimum of the eigenvalues of M, respectively. For a matrix M ∈ Rn×p, let

∥M∥2 = λ1/2
max(M

⊤M) = λ1/2
max(MM⊤) and ∥M∥1 = max1≤j≤p

∑n
i=1 |Mij|, where

Mij is the (i, j)th element of M. Let MS be the sub-matrix of M with columns

with indices in S. For M1,M2 ∈ Rn×p, M1◦M2 ∈ Rn×p is the Hadamard product

of M1 and M2.

2. Methodology

2.1. Our idea: independent setting

To fix the idea, we first consider a simplified setting in which all data

sequences are independent of each other, and thus Σ = diag(σ11, . . . , σpp), with

σjj > 0, for j = 1, . . . , p, and σjj are known. A treatment for an unknown

correlated Σ is deferred to Section 2.2. The key is to construct a sequence of

activation statistics Wj for H0j, j = 1, . . . , p, in (1.2) that fulfills the symmetry

and ranking properties (see Section 1.3).

Our construction is based on a specialized sample-splitting strategy, that is,

the order-preserved splitting (OPS) proposed by Zou, Wang and Li (2020), which

was originally used to estimate the number of change-points. Collect the BOLD

responses during the ith scan as Zi = (Zi1, . . . , Zip)
⊤, for i = 1, . . . , T . The data

are temporally split into two disjoint parts,

Z1 := {Z(1)
i : i = 1, . . . , T1} = {Zi, i = 1, . . . , T}\Z2 and

Z2 := {Z(2)
i : i = 1, . . . , T2} =

{
Zi : i = r, 2r, . . . ,

⌊
T

r

⌋
r

}
,

where r > 1 is an integer, discussed in Section 4.1, T2 = ⌊T/r⌋, and T1 = T − T2.
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Rather than splitting randomly, the OPS preserves the original change patterns

during the time course of an fMRI experiment, as much as possible. Then, the

sample Z1 is mainly used to locate component-wise activation times, and the

sample Z2 plays a critical role in symmetrization.

First, a change-localizing algorithm to estimate possible activation times is

applied to the data split Z1. To facilitate the presentation, we consider the

traditional cumulative summation (CUSUM)-based procedure; other candidates

that capture intrinsic change patterns are discussed in Section 4.2. Specifically,

for j = 1, . . . , p, if a change occurs to the jth data sequence of Z1, in other words,

that data sequence is activated somewhere, the activation time is identified as

τ̂
(1)
j = argmax

τ∈(⌊T1ϱ⌋,T1−⌊T1ϱ⌋]

√
τ(T1 − τ)

T1

∣∣∣Z̄(1)
j (τ, T1)− Z̄

(1)
j (0, τ)

∣∣∣ , (2.1)

where Z̄
(k)
j (ℓ1, ℓ2) = (ℓ2 − ℓ1)

−1
∑ℓ2

ℓ=ℓ1+1 Z
(k)
ℓj , Z

(k)
ℓj is the jth element of Z

(k)
ℓ , for

j = 1, . . . , p and k = 1, 2, and ϱ ∈ (0, 1/2) is a prespecified constant, discussed

in Section 4.1. The potential component-wise activation times in the data split

Z2 can then be approximated by τ̂
(2)
j = ⌊T2τ̂

(1)
j /T1⌋, for j = 1, . . . , p. If τ ∗

j < T

and is not near the boundary, and the activation signal is not too weak, then we

expect that both τ̂
(k)
j , for k = 1, 2, can recover τ ∗

j well (up to a data-splitting

ratio).

A simple, but important fact is that, conditional on the data split Z1, the

CUSUM statistics based on Z2,

ξ
(2)
j =

√
τ̂
(2)
j

(
T2 − τ̂

(2)
j

)
T2

{
Z̄

(2)
j (τ̂

(2)
j , T2)− Z̄

(2)
j (0, τ̂

(2)
j )

}
, j = 1, . . . , p, (2.2)

are asymptotically normally distributed. In addition, for inactivated data

sequences, the corresponding ξ
(2)
j are asymptotically symmetric about zero. This

fact motivates the construction of our activation statistics

Wj,indep =
ξ
(1)
j ξ

(2)
j

σjj

, j = 1, . . . , p, (2.3)

where

ξ
(1)
j =

√
τ̂
(1)
j

(
T1 − τ̂

(1)
j

)
T1

{
Z̄

(1)
j (τ̂

(1)
j , T1)− Z̄

(1)
j (0, τ̂

(1)
j )

}
, j = 1, . . . , p

are constructed based on the data split Z1. Thus, we concluded that the

Wj,indep for j ̸∈ A are conditionally (on Z1) asymptotically symmetric about zero.

Moreover, for an activated data sequence, if both τ̂
(k)
j , for k = 1, 2, are tracking

τ ∗
j well, then both ξ

(k)
j , for k = 1, 2, can recover an activation signal (including

the sign and magnitude). Consequently, the products Wj,indep for j ∈ A are
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positive and large, regardless of the signs of the activation signals. Hence, the

construction fulfills the ranking and symmetry properties simultaneously.

Let α be the nominal FDR level. A discovery is made if Wj,indep passes a

threshold L̂indep = L̂(W1,indep, . . . ,Wp,indep) (see Eq. (1.3)). Consequently, the

estimate of the activation set is Âindep = {1 ≤ j ≤ p : Wj,indep ≥ L̂indep}.

2.2. The SLIP method: the blessing of dependence

In real fMRI applications, data sequences are spatially dependent, which

questions the validity of Âindep. Strong correlations may break down the

symmetry property of all inactivated Wj,indep (i.e., j ̸∈ A), and thus distort the

FDR control and make Âindep unreliable (see Figure 2(i)). Furthermore, ignoring

component-wise dependence could make the procedure less powerful, even if the

FDR is under control under a weak dependence structure (see Figure 2(ii)). In

this section, we propose the SLIP method, which incorporates underlying spatial

dependence to enhance the detection power, while still controlling the FDR at

some prescribed level. The method comprises four steps: Splitting the data

into two parts, Locating component-wise activation times based on one sample,

Incorporating the spatial dependence among the data sequences, and Pooling the

summary statistics from separate samples.

We observe that ξ
(2)
j (see Eq. (2.2)) for inactivated data sequences has a zero

mean, and we denote βj = E(ξ(2)j | Z1) for activated data sequences (i.e., j ∈ A).

Let Ξjk = Cov(ξ
(2)
j , ξ

(2)
k | Z1), for 1 ≤ j, k ≤ p. Note that the quantities βj and

Ξjk all depend on the data split Z1. Motivated by the work of Du et al. (2023),

who consider the FDR control under general dependence by recasting the original

mean testing problems into a regression framework, we introduce the following

working model for ξ(2) = (ξ
(2)
1 , . . . , ξ(2)p )⊤:

ξ(2) ≈ β + ϵ, E(ϵ) = 0 and Var(ϵ) =: Ξ, (2.4)

where β is a p-dimensional vector with jth element βj if j ∈ A, and zero otherwise,

and Ξ is a p× p matrix with (j, k)th element Ξjk for 1 ≤ j, k ≤ p. Equivalently,

y2 ≈ Xβ + ϵ̃, E(ϵ̃) = 0 and Var(ϵ̃) = I, (2.5)

where X = Ξ−1/2, y2 = Ξ−1/2ξ(2), and ϵ̃ = Ξ−1/2ϵ. The critical idea in Du et al.

(2023) is to use least-squares (LS) estimates on a narrower subset of components,

say Ŝ, that captures nearly all nonzero signals, to replace the counterparts in

the original control statistics. The LS estimates de-correlate the dependence

and, in general, result in a higher signal-to-noise ratio (SNR). Hence, dependence

becomes a blessing in large-scale multiple testing problems.
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Tailored for our scenario, we construct Ŝ using a simple thresholding rule,

Ŝ =

{
1 ≤ j ≤ p :

|ξ(1)j |
σ̂
1/2
jj

≥ tp

}
, (2.6)

to screen out some inactivated data sequences, with some threshold value tp
(specified in Section 4.1), so that activated data sequences with large signals

tend to be selected (see Lemma S2.6 of the Supplementary Material), where

σ̂jj are estimates of σjj, for j = 1, . . . , p, specified in Section 4.3. Once Ŝ is

selected, the LS solutions are obtained by minimizing ∥y2 − XŜβŜ∥22, that is,

β̃j := (ej)
⊤
Ŝ(X

⊤
ŜXŜ)

−1X⊤
Ŝy2, for j ∈ Ŝ, where ej is a p-tuple with all components

being zero, except the jth, which is one. Let β̃j = 0, for j ̸∈ Ŝ. If the activation

set A is covered in the selected set Ŝ, then E(β̃j | Z1) = E(ξ(2)j | Z1) and

Cov(β̃j, β̃k | Z1) = Cov(ξ
(2)
j , ξ

(2)
k | Z1)− (ej)

⊤
ŜΞŜ,ŜcΞ

−1

Ŝc,Ŝc
ΞŜc,Ŝ(ek)Ŝ

< Cov(ξ
(2)
j , ξ

(2)
k | Z1),

(2.7)

which motivates us to replace ξ
(2)
j in the original activation statistics Wj,indep with

β̃j to increase the SNR. However, the LS solutions β̃j cannot be used directly,

because they depend on the unknown Σ via Ξ, because Ξ = J ◦Σ, where J is a

p× p matrix with (j, k)th element

Jjk :=

√√√√(τ̂
(2)
j ∧ τ̂

(2)
k ){T2 − τ̂

(2)
j ∨ τ̂

(2)
k }

(τ̂
(2)
j ∨ τ̂

(2)
k ){T2 − τ̂

(2)
j ∧ τ̂

(2)
k }

, (2.8)

for 1 ≤ j, k ≤ p. Suppose we have a good estimate of Σ, say Σ̂, obtained based on

the data split Z1 (see Section 4.3). A remedy is to use the plugged-in counterparts

β̂j := (ej)
⊤
Ŝ(X̂

⊤
ŜX̂Ŝ)

−1X̂⊤
Ŝ ŷ2, for j ∈ Ŝ, where X̂ = Ξ̂−1/2, ŷ2 = Ξ̂−1/2ξ(2), and

Ξ̂ = J ◦ Σ̂. Hence, we propose the activation statistics as

Wj,SLIP =


(
ξ
(1)
j /σ̂

1/2
jj

)
×

(
β̂j/V̂

1/2
jj

)
, j ∈ Ŝ,

0, j ̸∈ Ŝ,
(2.9)

where V̂jj = (ej)
⊤
Ŝ(X̂

⊤
ŜX̂Ŝ)

−1(ej)Ŝ is the plugged-in estimate of Var(β̂j | Z1), for

j ∈ Ŝ. The FDR threshold is thus determined according to the rule in Eq. (1.3),

say L̂SLIP = L̂(W1,SLIP, . . . ,Wp,SLIP). Consequently, the identified set of activated

data sequences is given by ÂSLIP = {j : Wj,SLIP ≥ L̂SLIP}.
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3. Asymptotic Properties

In this section, we investigate the validity of the proposed SLIP method in

terms of FDR control in the asymptotic sense, that is, both T and p jointly

diverge to infinity. Let p1 = |A| and p0 = p− p1 be the numbers of activated and

inactivated data sequences, respectively. Let S = |Ŝ| be the number of selected

data sequences after screening, and S0 = |Ŝ\A| be the number of selected data

sequences that are still inactivated. Let δ∗j = µτ∗
j +1,j − µτ∗

j ,j
, for j ∈ A, be

the values of the activation signals (changes of mean levels) for activated data

sequences, and set δ∗j = 0 for inactivated ones (i.e., j ̸∈ A). We focus on scenarios

in which δ∗j = O(1) uniformly, for all j = 1, . . . , p. Let ε
(k)
ij = Z

(k)
ij − E(Z(k)

ij ) be

the random errors, for k = 1, 2, j = 1, . . . , p, and i = 1, . . . , T , and ε
(k)
i =

(ε
(k)
i1 , . . . , ε

(k)
ip )⊤. Recall that X = Ξ−1/2 and X̂ = Ξ̂−1/2, where Ξ = J ◦ Σ

and Ξ̂ = J ◦ Σ̂. Denote H = (X̂⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂. For 1 ≤ j ̸= k ≤ |Ŝ|, let

Vjk = (ej)
⊤
ŜVar(β̂Ŝ | Z1)(ek)Ŝ and Rjk = Vjk/

√
VjjVkk.

Assumption 1 (Activation times). There exists some constant cτ ∈ (0, 1/2),

such that cτ ≤ τ ∗
j /T ≤ 1− cτ uniformly, for j ∈ A.

Assumption 2 (Activation signals). There exists a partition of A, that is,

A = A∗ ∪ (A\A∗), such that, as T, p → ∞, maxj∈A\A∗ T (δ
∗
j )

2/ log T = O(1) and

minj∈A∗ T (δ
∗
j )

2/ log T → ∞. Moreover, p1∗ := |A∗| → ∞ as T, p → ∞.

Assumption 3 (Thresholding). With probability one, S ≤ s̄p ≍ T c1, for some

nonrandom sequence s̄p and constant c1 > 0, p1∗ ≤ S0/α, and (p1 − p1∗)/S0 → 0

as T, p → ∞.

Assumption 4 (Random errors). There exist two sequences mp1 > 0 and

mp2 > 0, such that E{∥ε(1)
1 ∥θ∞} ≤ mθ

p1 and E{∥Hε
(2)
1 ∥θ∞ | H} ≤ mθ

p2, for some

constant θ > 2. In addition, as T → ∞,
√
log(Tp1∗)T

−1/2+1/θ+ϵ1mp1 → 0, and

s̄c2p T−1/2+1/θ+ϵ1mp2 → 0, for some sufficiently small constant ϵ1 > 0 and some

constant c2 > 0.

Assumption 5 (Covariance). (i) There exist two constants cκ and cκ, such that

0 < cκ ≤ λmin(X
⊤
ŜXŜ) ≤ λmax(X

⊤
ŜXŜ) ≤ cκ holds with probability approaching

one as T, p → ∞; (ii) There exist two constants cσ and cσ, such that 0 < cσ ≤
σjj ≤ cσ uniformly, for j = 1, . . . , p; (iii) There exists a sequence rp > 0, such

that, for j ∈ Ŝ\A, |Rj| ≤ rp, where Rj = {k ∈ Ŝ\A : |Rjk| ≥ c3(log T )
−2−ϵ2},

for some constant c3 > 0 and sufficiently small constant ϵ2 > 0; in addition,

rp/p1∗ → 0 as T, p → ∞.

Assumption 6 (Accuracy of covariance matrix estimation). If p1∗ = p1,

there exists a sequence ωp > 0, such that ∥Σ̂ − Σ∥2 < ωp, where ωp satisfies

ωp/min{1, λ2
min(Σ)} → 0 as T, p → ∞. If p1∗ < p1, assume ∥(X⊤

ŜXŜ)
−1X⊤

ŜXŜc

βŜc∥∞ = Op(
√
log s̄p), and there exist two sequences up > 0 and ωp > 0, such that
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∥X⊤
ŜXŜc∥1 ≤ up and ∥Σ̂ −Σ∥2 < ωp, with (p1 − p1∗)upωp/min{1, λ2

min(Σ)} → 0

as T, p → ∞.

Assumption 1 requires that coordinate-wise activation times are not at the

boundaries, which is frequently considered in the literature on change-point

detection (Csörgő and Horváth (1997); Bai (2010)). Assumption 2 separates

the set of activated signals into two parts, A∗ and A \ A∗, according to the

change magnitudes. Jirak (2015) discusses the consistent selection of the set

of activated data sequences when p1 = p1∗, that is, T (δ∗j )
2/ log T → ∞, for all

δj ̸= 0. Valid FDR control can be achieved, even allowing for some weaker signals

(i.e., p1∗ < p1). Assumption 3 restricts the size of the selected set S, which can be

guaranteed by selecting a large Ŝ. For example, we can choose the components

corresponding to the first d = ⌊T/3⌋ largest |ξ(1)j |/σ̂1/2
jj in practice, motivated

by the variable-screening procedures (Fan and Lv (2008)). Assumption 4 places

moment constraints on the random noise, which can be verified for sub-Gaussian

noise. Assumption 5 imposes restrictions on the dependence structures across

different data sequences. In particular, in Assumption 5–(iii), Rjk measures

the dependence among the de-correlated (by LS estimates) data sequences, in

which there should not be many data sequences with strong correlations (Du

et al. (2023); Xia, Cai and Sun (2020)). Assumption 6 places restrictions on the

estimated covariance matrix. To better illustrate Assumptions 5–6, we consider a

special scenario in which all changes can happen only at a common change-point,

which is widely investigated in the literature on high-dimensional change-point

detection (Bai (2010); Cho and Fryzlewicz (2015); Wang and Samworth (2018));

correspondingly, we obtain a certain common change-point estimator.

Lemma 1. Assume that all changes can happen only at a common change-

point that is not at the boundary, and that the signal magnitude satisfies

T (δ∗j )
2/ log T → ∞, for δ∗j ̸= 0. Assumptions 5–6 are satisfied, provided that Σ

has uniformly bounded eigenvalues, |Rj| ≤ rp, for j ∈ Ŝ \A satisfying rp/p1 → 0,

and ∥Σ̂−Σ∥2 → 0 as T, p → ∞.

Remark 1. The condition involved requires a consistent estimation of Σ. If the

change-points can be precisely recovered, we can use the centered data to estimate

Σ by using state-of-the-art high-dimensional covariance estimation procedures

(Bickel and Levina (2008b); Fan, Liao and Mincheva (2013); Cai and Liu (2011)).

If the change-points are consistently estimated with a fine precision, we conjecture

that this conclusion also holds under some conditions. In fact, high-dimensional

covariance matrix recovery in the presence of change-points is challenging even

for synchronous change patterns, which deserves further research; see Section 4.3.

Remark 2. If we further permit the existence of weaker signals (i.e., p1∗ < p1), we

discuss how Assumption 6 can be verified by considering two specific covariance

structures. Let Up := ∥X⊤
ŜXŜc∥1 and Vp := ∥(X⊤

ŜXŜ)
−1X⊤

ŜXŜcβŜc∥∞. It can
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be shown that (i) Up = Vp = 0 and λmin(Σ) = 1 if Σ = Ip, and (ii) Up ≤ 1,

Vp ≤ (p1 − p1∗)(p − s̄p)
−1

√
log s̄p, and λmin(Σ) = 1 − ρ if Σ = ρ11⊤+ (1 − ρ)I.

Consequently, in either case, by choosing up = 1, Assumption 6 holds, provided

that (p1 − p1∗)∥Σ̂−Σ∥2 → 0 and (p1 − p1∗)/(p− s̄p) → c ∈ [0,+∞) as T, p → ∞.

Theorem 1. Under Assumptions 1–6, for any prespecified α ∈ (0, 1),

FDP :=
#{j : Wj,SLIP ≥ L̂SLIP, j /∈ A}
#{j : Wj,SLIP ≥ L̂SLIP} ∨ 1

≤ α+ op(1),

and consequently lim supT,p→∞ E(FDP) ≤ α.

Proposition 1. Under Assumptions 1–6, Pr(A∗ ⊆ ÂSLIP) → 1 as T, p → ∞.

Theorem 1 shows that the SLIP method asymptotically controls the false

discovery proportion (FDP), and thus the FDR, at the nominal FDR level α.

Note that the procedure developed under the independent setting (see Eq. (2.3))

can control the FDR asymptotically under some correlation restrictions (see

Assumption 5–(iii)). The current dependence-assisted scheme helps raise the

SNR in the sense of Eq. (2.7). Proposition 1 shows that all strong signals can be

detected with probability tending to one.

We defer the proofs of Theorem 1 and Proposition 1 to Appendix S2 of

the Supplementary Material. Remarkably, the working model in Eq. (2.4) and

(2.5) is presented only for a convenient introduction to the SLIP procedure. The

approximation error induced by the uncertainty of the change-localizing algorithm

is handled delicately in the proof, which makes the theoretical development

much more involved than that of Du et al. (2023). In addition, we consider

the estimation uncertainty of Σ̂ in the proof.

4. Practical Guidelines

4.1. Tuning parameters

For the data split ratio r, we recommend using r = 3, because the data split

Z1 is responsible for identifying the activation times, which has a direct impact

on the detection ability. The boundary parameter ϱ ∈ (0, 1/2) is frequently

considered in the literature (Csörgő and Horváth (1997); Yu and Chen (2021)) to

avoid certain boundary problems, and can be set as ϱ = 0.1 for practical purposes.

The threshold parameter tp (see Eq. (2.6)) can be chosen as tp =
√
C log T1, with

C = 1.5, which yields satisfactory performance for both FDR control and power

enhancement, as discussed in Section 5.

4.2. Other change patterns

In some task-related fMRI experiments, researchers give multiple stimuli to

subjects in sequence, and thus multiple change-points may exist in each data
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sequence. The proposed method can be extended to multiple change-point

scenarios, because it can be thought of as the first step of a binary segmentation

change-detection algorithm. It can be shown that the highly “significant” change-

point can be recovered consistently in this step under some conditions (Fryzlewicz

(2014)). Furthermore, variants of the binary segmentation algorithm (Fryzlewicz

(2014); Eichinger and Kirch (2018)) are also feasible. On the other hand, if we

have some priors on a specific data distribution, the log-likelihood ratio statistic

(Csörgő and Horváth (1997)) can be employed instead of the CUSUM statistic,

which yields better change-point estimators.

In experiments in which some brain regions are activated simultaneously,

changes may happen in a small part of data sequences simultaneously. If we have

such prior knowledge, we can use high-dimensional change-point methodologies

(Jirak (2015); Wang and Samworth (2018)) to identify the common change-point

as a single τ̂ = τ̂
(1)
j , for j = 1, . . . , p, to which we can still apply the SLIP method.

4.3. Estimation routines for the covariance matrix

High-dimensional covariance matrix estimation is a fundamental problem. To

achieve consistent estimations, we typically need additional structural assump-

tions on Σ, including banded or sparse assumptions or certain low-dimensional

representations, such as factor models; see, for example, Bickel and Levina

(2008a), Bickel and Levina (2008b), Friedman, Hastie and Tibshirani (2007),

and Fan, Liao and Mincheva (2013). However, these methods cannot be applied

directly in the presence of mean changes, as in our model (1.1).

The difference-based covariance estimators are good choices in the presence of

change-points. Consistency can be reached under low-dimensional scenarios if the

number of change-points is not too high and the change magnitudes are not too

large (Rice (1984); Chan (2022)). However, for an asynchronous change pattern

(1.1), where τ ∗
j are not required to be the same, difference-based estimators may

bring unnecessary bias accumulation, and thus may be not a good candidate,

even under low-dimensional scenarios.

Hence, we turn to a simple change-removing strategy to alleviate the bias

induced by change-points. In particular, we centralize each data point in Z1 by

subtracting the estimated mean, that is,

Z̃
(1)
ij = Z

(1)
ij − 1(i ≤ τ̂

(1)
j )Z̄

(1)
j (0, τ̂

(1)
j )− 1(i > τ̂

(1)
j )Z̄

(1)
j (τ̂

(1)
j , T1).

Then, we can apply state-of-the-art high-dimensional covariance estimation

procedures to the centered data {Z̃ij, i = 1, . . . , T1, j = 1, . . . , p}, which yields

satisfactory performance in our numerical studies. Note that the covariance may

be underestimated, because some data sequences do not contain a change. We

conjecture that a refitted cross-validation strategy (Fan, Guo and Hao (2012))

may alleviate this phenomenon. In fact, high-dimensional covariance estimation
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in the presence of change-points is challenging, especially for asynchronous change

patterns, which warrants future research.

4.4. A LASSO-based screening strategy

In Section 2, we provided a thresholding rule tp (see Eq. (2.6)) to obtain a

narrower subset of coordinates, Ŝ. Here, we offer another candidate strategy for

screening redundant data sequences, upon which the LS strategy can be applied.

We revisit the working model (2.5) for ξ(2). Note that the nonzero

components of β correspond to activated data sequences. If the number of

activated data sequences is not very large, intuitively, we can use a sparse estimate

of β by using, for example, the LASSO method (Tibshirani (1996)). Specifically,

we achieve this based on the data split Z1, that is,

β̌ := argmin
γ

{
1

2
∥ŷ1 − X̂γ∥22 + λ∥γ∥1

}
,

where ŷ1 = Ξ̂−1/2ξ(1) and λ is a tuning parameter that can be determined using

cross-validation or some information criteria, such as the AIC. Then, we select

the set of nonzero components of β̌ as Ŝ. Finally, the activation statistics can be

constructed as

Wj,LASSO =

{
e⊤jβ̌ × β̂j/V̂jj, j ∈ Ŝ,
0, j ̸∈ Ŝ.

. (4.1)

In contrast to the thresholding rule that solely compares components of ξ(1),

the LASSO-based screening strategy incorporates the dependence information

among all components, to a certain degree. Hence, it should be more efficient

when the activation signal is relatively weak. Our numerical results also show

that the SLIP method combined with the LASSO strategy performs satisfactorily.

A theoretical investigation certainly warrants future research.

4.5. Temporal dependence

In some fMRI data analyses, coordinate-wise temporal correlations exist,

especially in contiguous sampling periods. Although the asymptotic FDR validity

is established by assuming that the Zi are independent, we may expect the

proposed SLIP method to be applicable, with slight modifications, for temporally

dependent cases. Motivated by the idea of a moving block bootstrap for

stationary series (Kunsch (1989)), we suggest a local averaging-based procedure

capable of alleviating the effect of auto-correlations, to a certain degree. For each

data sequence, we first partition the time-ordered observations into a sequence of

blocks of roughly the same length, and then take the average of the observations

in each block as a new pseudo observation. These pseudo observations then

constitute a new data sequence, in which the temporal correlation tends to
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be weakened. Then, we can apply the proposed SLIP method to the newly

constructed data.

4.6. R package

To facilitate the implementation of the proposed SLIP method, we have

developed an R package called SLIP, which is available at https://github.com/

MengtaoWen/SLIP.

5. Experiments

5.1. Synthetic data

To evaluate the performance of the proposed SLIP method in terms

of discovering activated data sequences, we first introduce two benchmark

procedures by applying the BH method. To test each H0j (see Eq. (1.2)), for

j = 1, . . . , p, we adopt the CUSUM statistics based on the entire data, that is,

1

σ̂
1/2
jj

max
1≤τ<n

√
τ(T − τ)

T

∣∣∣∣∣1τ
τ∑

i=1

Zij −
1

T − τ

T∑
i=τ+1

Zij

∣∣∣∣∣ , (5.1)

which converges in distribution to an extreme value distribution under H0j

(Csörgő and Horváth (1997)). Hence, we can calculate the associated p-values

using the asymptotic null distribution. We refer to this benchmark procedure

as BH-asymp. Jirak (2015) proposes a simulation-based approach that mimics

the null distribution by generating the data Zij
i.i.d.∼ N(0, 1), and recalculates

the CUSUM statistics in Eq. (5.1) repeatedly. We refer to this procedure as

BH-simul. For our method, we consider three variants: the SLIP method with

activation statistics Wj,indep in Eq. (2.3), ignoring the dependence information

(see Section 2.1); the SLIP method with activation statistics Wj,SLIP, together

with the thresholding rule (see Eq. (2.9)); and the SLIP method with activation

statistics Wj,LASSO, combined with the LASSO screening strategy (see Section

4.4). These three procedures are named SLIP-indep, SLIP-thresh, and SLIP-

lasso, respectively, for notational convenience. The estimation of the unknown

covariance matrix follows the guidelines in Section 4.3, together with some state-

of-the-art covariance matrix estimation routines, specified later. We implement

these procedures in the R package SLIP to facilitate practical use. We set the

nominal FDR level α = 20%. We conduct 500 replications to estimate the FDR

and the power of each procedure, where the latter is defined as the proportion of

discovered activated data sequences to all activated data sequences.

It is well known that the validity of the BH method is guaranteed if the

p-values are independent. Hence, we first conduct a simulation study by setting

Σ = I to investigate the performance of the considered procedures. For now,

we assume Σ is known. The random errors are generated following (i) a normal

https://github.com/MengtaoWen/SLIP
https://github.com/MengtaoWen/SLIP
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Figure 1. Empirical FDR and power of the SLIP and BH methods when (T, p) =
(120, 800) under the independent scenario with Σ = I.

distribution, and (ii) a t-distribution with degrees of freedom five. We set the

proportion of activated data sequences p1 = ⌊0.15p⌋, the indices of which are

chosen randomly from {1, . . . , p}. For each activated data sequence, the activation

time τ ∗
j is sampled randomly from {⌊Tϱ⌋+ 1, . . . , T − 1− ⌊Tϱ⌋}, with ϱ = 0.05,

and the change magnitude δ∗j is first sampled uniformly from the interval [δ −
0.1, δ + 0.1] with δ > 0.1, and then its sign is flipped with probability 0.5, where

δ is a parameter controlling the signal strength.

Figure 1 depicts the empirical FDR and the power of the SLIP and BH

methods when (T, p) = (120, 800) under the independent scenario, where δ takes

values from {0.6, 0.8, 1.0, 1.2}. When the data are normally distributed, we

observe that all procedures maintain the nominal FDR level and have comparable

power, but that BH-asymp exhibits conservative performance (it makes fewer

discoveries than the others do). When the data are from a t-distribution, BH-

asymp is still conservative, and fails to control the FDR, even for low signal

scenarios, which may be due to the quite slow convergence to the asymptotic

null distribution. BH-simul has inflated FDR levels, and thus unnecessarily

higher power, which is expected, because it uses normally distributed samples

to approximate the null distribution, and thus is sensitive to the normality of

the data distribution. In contrast, the proposed SLIP procedures perform very

well in terms of both FDR and power, as in the normal scenario. Moreover,

the performance difference between SLIP-indep, SLIP-thresh, and SLIP-lasso is

negligible.

To investigate the impact of the dependence structure, we conduct simulation

experiments with different patterns of covariance matrices: Scenario-(i) is a

compound symmetric matrix, the elements of which are all ρ, except the diagonal



ACTIVATION DISCOVERY WITH FDR CONTROL 1641

Method BH-asymp BH-simul SLIP-indep SLIP-thresh SLIP-lasso

Scenario-(i)

0.0

0.1

0.2

0.3

0.4

Scenario-(ii)

F
D
R

0.00 0.25 0.50 0.75
0.00

0.25

0.50

0.75

1.00

P
o
w
er

0.6 0.8 1.0 1.2

δ

Figure 2. Empirical FDR and power of the SLIP and BH methods when (T, p) =
(120, 800) under the dependent scenario, where Σ is specified as either a compound
symmetric (i) or autoregressive (ii) structure.

elements, which are equal to one; and Scenario-(ii) is a matrix with a first-order

autoregressive structure, in which the (i, j)th element is ρ|i−j|, where ρ in both

cases controls the degree of the correlations. The data-generating process is

the same as earlier, with the random error distributed as a t-distribution with

degrees of freedom five. For Scenario-(i), the covariance matrix estimation routine

is chosen as the POET proposed by Fan, Liao and Mincheva (2013), and for

Scenario-(ii), it is chosen as the thresholding rule in Lee and Lee (2021). The

left panel of Figure 2 shows the empirical FDR and power of the SLIP and BH

methods when (T, p) = (120, 800), δ = 0.6, and Σ is chosen as in Scenario-(i),

with ρ ranging over the values {0, 0.3, 0.6, 0.9}. The right panel of Figure 2 shows

the results when (T, p) = (120, 800), Σ is chosen as in Scenario-(ii), with ρ = 0.8,

and δ is selected from the values {0.6, 0.8, 1.0, 1.2}. Again, BH-asymp is quite

conservative, and BH-simul has inflated FDR levels, in most cases. SLIP-indep

also has inflated FDR levels when the correlations among the data sequences

are strong, for example, in (i). In contrast, SLIP-thresh and SLIP-lasso perform

well, with good power, while maintaining the nominal FDR level. In addition,

SLIP-lasso sometimes has slightly better power than that of SLIP-thresh, because

it uses dependence information to construct the narrow set containing activated

data sequences.

5.2. An fMRI data analysis

As an illustrative example, we apply the SLIP method to analyze the task-

related fMRI data in Mitchell et al. (2008), who study the brain activation
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Figure 3. A sliced map of the estimated component-wise change magnitude scaled by
the estimated component-wise variance, discovered by SLIP-thresh (left) and SLIP-lasso
(right). The boundaries of the discovered ROIs are marked in red.

associated with thinking about concrete nouns to examine how the human brain

represents and organizes conceptual knowledge. The stimuli are line drawings

and noun labels of some concrete objects. Each stimulus item is presented, and

the participant is instructed to think about the object’s properties, followed by

a rest period. A sequence of 360 images of the participant was collected and

processed, with each brain image containing about 21,000 voxels. These voxels

were divided into 90 ROIs (Tzourio-Mazoyer et al. (2002)), generally believed

to be anatomically and functionally distinct. The ROIs vary greatly in size.

Following the strategy of Wehbe et al. (2015), to achieve size uniformity, we

further divide the ROIs into regions with 100 voxels or fewer, yielding p = 264

ROIs. We also discard five images from the data sequence to ensure there is no

signal leakage due to the slow decay of the hemodynamic responses (Wehbe et al.

(2015)). Then, we use the average of every 10 consecutive images as our data for

analysis to mitigate potential temporal correlations (see Section 4.5), and thus

T = 35. The processed data are available in the SLIP package. We estimate the

covariance matrix using the POET routine (Fan, Liao and Mincheva (2013)), and

set the nominal FDR level at α = 20% to implement the SLIP method.

Figure 3 presents a sliced brain map of the estimated component-wise change

magnitude, scaled by the estimated component-wise variance, discovered by

SLIP-thresh and SLIP-lasso, respectively. A large absolute value in the map

indicates a very likely change. The two procedures discover 10 and 16 ROIs,

respectively, and have six in common. The boundaries of the discovered ROIs

are marked in red, and the names of the discovered ROIs are listed in Appendix S4

of the Supplementary Material (Table S1). We observe that the detected regions

correspond to those with larger absolute values, especially for the commonly

discovered ones. The two procedures differ in a few regions, with relatively

more minor absolute values. These may be false positives, and need further

examination.
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In addition, an interesting, yet reasonable phenomenon is that contiguous

regions tend to be activated at the same time. Other slices of the brain maps

are collected in Appendix S4 of the Supplementary Material (Figures S3–S4),

revealing a similar pattern. Whether such “clustering” information can be used

to enhance the detection ability, while still guaranteeing some notion of the FDR,

warrants further research.

6. Conclusion

We have investigated the uncertainty in selecting activated data sequences

that encounter asynchronous changes by leveraging the FDR tool. We propose

the SLIP method to guarantee the FDR being controlled at a prescribed level,

while also incorporating potential dependence structures. There is still some

room for improvement. For instance, empirical numerical results reveal that

the identified regions are usually spatially contiguous. Such information of

spatially structured data sequences may improve the power, for example, by

using some local aggregation strategy (Zhang, Fan and Yu (2011)). In addition, it

would be interesting to extend the proposed method beyond mean-level changes.

For example, a correlation-level change model is more suitable for studying

the connectivity between distinct brain regions (Xia and Li (2017)). Another

interesting direction is to estimate a high-dimensional covariance matrix in

the presence of change-points, especially for the current asynchronous change

patterns. Tailoring the difference- and change-removing-based procedures to

achieve this purpose warrants future research.

Supplementary Material

The online Supplementary Material includes proofs of all our theoretical

results, as well as some additional numerical experiments.
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