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Abstract: In observational studies, treatments are typically not randomized and,

therefore, estimated treatment effects may be subject to a confounding bias. The

instrumental variable (IV) design plays the role of a quasi-experimental handle be-

cause the IV is associated with the treatment and only affects the outcome through

the treatment. In this paper, we present a novel framework for identification and in-

ferences, using an IV for the marginal average treatment effect amongst the treated

(ETT) in the presence of unmeasured confounding. For inferences, we propose

three semiparametric approaches: (i) an inverse probability weighting (IPW); (ii)

an outcome regression (OR); and (iii) a doubly robust (DR) estimation, which is

consistent if either (i) or (ii) is consistent, but not necessarily both. A closed-form

locally semiparametric efficient estimator is obtained in the simple case of a binary

IV, and outcome, and the efficiency bound is derived for the more general case.

Key words and phrases: Counterfactuals, double robustness, effect of treatment on

the treated, instrumental variable, unmeasured confounding.

1. Introduction

Epidemiology studies and social sciences often aim to evaluate the effect of

a treatment. For practical reasons, the average treatment effect among treated

individuals (ETT) is sometimes of greater interest than the treatment effect in

the population. In epidemiology studies concerning the toxic effects of a new drug

or the treatment effect only on those who take the treatment, the ETT is the

parameter of interest, and is known as “the effect of exposure on the exposed,”

or “standardized morbidity” (Miettinen (1974); Greenland and Robins (1986)).

In econometrics, ETT is often used to evaluate the effects of a policy on those

to whom it applies. For example, Angrist (1995) evaluated the average effect of

military service on the civilian earnings for veterans. Heckman, Ichimura and

Todd (1997, 1998) evaluated the average effect of job training on the program

participants.
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In observational or randomized studies with noncompliance, a primary chal-

lenge is the presence of unmeasured confounding, that is, the outcomes between

treatment groups may differ, not only because of the treatment effect, but also

because of unmeasured factors that may affect the treatment selection.

Instrumental variables (IV) are useful in addressing unmeasured confound-

ing. An IV is associated with the treatment and affects the outcome only through

the treatment. The key idea of the IV method is to extract exogenous variation

in the treatment that is unconfounded with the outcome, and to take advantage

of this bias-free component to make a causal inference about the treatment effect

(Robins (1989); Angrist, Imbens and Rubin (1996); Heckman (1997)).

The development of the IV approach can be traced back to Wright (1928) and

Goldberger (1972) under linear structural equations in econometrics. Imbens and

Angrist (1994), Angrist, Imbens and Rubin (1996), and Heckman (1997) formal-

ized the IV approach within the framework of potential outcomes or counterfactu-

als. Under additive and multiplicative structural nested models (SNMs), Robins

(1989) and Robins (1994) evaluated the corresponding average treatment effect

among treated individuals (ETT), conditional on the IV and observed covariates.

Identification is achieved by assuming a certain degree of homogeneity with re-

gard to the IV in an SNM of the conditional ETT (Hernán and Robins (2006)).

Mainly, the assumption states that the magnitude of the conditional ETT does

not vary with the IV. This is also referred to as the no-current treatment value in-

teraction assumption. Under a similar identifying assumption, Vansteelandt and

Goetghebeur (2003), Robins and Rotnitzky (2004), Tan (2010), Clarke, Palmer

and Windmeijer (2015), and Matsouaka and Tchetgen Tchetgen (2014) investi-

gated estimations of this conditional causal effect using additive, multiplicative

and logistic SNMs.1

The literature mentioned above has several limitations. First, the litera-

ture focuses on the ETT conditional on the IV and observed covariates. The

identification of such conditional ETT was achieved by specifying a functional

form of the treatment causal effect. However, this is not an appealing solution,

because it places constraints directly on the main parameter of interest, and

a misspecification of this functional form would lead to biased result. Second,

the available inference methods require that the treatment propensity score be

1 In another line of research, Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996)
defined the treatment effect on individuals who would comply to their assigned treatment. Under a
monotonicity assumption about the effect of the IV on exposure, the complier average treatment effect
can be identified. Further research along these lines include fully parametric estimation strategies (Tan
(2006); Barnard et al. (2003); Frangakis et al. (2004)) and semiparametric methods (Abadie (2003);
Abadie, Angrist and Imbens (2002); Tan (2006); Ogburn, Rotnitzky and Robins (2015)).
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correctly specified, even for an outcome regression-based estimator (Tan (2010)).

In this study, we remedy these limitations in a novel framework for iden-

tification and estimation using an IV of the marginal ETT in the presence of

unmeasured confounding. By targeting directly the marginal ETT, we allow the

conditional causal effect to remain unrestricted. Our methods are particularly

valuable when the primary goal is to obtain an accurate estimate of the treatment

effect. Additionally, we propose a new identification strategy that is applicable to

any type of outcome, and provides necessary and sufficient global identification

conditions. Moreover, for inference purposes, we propose three semiparametric

estimators, allowing for flexible covariate adjustment: (i) an inverse probability

weighting (IPW); (ii) an outcome regression (OR), and (iii) a doubly robust (DR)

estimation, which is consistent if either (i) or (ii) is consistent, but not necessarily

both.

The remainder of the paper proceeds as follows. In Section 2, we introduce

our notation and state our main assumptions. We study the nonparametric

identification of the ETT in Section 3. We introduce the IPW, OR, and DR

estimators in Section 4. In Section 5, we assess the performance of the various

estimators in a simulation study. In Section 6, we further illustrate the methods

using a study on the impact of participation in a 401(k) retirement program on

savings. We conclude with a brief discussion in Section 7.

2. Preliminary Results

Suppose that one observes independently and identically distributed (i.i.d)

data O = (A, Y, Z,C), where A is a binary treatment, Y is the outcome of

interest, which may be dichotomous, polytomous, discrete, or continuous, and

the candidate IV Z and covariates C are both pre-exposure variables. Let a, y, z,

and c denote the possible values of A, Y, Z, and C, respectively. Let Yaz denote

the potential outcome if A and Z are set to a and z, respectively and let Ya denote

the potential outcome if only A is set to a. We formalize the IV assumptions

using potential outcomes as follows:

(IV.1) Stochastic exclusion restriction:

Yaz = Ya almost surely for all a and z;

(IV.2) Unconfounded IV-outcome relation:

fY0|Z,C(y|z, c) = fY0|C(y|c), for all z and c;
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(IV.3) IV relevance:

Pr(A = 1|Z = z, C = c) 6= Pr(A = 1|Z = 0, C = c), for all z 6= 0 and c.

Assumption (IV.1) states that Z does not have a direct effect on the outcome

Y . Thus, we use Ya to denote the potential outcome under treatment a for

a = 0, 1. Assumption (IV.2) is ensured under physical randomization, but will

hold more generally if C includes all common causes of Z and Y . Assumptions

(IV.1)–(IV.2) together imply that, conditional on C, the IV is independent of

the potential outcome for the unexposed; that is, Y0 ⊥⊥ Z|C. Assumption (IV.3)

states that A and Z have a non-null association, conditional on C, even if the

association is not causal. If assumptions (IV.1)–(IV.3) are satisfied, Z is said to

be a valid IV.

We make the consistency assumption Y = AY1 + (1 − A)Y0. The marginal

treatment effect on the treated is ETT = E(Y1 − Y0|A = 1). Because E(Y1|A =

1) = E(Y |A = 1) can be consistently estimated from the average observed out-

come of treated individuals, we focus on making inferences about ψ, where

ψ = E(Y0|A = 1).

Suppose there exist unmeasured variables, denoted by U , such that control-

ling for (U,Z,C) suffices to account for confounding; that is, Y0 ⊥⊥ A|(U,Z,C);

however,

Y0 ⊥6⊥A|(Z,C), (2.1)

where ⊥⊥ denotes statistical independence. As pointed out by Robins, Rotnitzky

and Scharfstein (2000), potential outcomes can be viewed as the ultimate unmea-

sured confounders. This is because, by the consistency assumption, the observed

outcome Y is a deterministic function of the treatment and the potential out-

comes. Thus, given (Y0, Y1), U does not contain any further information about

Y . To make explicit use of (2.1), we define the extended propensity score

π(Y0, Z, C) = Pr(A = 1|Y0, Z, C),

as a function of Y0.

3. Nonparametric Identification

While assumptions (IV.1)–(IV.3) suffice to obtain a valid test of the sharp

null hypothesis of no treatment effect (Robins (1994)), and can also be used
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to test for the presence of a confounding bias (Pearl (1995)), the ETT is not

uniquely determined by the observed data without any additional restrictions.

For simplicity, we first consider the situation where covariates are omitted, and

the outcome and the IV are both binary. From the observed data, one can

identify the quantities Pr(Y0, Z|A = 0), Pr(Z|A = 1), and Pr(A = 0). These

quantities are functions of the unknown parameters Pr(Z = 1), Pr(Y0 = 1),

and Pr(A = 0|Y0, Z). Without imposing any additional assumption, there are

six unknown parameters (one for Pr(Z = 1), one for Pr(Y0 = 1), and four for

Pr(A = 0|Y0, Z)). However, only five degrees of freedom are available from

the observed data (one for Pr(A = 0), one for Pr(Z|A = 1), and three for

Pr(Y,Z|A = 0)). As a result, the joint distribution f(A, Y0, Z) is not uniquely

identified. In particular, ψ is not identified.

For identification purposes, additional assumptions, such as Robins’ no-

current treatment value interaction assumption (Hernán and Robins (2006)),

must be imposed to reduce the set of candidate models for the joint distribution

f(A, Y0, Z, C). Below, we give a general necessary and sufficient condition for

identification. Let PA|Y0,Z,C and PY0|C denote the collections of candidates for

Pr(A = 0|Y0, Z, C) and f(Y0|C), respectively, which are known to satisfy (IV.1)

and (IV.2).

Condition 1. Any two distinct elements Pr1(A = 0|Y0, Z, C), Pr2(A = 0|Y0, Z, C)

∈ PA|Y0,Z,C and f1(Y0|C), f2(Y0|C) ∈ PY0|C satisfy the inequality:

Pr1(A = 0|Y0, Z, C)

Pr2(A = 0|Y0, Z, C)
6= f2(Y0|C)

f1(Y0|C)
.

The following proposition states that condition 1 is a necessary and sufficient

condition for the identifiability of the joint distribution of (A, Y0, Z, C), where Y0

and Z may be dichotomous, polytomous, discrete, or continuous.

Proposition 1. The joint distribution of (A, Y0, Z, C) is identified in the model

defined by PA|Y0,Z,C and PY0|C if and only if condition 1 holds.

It is convenient to check condition 1 for parametric models, but it may be

more difficult for semiparametric and nonparametric models, because PA|Y0,Z,C

and PY0|C can be complicated. The following corollary gives a more convenient

condition.

Corollary 1. Suppose that for any two candidates Pr1(A = 0|Y0, Z, C), Pr2(A =

0|Y0, Z, C) ∈ PA|Y0,Z,C , the ratio Pr1(A = 0|Y0, Z, C)/Pr2(A = 0|Y0, Z, C) is
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either a constant or varies with Z. Then, the joint distribution of (A, Y0, Z, C)

is identified.

Although the condition provided in Corollary 1 is a sufficient condition for

identification, it allows identification of a large class of models. The proofs of

Proposition 1 and Corollary 1 are given in the Supplementary Material. We

further illustrate Proposition 1 and Corollary 1 with several examples. For sim-

plicity, we again omit the covariates; however, we show at the end of this section

that similar results with covariates can be derived. For simplicity, we first con-

sider the case of a binary outcome with a binary IV.

Example 1. Consider a model PA|Y0,Z = {Pr(A = 0|Y0, Z) : logit Pr(A =

0|Y0, Z; θ1, θ2, η1, η2) = θ1 + θ2Z + η1Y0 + η2Y0Z, θ1, θ2, η1, η2 ∈ (−∞,∞)}. The

model is saturated because PA|Y0,Z contains all possible treatment mechanisms.

It can be shown that neither the joint distribution nor ψ is identified, even under

assumptions (IV.1)–(IV.3).

Example 1 shows that the joint density f(A, Y0, Z) is not identified when the

treatment selection mechanism is left unrestricted under (IV.1)–(IV.3). However,

we show that the joint density f(A, Y0, Z) is identified, assuming a separable

treatment mechanism on the additive scale.

Example 2. Consider a model PA|Y0,Z = {Pr(A = 0|Y0, Z) : logit Pr(A =

0|Y0, Z; θ1, θ2, η1) = θ1+θ2Z+η1Y0; θ1, θ2, η1 ∈ (−∞,∞)}. The model is separable

because PA|Y0,Z excludes an interaction between Y0 and Z. It can be shown that

both the joint distribution and ψ are identified under assumptions (IV.1)–(IV.3).

Example 2 agrees with the intuition that identification follows from having

fewer parameters than the saturated model. Under the assumed model, we have

five unknown parameters and five available degrees of freedom from the empirical

distribution. We show in the next example that the joint distribution and ψ can

be identified in a general separable model when the outcome and instrument are

both continuous.

Example 3. Consider the logistic separable treatment mechanism: PA|Y0,Z =

{Pr(A = 0|Y0, Z) : logit Pr(A = 0|Y0, Z) = q(Z) + h(Y0)}, where q and h are

unknown differentiable functions, with h(0) = 0. It can be shown that PA|Y0,Z

satisfies condition 1, and thus the joint distribution is identified under (IV.1)–

(IV.3).
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These results can be generalized to include covariates C. For instance, by

allowing both q and h to depend on C in example 3:

PA|Y0,Z,C = {Pr(A = 0|Y0, Z, C) : logit Pr(A = 0|Y0, Z, C) = q(Z,C)+h(Y0, C)},

where h(0, C) = 0, the joint distribution is identified whenever the interaction

term of Y0 and Z is absent.

In the Supplementary Material, we present proofs for the above examples.

We also provide additional examples, such as the case of a continuous outcome

with a binary IV, probit link, and separable treatment mechanism.

4. Estimation

Although nonparametric identification conditions are provided in Section 3,

such conditions will seldom suffice for reliable statistical inferences. Typically,

in observational studies, the set of covariates C is too large for a nonparametric

inference, owing to the curse of dimensionality (Robins and Ritov (1997)). There-

fore, we posit parametric models for various nuisance parameters, and provide

three possible approaches for a semiparametric inference that depend on differ-

ent subsets of models. We describe an IPW, an OR, and a DR estimator of the

marginal ETT under assumptions (IV.1)–(IV.2) and condition 1. Throughout,

we posit a parametric model fZ|C(z|c) = Pr(Z = z|C = c; ρ) for the conditional

density of Z, given C. Let ρ̂ denote the maximum likelihood estimator (MLE) of

ρ. Let Pn denote the empirical measure; that is, Pnf(O) = n−1
∑n

i=1 f(Oi). Let

Ê denote the expectation taken under the empirical distribution of C, and let

P̂r(A = 1) =
∑n

i=1Ai/n denote the empirical probability of receiving treatment.

4.1. IPW estimator

For the estimation, we first propose an IPW IV approach that extends the

standard IPW estimation of an ETT to an IV setting. We make the positiv-

ity assumption that for all values of Y0, Z, and C, the probability of not being

exposed to treatment is bounded away from zero. When A = 0, by the consis-

tency assumption, Y = Y0; thus, we could use Y0 and Y interchangably for the

A = 0 group. The IPW approach relies on the crucial assumption that the ex-

tended propensity score model π(Y0, Z, C; γ) is correctly specified, with unknown

finite-dimensional parameter γ, and the following representation of ETT:
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E(Y0|A = 1) = E

{
π(Y,Z,C)Y (1−A)

Pr(A = 1){1− π(Y,Z,C)}

}
. (4.1)

A derivation of the above equation is given in the Supplementary Material. We

solve the following equations to obtain an estimator γ̂ of γ:

Pn
{

1−A
1− π(Y,Z,C; γ̂)

− 1

}
= 0, (4.2)

Pn
[

1−A
1− π(Y,Z,C; γ̂)

{h1(Z,C)− E(h1(Z,C)|C; ρ̂)}
]

= 0, (4.3)

Pn
[
[

1−A
1− π(Y,Z,C; γ̂)

{h2(C)− Ê(h2(C))}
]

= 0, (4.4)

Pn
[

1−A
1− π(Y,Z,C; γ̂)

t(Y,C){l(Z,C)− E(l(Z,C)|C; ρ̂)}
]

= 0, (4.5)

where (hT1 , h
T
2 , l

T )T satisfies the regularity condition (A.1) described in the Sup-

plementary Material. Equations (4.3) and (4.4) identify the association between

(Z,C) and A in π(0, Z, C). If there is no selection bias, equations (4.2)–(4.4)

are adequate to estimate the propensity score. By utilizing the IV property

(IV.1)–(IV.2), equation (4.5) identifies the degree of selection bias encoded in

the dependence of π on Y0. Equations (4.3) and (4.5) both require the condi-

tional density of IV Z, fZ|C(z|c; ρ), to be correctly modeled. By equation (4.1),

an extended propensity score estimator leads to an estimator of ψ. We have the

following result:

Proposition 2. Under (IV.1)–(IV.2) and condition 1, suppose the extended

propensity score model π(Y0, Z, C; γ) and fZ|C(z|c; ρ) are correctly specified. Then,

the IPW estimator

ψ̂ipw = Pn
π(Y,Z,C; γ̂)Y (1−A)

P̂r(A = 1){1− π(Y,Z,C; γ̂)}

is consistent for ψ.

Note that the extended propensity score model can use any well-defined link

function (such as, logit, probit), and if condition 1 holds, Proposition 2 still

holds. The functions h1, h2, t, and l can be chosen based on the model for

the extended propensity score. For example, assuming logit π(Y0, Z, C; γ) =

θ0 + θ1Z + θ2C + ηY0, where η̃ = (θ1, θ2, η)T is a k-dimensional parameter

vector. The k-dimensional function (h1, h2, t)
T can be chosen as (h1, h2, t)

T =
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∂logit π(Y0, Z, C; γ)/∂η̃ = (Z,C, Y0)T , and l can be chosen as any scalar function

of (Z,C), such as l(Z,C) = Z. Thus, we have exactly k+1 estimating equations.

The choice of h1, h2, t, and l will generally impact efficiency but should not affect

consistency, as long as the identification conditions hold and the required models

are correctly specified. The choices of h1, h2, t, and l that lead to the most

efficient IPW estimator can be derived using the results in Newey and McFadden

(1994). Owing to space constraints, we illustrate in details the choice of similar

functions for efficient DR estimator in the section 4.3; a similar derivation could

be made here.

The asymptotic variance of the IPW estimator can be derived using standard

M-estimation theory (van der Vaart (1998)). Specifically, let Gipwψ (O) = ψ̂ipw−ψ,

and let Gipwγ (O) and Gipwρ (O) denote the score functions for γ and ρ, respec-

tively. Then, θ = (ψ, γ, ρ) is the solution to
∫
Gipw(o; θ)dF (o; θ) = 0, where

Gipw(O) = {Gipwψ (O), Gipwγ (O), Gipwρ (O)}. Thus, θ̂ipw = (ψ̂ipw, γ̂, ρ̂) is the solu-

tion to PnGipw(O; θ) = 0. By M-estimation theory, under regularity conditions,√
n(θ̂ipw−θ) converges in distribution toN(0,Σipw) when n goes to infinity, where

Σipw = U−1V U−T , U = −E{∂Gipw(Oi; θ)/∂θ} and V = E{Gipw(Oi; θ)
⊗2}. A

consistent estimator of the asymptotic variance of ψ̂ipw can be constructed by

replacing the expectations with their empirical counterparts, and by replacing

the parameters with their estimates. Such a variance estimator is also referred

to as a sandwich estimator.

4.2. OR and DR estimators

Because Y0 is never observed for the treated group, we use the following

equation to decompose E[Y0|A = 1, Z, C] into two parts: one can be estimated

directly using a restricted MLE, and the other can be computed by solving an

estimating equation. Specifically, we have

E{g(Y0, C)|A = 1, Z, C} =
E[exp{α(Y,Z,C)}g(Y,C)|A = 0, Z, C]

E[exp{α(Y, Z,C)}|A = 0, Z, C]
, (4.6)

where g is any function of Y0 and C, and α(Y0, Z, C) is the generalized odds ratio

function relating A and Y0, conditional on Z and C, as

α(Y0, Z, C) = log
f(Y0|A = 1, Z, C)f(Y0 = 0|A = 0, Z, C)

f(Y0|A = 0, Z, C)f(Y0 = 0|A = 1, Z, C)
.

Because the association between Y0 and A is attributed to unmeasured con-

founding, α(Y0, Z, C) can be interpreted as the selection bias function. Thus,
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we express the conditional mean function E{g(Y0, C)|A = 1, Z, C} in terms of

f(Y |A = 0, Z, C) and α(Y0, Z, C). We prove equation (4.6) in the Supplementary

Material.

Let f(Y |A = 0, Z, C; ξ) denote a model for the density of the outcome among

the unexposed, conditional on Z and C, and let ξ̂ denote the restricted MLE of

ξ obtained using only the data for the unexposed. Let η denote the parameter

indexing a parametric model for the selection bias function α as α(Y0, Z, C; η).

We obtain an estimator for η by solving:

Pn
[{
w(Z,C)− E(w(Z,C)|C; ρ̂)

}
{
AE[g(Y0, C)|A = 1, Z, C; η, ξ̂] + (1−A)g(Y,C)

}]
= 0,

(4.7)

for any choice of functions w and g, such that the regularity condition (A.2)

stated in the Supplementary Material holds. Intuitively, the left-hand side of

equation (4.7) is an empirical estimator of the expected conditional covariance

between w(Z,C) and g(Y0, C), given C, which should be zero, by (IV.1)–(IV.2).

Equation (4.7) requires that the conditional density of IV Z, fZ|C(z|c; ρ), be

correctly modeled. Based on equation (4.6), we can construct an estimator for

ψ based on η̂, ξ̂, and ρ̂.

Proposition 3. Under (IV.1)–(IV.2) and condition 1, suppose α(Y0, Z, C; η),

fZ|C(z|c; ρ), and f(Y |A = 0, Z, C; ξ) are correctly specified. Then, the OR esti-

mator

ψ̂reg = Pn
A

P̂r(A = 1)

E[exp{α(Y,Z,C; η̂)}Y |A = 0, Z, C; ξ̂]

E[exp{α(Y, Z,C; η̂)}|A = 0, Z, C; ξ̂]

is consistent for ψ.

Functions g and ω in equation (4.7) can be chosen based on the model we

posit for α(Y0, Z, C). For example, assuming

α(Y0, Z, C; η) = ηY0, (4.8)

g can be chosen as g(Y0, C) = ∂α(Y0, Z, C; η)/∂η = Y0, and ω can be chosen

as any scalar function of (Z,C), such as, ω(Z,C) = Z. The choices of g and ω

may impact efficiency, but do not affect consistency, as long as the identification

conditions hold and the required models are correctly specified. The choices of g

and ω that lead to the most efficient OR estimator can be derived using Newey

and McFadden (1994).
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Tan (2010) proposed an OR estimator for the conditional ETT, which re-

quires correctly specified models for both the treatment propensity score and the

outcome regression function. In contrast, we circumvent the dependence of the

regression estimator on the propensity score.

The proposed estimator for the nuisance parameter η is closely related to the

regression estimator proposed by Vansteelandt and Goetghebeur (2003) when Y

is binary. Vansteelandt and Goetghebeur (2003) developed a two-stage logistic

estimator that combines a logistic SMM at the first stage and a logistic regression

association model at the second stage. Specifically, they focused on estimating

ζ(Z,C) = logit Pr(Y1 = 1|A = 1, Z, C)− logit Pr(Y0 = 1|A = 1, Z, C), which en-

codes the conditional ETT, given Z and C. Let ν denote the parameter indexing

a model for ζ(Z,C) as ζ(Z,C; ν). They proposed estimating ν in the estimating

equation

Pn
[{
w(Z,C)−E(w(Z,C)|C; ρ̂)

}
{
Aexpit{ϑ(Z,C; %̂)− ζ(Z,C; ν)}+ (1−A)Y

}]
= 0,

(4.9)

where expit(x) = exp(x)/{1 + exp(x)} and ϑ(Z,C; %) = logit Pr(Y = 1|A =

1, Z, C; %).

Recall that we obtain an estimator of η indexing α(Y0, Z, C; η) in equation

(4.7), which can be re-expressed as

Pn
[{
w(Z,C)−E(w(Z,C)|C; ρ̂)

}
{
Aexpit{δ(Z,C; ξ̂) + α(1, Z, C; η)}+ (1−A)Y

}]
= 0,

(4.10)

where δ(Z,C; ξ̂) = logit Pr(Y0 = 1|A = 0, Z, C). Equations (4.9) and (4.10)

differ mainly in the way Pr(Y0 = 1|A = 1, Z, C) is estimated. More specifically,

(4.9) obtains Pr(Y0 = 1|A = 1, Z, C), using Pr(Y1 = 1|A = 1, Z, C) as a baseline

risk for the model, whereas (4.10) uses Pr(Y0 = 1|A = 0, Z, C) as a baseline risk.

This difference is important, because Vansteelandt and Goetghebeur (2003) failed

to obtain a DR estimator of ζ(Z,C), whereas, as we show next, our choice of

parameterization yields a DR estimator of the marginal ETT.

Heretofore, we have constructed estimators using two different approaches.

Both approaches assume correct models for α(Y0, Z, C; η) and fZ|C(z|c; ρ). The

IPW approach further relies on a consistent estimator of the baseline extended
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propensity score β(Z,C) = logit Pr(A = 1|Y0 = 0, Z, C), which under the logit

link, and together with α(Y0, Z, C; η), provides a consistent estimator of the

extended propensity score π(Y0, Z, C; γ) = expit {α(Y0, Z, C; η) + β(Z,C; θ)}.
The OR approach further relies on a consistent estimator of f(Y |A = 0, Z, C),

which, together with α(Y0, Z, C; η), provides a consistent estimator of Pr(Y0 =

1|A = 1, Z, C) by (4.6). Define Ma as the collection of laws with parametric

models fZ|C(z|c; ρ), α(Y0, Z, C; η), and β(Z,C; θ), while f(Y |A = 0, Z, C) is un-

restricted. Likewise, defineMy as the collection of laws with parametric models

fZ|C(z|c; ρ), α(Y0, Z, C; η), and f(Y |A = 0, Z, C; ξ), while β(Z,C) is unrestricted.

The main appeal of a doubly robust estimator is that it remains consistent if ei-

ther β(Z,C; θ) or f(Y |A = 0, Z, C; ξ) is correctly specified. To derive a DR

estimator for ψ in the union space Ma ∪My, we first propose a DR estimator

for the parameter η of the selection bias model α(Y0, Z, C; η). For notational

convenience, let

Qg(Y,A,Z,C; γ, ξ)

=
(1−A)π(Y,Z,C; γ)

1− π(Y,Z,C; γ)

[
g(Y,C)− E[exp{α(Y,Z,C; η)}g(Y,C)|A = 0, Z, C; ξ]

E[exp{α(Y, Z,C; η)}|A = 0, Z, C; ξ]

]
+A

E[exp{α(Y,Z,C; η)}g(Y,C)|A = 0, Z, C; ξ]

E[exp{α(Y,Z,C; η)}|A = 0, Z, C; ξ]
. (4.11)

Consider the estimating equation for the selection bias parameter η̃

Pn
[[
ω(Z,C)− E{ω(Z,C)|C; ρ̂}

]
Q̃g(Y,A,Z,C; γ̃, ξ̂)

]
= 0, (4.12)

where

Q̃g(Y,A,Z,C; γ̃, ξ̂)

= Qg(Y,A,Z,C; γ̃, ξ̂) + (1−A)g(Y,C)

=
1−A

1− π(Y,Z,C; γ)
g(Y,C)

+
A− π(Y,Z,C; γ)

1− π(Y,Z,C; γ)

E[exp{α(Y,Z,C; η)}g(Y,C)|A = 0, Z, C; ξ]

E[exp{α(Y, Z,C; η)}|A = 0, Z, C; ξ]
.

Equation (4.12) is key to obtaining a DR estimation of the selection bias

function, and thus of the ETT. Intuitively, the left-hand side of equation (4.12)

is also an empirical estimator of the expected conditional covariance between

w(Z,C) and g(Y0, C), given C, which should be zero, by (IV.1)–(IV.2). In ad-
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dition to the model fZ|C(z|c; ρ) for IV, equation (4.7) only involves an outcome

regression model, whereas equation (4.12) involves both outcome regression and

propensity score models. Hence, the parameter η̂ obtained from (4.7) depends

on the correct specification of the outcome regression. In contrast, as shown in

the following proposition, the parameter estimate for η obtained from (4.12) is

doubly robust. We solve equation (4.12) jointly with equations (4.2)–(4.4), with

γ̂ replaced by γ̃ = (η̂DR, θ̃). The choices of h1, h2, g, and w can be decided as in

Sections 4.1 and 4.2.

Proposition 4. Under (IV.1)–(IV.2) and condition 1, η̂DR and ψ̂DR are consis-

tent in the union modelMa∪My, where ψ̂DR = P̂nQg̃(Y,A,Z,C; γ̃, ξ̂)/P̂r(A = 1)

and g̃(Y,C) = Y .

Proposition 4 implies that η̂DR and ψ̂DR are both DR estimators, because

their consistency requires that either the extended propensity score or the out-

come regression model be correctly specified, but not necessarily both.

The asymptotic variance of the OR and DR estimators and the correspond-

ing sandwich variance estimators can be derived similarly to those of the IPW

estimator. We omit the details here owing to space constraints.

4.3. Local efficiency

The large sample variance of the doubly robust estimators η̂DR and ψ̂DR at

the intersection submodel Ma ∩My, where all models are correctly specified,

is determined by the choice of g(Y,C) and ω(Z,C) in equation (4.12). In the

Supplementary Material, we derive the semiparametric efficient score of (η, ψ)

in a model Mnp that assumes only that Z is a valid IV and the selection bias

function α(Y0, Z, C; η) is correctly specified. As discussed in the Supplementary

Material, the efficient score is generally not available in closed form, except in

special cases, such as when Z and Y are both polytomous. Here, we illustrate

the result by constructing a locally efficient estimator of (η, ψ) when Z and Y

are both binary. Here, similarly to the definition of Q̃g(Y,A,Z,C; γ, ξ), define

Q̃v(Y,A,Z,C; γ, ξ) =
(1−A)v(Y,Z,C)

1− π(Y, Z,C; γ)

+
A− π(Y, Z,C; γ)

1− π(Y,Z,C; γ)

E[exp{α(Y,Z,C; η)}v(Y,Z,C)|A = 0, Z, C; ξ]

E[exp{α(Y, Z,C; η)}|A = 0, Z, C; ξ]
,

where v is any function of (Y0, Z, C).
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A one-step locally efficient estimator of η in Mnp is given by

η̂eff = η̂DR −

{
E(

h

η

Ŝeffη |γ̂, ξ̂)

}−1

E(Ŝeffη |γ̂, ξ̂),

where v̄(Y, Z,C) = {Y −E(Y |C)}{Z−E(Z|C)}, ∆(η) = Q̃v̄(Y,A,Z,C; γ, ξ) and

Ŝeffη = E{∆(η)∆(η)T |C; γ̂, ξ̂}−1E

{
∂∆(η)

∂ηT
|C; γ̂, ξ̂

}
∆(η̂eff )

is the efficient score of η evaluated at the estimated intersection submodelMa ∩
My. Further, let ψ̂DR(η̂eff ) denote a DR estimator for ψ evaluated at the

estimated intersection submodel Ma ∩My, with η̂eff replacing η̂DR. Then, the

efficient estimator of ψ is given by

ψ̂eff = ψ̂DR(η̂eff )−E{∆2(η̂eff )|C; γ̂, ξ̂}−1E{ψ̂DR(η̂eff )∆(η̂eff )|C; γ̂, ξ̂}∆(η̂eff ).

5. Simulations

Simulations for both binary and continuous outcomes were conducted to

evaluate the finite-sample performance of the causal effect estimators derived in

Sections 4.1 and 4.2. Let Mc
a denote the complement space of Ma, and define

Mc
y in a similar manner. Simulations were conducted under three scenarios: (i)

Ma∩My, that is, both the outcome regression and the extended propensity score

are correctly specified; (ii) Ma ∩Mc
y that is only the extended propensity score

is correctly specified; and (iii) Mc
a ∩My, that is, only the outcome regression

model is correctly specified.

Simulations were first carried out for a binary outcome. For scenario (i), the

simulation study was conducted in the following steps:

Step 1: A hypothetical study population of size n = 1, 000 (or n = 5, 000) was

generated, and each individual had baseline covariates C1 and C2 gen-

erated independently from Bernoulli distributions with probability 0.4

and 0.6, respectively. Then, the IV Z was generated from the model

logit Pr(Z = 1|C) = 0.2 + 0.4C1 − 0.5C2 and potential outcomes Y0, Y1

were generated from the models logit Pr(Y0 = 1|Z,C) = 0.6+0.8C1−2C2

and logit Pr(Y1 = 1|Z,C) = 0.7 − 0.3C1, respectively. The treatment

variable A was generated from logit Pr(A = 1|Y0, Z, C) = 0.4 + 2Z +

0.8C1− 0.6Y0− 1.6C1Z, and the observed outcome was Y = Y0(1−A) +

Y1A.



IDENTIFICATION AND INFERENCE FOR MARGINAL ETT WITH AN IV 1531

Step 2: The following extended propensity score model was estimated, and the

parameters γ = (θ1, θ2, θ3, θ4, η) in the model

logit Pr(A = 1|Y0, Z, C; γ) = θ1 + θ2Z + θ3C1 + θ4C1Z + ηY0 (5.1)

were estimated using estimating equations (4.2)–(4.5), with h1(Z,C) =

(Z,C1Z)T , h2(C) = C1, t(Y,C) = Y , and l(Z,C) = Z. Then, ψ̂ipw was

evaluated.

Step 3: The selection bias function was correctly specified as in (4.8), ξ in the

regression outcome model

logit E(Y |A = 0, Z, C; ξ) = ξ1 + ξ2C1 + ξ3C2 + ξ4Z + ξ5C1Z (5.2)

was estimated using a restricted MLE, and α was estimated by solving

equation (4.7), with ω(Z,C) = Z and g(Y,C) = Y . Then, ψ̂reg was

evaluated.

Step 4: The selection bias function was correctly specified as in (4.8), ξ in equa-

tion (5.2) was estimated using a restricted MLE, the parameters γ in

(5.1) were estimated using (4.2)–(4.4) and (4.12), where h, t, l, ω, and g

are chosen as in Step 2 and Step 3. Then, ψ̂DR was evaluated.

Step 5: Steps 1–4 were repeated 1,000 times.

The data-generating mechanism described in Step 1 satisfies assumptions

(IV.1)–(IV.2) for both a = 0, 1. As shown in example 1, ψ is identified from the

observed data because the treatment mechanism is a separable logit model. In

addition, in the Supplementary Material, we verify that model (5.2) for E(Y |A =

0, C, Z) contains the true data-generating mechanism. Simulations for scenario

(ii) were similar to scenario (i), except that (5.1) was replaced with

logit Pr(A = 1|Y0, Z, C; γ) = θ1 + θ2Z + θ3C1 + ηY0, (5.3)

which is misspecified if θ4 6= 0 in equation (5.1). For scenario (iii), the potential

outcome model (5.2) was replaced with

logit E(Y |A = 0, Z, C; ξ) = ξ1 + ξ2C1 + ξ4Z, (5.4)

which is misspecified if ξ3 6= 0 and ξ5 6= 0 in equation (5.2). We use the R package

BB (Varadhan and Gilbert (2009)) to solve the nonlinear estimating equations.
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(a) Both outcome regression and extended
propensity score are correctly specified.
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(b) Only the extended propensity score
is correctly specified.
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(c) Only the outcome model is correctly
specified.

Figure 1. Performance of the IPW, OR and DR estimators of ψ with binary outcomes.

Note: In each boxplot, the true value ψ0 is marked by the horizontal lines, white boxes
are for n = 1, 000 and grey boxes are for n = 5, 000.

The simulation results for 1,000 Monte Carlo samples are reported in Figure 1 (see

also Table A.4 in the Supplementary Material), and the empirical coverage rates

of 95% Wald-type confidence intervals are presented in Table 1. The confidence

intervals are constructed using the sandwich variance estimators given in Section

4. Under a correct model specification, all estimators have negligible bias, which

diminishes with an increasing sample size. The finite-sample biases are slightly

larger, relative to the variability of the estimators in the case of binary outcomes

than for continuous outcomes, resulting in lower coverages (around 91%) for the

confidence intervals. The detailed empirical bias, Monte Carlo standard error

(MCSE), and average estimated standard error (ASE) for the IPW, regression,

and DR estimators are given in the Supplementary Material. In agreement with
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Table 1. Empirical coverage rates based on 95% Wald-type confidence intervals for both
binary and continuous outcomes.

Binary Y Cont. Y
sample size (n) 1,000 5,000 1,000 5,000
(i) both π and µ are correct

ψ̂ipw 0.86 0.90 0.96 0.95

ψ̂reg 0.84 0.92 0.97 0.95

ψ̂DR 0.85 0.91 0.97 0.96
(ii) only π is correct

ψ̂ipw 0.86 0.90 0.96 0.95

ψ̂reg 0.79 0.60 0.39 0.00

ψ̂DR 0.86 0.91 0.97 0.95
(iii) only µ is correct

ψ̂ipw 0.78 0.53 0.39 0.00

ψ̂reg 0.84 0.92 0.97 0.95

ψ̂DR 0.85 0.92 0.96 0.96

The coverage was evaluated under three scenarios: (i) both the outcome regression and
the extended propensity score are correctly specified; (ii) only the extended propensity
score is correct, and (iii) only the outcome regression model is correct.

our theoretical results, the IPW and regression estimators are biased, with poor

empirical coverages when the extended propensity score or the outcome model,

respectively, is misspecified. The DR estimator performs well in terms of bias

and coverage when either model is misspecified but the other is correct. When all

models are correctly specified, the relative efficiency of the locally semiparametric

efficient estimator compared with that of the DR estimator of η and ψ are 0.840

and 0.810, respectively, based on Monte Carlo standard errors at a sample size

n = 5, 000. This shows that a substantial efficiency gain may be possible at the

intersection submodel when using the locally efficient score.

Simulations for a continuous outcome were conducted similarly as for the

binary outcome as follows:

Step 1∗: Covariates C1 and C2 were generated as in Step 1, Z was generated

from the model logit Pr(Z = 1|C) = 0.7 + 0.8C1 − C2, Y0, Y1 were

generated from models Y0|Z,C ∼ N(0.5 + C1 + 3C2, 1) and Y1|Z,C ∼
N(1.1 − 1.3C1, 1), respectively, A was generated from logit Pr(A =

1|Y0, Z, C) = −0.2−3Z−3C1 +0.3Y0 +4C1Z, and Y = Y0(1−A)+Y1A.

Step 2∗: See Step 2.
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Step 3∗: As in Step 3, except that the following regression outcome models were

fitted to the data:

E{Y exp(ηY )|A = 0, Z, C; ξ} = ξ1 + ξ2C1 + ξ3C2 + ξ4Z + ξ5C1Z

+ ξ6C2Z + ξ7C1C2 + ξ8C1C2Z, (5.5)

E{exp(ηY )|A = 0, Z, C; ξ} = ξ9 + ξ10C1 + ξ11C2 + ξ12Z + ξ13C1Z

+ ξ14C2Z + ξ15C1C2 + ξ16C1C2Z. (5.6)

Step 4∗: As in Step 4, except that (5.2) was replaced by (5.5) and (5.6).

Step 5∗: See Step 5.

A simulation for a continuous outcome under scenario (ii) was carried out

similarly to that for scenario (i), except that (5.1) was replaced by (5.3). For

scenario (iii), the potential outcome models (5.5) and (5.6) were replaced with

the linear models

E{Y exp(ηY )|A = 0, Z, C; ξ} = ξ1 + ξ2C1 + ξ4Z, (5.7)

E{exp(ηY )|A = 0, Z, C; ξ} = ξ9 + ξ10C1 + ξ12Z. (5.8)

We use the R package nleqslv (Hasselman (2014)) to solve the nonlinear estimat-

ing equations.

We verify in Example A.1 of the Supplementary Material that ψ is identified

from the observed data. The simulation results for 1,000 Monte Carlo samples are

reported in Figure 2 (see also Table A.3 in the Supplementary Material), and the

empirical coverage rates for the 95% Wald-type confidence intervals are presented

in Table 1. The results are similar to the those for the binary outcome. Under a

correct model specification, all estimators have negligible bias, which diminishes

with an increasing sample size. The IPW and OR estimators are biased, with

poor empirical coverages when the corresponding model is misspecified. The DR

estimator performs well in terms of bias and coverage when either the extended

propensity score or the outcome regression model is correctly specified.

6. Application

Since the 1980s, tax-deferred programs such as individual retirement ac-

counts (IRAs) and the 401(k) plan have played an important role as a channel

for personal savings in the United States. Aiming to encourage investment for fu-
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Figure 2. Performance of the IPW, OR, and DR estimators of ψ with continuous out-
comes.

Note: In each box plot, the true value ψ0 is marked by the horizontal lines, white boxes
are for n = 1, 000, and grey boxes are for n = 5, 000.

ture retirement, the 401(k) plan offers tax deductions on deposits into retirement

accounts and a tax-free accrual of interest. The 401(k) plan shares similarities

with IRAs in that both are deferred compensation plans for wage earners; how-

ever, the 401(k) plan is only provided by employers. The study includes 9,275

people. Once offered the 401(k) plan, individuals decide whether to participate

in the program. However, participants usually have a stronger preference for

savings, which suggests the presence of a selection bias. This was addressed as

individual heterogeneity by Abadie (2003), and it has been pointed out that a

simple comparison of personal savings between participants and non-participants

may yield results that are biased upward. It has also been postulated that for a

given income, 401(k) eligibility is unrelated to individuals’ preferences for savings,
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and thus can be used as an instrument for participation in the program (Poterba

and Venti (1994); Poterba, Venti and Wise (1995)). The complier causal effect

for the 401(k) plan was studied by Abadie (2003). Here, we reanalyze these data

to illustrate the proposed estimators of the marginal ETT.

We illustrate the methods in the context of a dichotomous outcome, defined

as the indicator that a person falls in the first quartile of net savings of the ob-

served sample (equal to −$500). The treatment variable is a binary indicator of

participation in a 401(k) plan, and the IV is a binary indicator of 401(k) eligi-

bility. The covariates are standardized log family income (log10 (income)− 4.5),

standardized age (age− 41) and its square, marital status, and family size. Age

ranges from 25 to 64 years, marital status is a binary indicator variable, and

family size ranges from 1 to 13 people. These covariates are thought to be asso-

ciated with unobserved preferences for savings. For a family that participated in

the 401(k) program, let ψ = E(Y0|A = 1) denote the probability that they would

have had net financial assets above the first quartile, had they been forced not

to participate in the program. The ETT = E(Y1 − Y0|A = 1) is the effect of the

401(k) plan on the difference scale for the probability of a family’s net financial

assets being above the first quartile among participants. Equivalently, the ETT

can also be interpreted as the effect of an intervention in reducing a person’s risk

for poor savings performance, as measured by falling below the first quartile of

the empirical distribution of savings for the sample. Before implementing our

IV estimators, we first obtained a standard IPW estimator of the ETT under an

assumption of no unmeasured confounding; that is, ψ̂ipw0 is defined as ψ̂ipw, with

α = 0. Thus, the propensity score was modeled as:

logit Pr(A = 1|Z,C) = 1 + Z + log(income) + married + age + fsize + age2,

and estimated using the standard maximum likelihood. The IPW estimate of ψ

was ψ̂ipw0 = 0.688, with standard error (SE) 0.014, where SE was evaluated using

the sandwich estimator, accounting for all sources of variability. In comparison,

the estimator based on the empirical estimate of E(Y |A = 1) was 0.883 (SE =

0.006). Thus, the estimate of ETT was ÊTT = 0.194 (SE = 0.016), which

suggests that the 401(k) plan may have a significant effect on increasing the

family net financial assets among participants.

However, this result may be spurious, owing to the suspicion that even after

controlling for observed covariates, there may still exist unmeasured factors that

confound the relationship between the 401(k) plan and the family net financial
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assets. Assuming assumptions (IV.1)–(IV.2) and condition 1, we applied the

methods proposed in Section 4 to estimate the ETT in the presence of unmea-

sured confounders. The following parametric models were considered:

logit Pr(Z = 1|C) = 1 + log(income) + married + age + fsize + age2,

logit Pr(Y = 1|A = 0, Z, C) = 1+Z+log(income)+married+age+fsize+age2.

We specified the selection bias function as in (4.8). Thus, the selection bias func-

tion were assumed to depend on Y0 linearly. Possible deviations from this simple

model was explored by allowing for potential interactions of Y0 with observed

covariates in the extended propensity score. Thus, we posited the following para-

metric model for the extended propensity score, which satisfies the identifying

condition 1 as a submodel of the separable model:

logit Pr(A = 1|Y0, Z, C) = 1+Z+Y0 +log(income)+married+age+fsize+age2.

Table 2 reports the point estimates and estimated standard errors for the IV,

extended propensity score, and outcome regression models. Although the DR

estimator also involves an outcome regression model among the unexposed, it is

the same model required for the regression estimator. Therefore, these estimates

are repeated only once. The instrument is strongly associated with family income

(log OR = 2.823, SE = 0.106), age (log OR = 0.007, SE = 0.002), and age square

(log OR = −0.002, SE = 2e−4). The selection bias parameter was estimated to be

0.320 (SE = 0.115) by the IPW, 0.385 (SE = 0.135) by the OR and 0.280 (SE =

0.101) by the DR estimation. This provides strong evidence that unmeasured

confounding may be present, and that a stronger saving preference means a

person is more likely to participate in the 401(k) plan. All three estimators of the

marginal ETT agree: they are significant, but with a smaller Z-score value than

when the selection bias is ignored (e.g., the IPW estimator suggests ÊTT = 0.134,

SE = 0.013). The efficient estimator for the selection bias parameter is 0.273, and

for the ETT is 0.137, both in agreement with the other three estimators. Thus, we

may conclude that even after adjustment for unobserved preferences for savings,

the 401(k) plan can still increase net financial assets among participants.

These findings roughly agree with the results obtained by Abadie in the sense

that the IV estimate corrects the observational estimate toward the null. How-

ever, it may be difficult to directly compare our findings to those of Abadie, who

reported the compliers average treatment effect under a monotonicity assumption
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Table 2. Point estimates and estimated SE (in parentheses) of IPW, OR and DR es-
timators for ETT of the 401(k) plan, as well as the parameters for the IV, extended
propensity score, and outcome regression outcome models required by those estimators.

IV model IPW propensity regression DR propensity
Intercept -0.180 (0.058) -8.685 (1.832) 1.307 (0.073) -8.629 (1.796)
linc 2.695 (0.107) 1.626 (0.210) 0.618 (0.128) 1.633 (0.209)
age 0.007 (0.002) -0.009 (0.005) 0.035 (0.003) -0.009 (0.005)
fsize -0.037 (0.019) -0.004 (0.033) -0.127 (0.022) -0.005 (0.033)
marr -0.145 (0.063) -0.032 (0.108) -0.133 (0.075) -0.031 (0.108)
age2 -0.002 (2e-04) 0.001 (4e-04) 6e-04 (3e-04) 0.001 (4e-04)
Z 9.150 (1.820) -0.210 (0.074) 9.126 (1.781)
α 0.320 (0.115) 0.385 (0.135) 0.280 (0.101)
ψ = E(Y0|A = 1) 0.749 (0.012) 0.746 (0.012) 0.750 (0.012)
ETT 0.134 (0.013) 0.137 (0.014) 0.132 (0.014)

of the IV-exposure relationship, and assumed no unmeasured confounding of this

first-stage relation. Our approaches rely on neither assumption, but instead rely

on condition 1, encoded in the functional form of the extended propensity score

model for identification. In order to assess the robustness of the selection bias

model, additional functional forms were explored. We considered adding to α an

interaction between Y0 and each of the covariate: log income, marriage status,

and family size. However, there was no evidence in favor of any such interaction.

7. Discussion

In this study, we establish that access to an IV allows us to identify an as-

sociation between the exposure to a treatment and the potential outcome when

unexposed, which directly encodes the magnitude of the selection bias in the

treatment due to confounding. We propose IPW, OR, and DR estimators for

the treatment effect amongst treated individuals. Vansteelandt and Goetghe-

beur (2003) and Robins (1994) proposed identification and inference approaches

under a no-current treatment value interaction assumption. Thus, their estima-

tors remain consistent under the null hypothesis of no ETT. In contrast, the

identification and inference approaches proposed here may be particularly valu-

able when an ITT analysis indicates a non-null treatment effect, in which case,

Robins’ identification assumption may be violated.

When condition 1 does not hold, the ETT is not identified. However, sharp

bounds could be derived for the ETT under monotonicity and dominance as-

sumptions (Huber, Laffers and Mellace (2017)). A sensitivity analysis should be
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carried out to investigate the parameter estimates within the sharp bounds.

The proposed methods assume the treatment is binary. They can be gen-

eralized without much effort to a categorical treatment. However, when the

treatment is continuous (e.g., A is a treatment dose), then a parametric model

for the treatment effect and a model for the density of A may be unavoidable for

an estimation. We leave this as a topic for future research.

Supplementary Material

The online Supplementary Material contains proofs of the propositions, proofs

of the examples in the main text, and additional examples related to identifying

the models. It also presents more derivations mentioned in the main text, and

the presents derivations of the semiparametric efficiency theory.

Acknowledgements

The content is solely the responsibility of the authors. Lan Liu was supported

by NSF DMS 1916013. Professor Eric Tchetgen Tchetgen was supported by R01

AI032475, R21 AI113251, R01 ES020337, and R01 AI104459. Wang Miao was

supported by the China Scholarship Council.

References

Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response mod-

els. Journal of Econometrics 113, 231–263.

Abadie, A., Angrist, J. and Imbens, G. (2002). Instrumental variables estimates of the effect of

subsidized training on the quantiles of trainee earnings. Econometrica 70, 91–117.

Angrist, J. (1995). Using social security data on military applicants to estimate the effect of

voluntary military service on earnings.

Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using

instrumental variables. Journal of the American Statistical Association 91, 444–455.

Barnard, J., Frangakis, C. E., Hill, J. L. and Rubin, D. B. (2003). Principal stratification

approach to broken randomized experiments: A case study of school choice vouchers in

New York City. Journal of the American Statistical Association 98, 299–323.

Clarke, P. S., Palmer, T. M. and Windmeijer, F. (2015). Estimating structural mean models

with multiple instrumental variables using the generalised method of moments. Statistical

Science 30, 96–117.

Frangakis, C. E., Brookmeyer, R. S., Varadhan, R., Safaeian, M., Vlahov, D. and Strathdee, S.

A. (2004). Methodology for evaluating a partially controlled longitudinal treatment using

principal stratification, with application to a needle exchange program. Journal of the

American Statistical Association 99, 239–249.

Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica:



1540 LIU ET AL.

Journal of the Econometric Society 40, 979–1001.

Greenland, S. and Robins, J. M. (1986). Identifiability, exchangeability, and epidemiological

confounding. International Journal of Epidemiology 15, 413–419.

Hasselman, B. (2014). nleqslv: Solve Systems of Non Linear Equations. R package version 2.1.1.

Heckman, J. (1997). Instrumental variables: A study of implicit behavioral assumptions used

in making program evaluations. Journal of Human Resources 32, 441–462.

Heckman, J. J., Ichimura, H. and Todd, P. E. (1997). Matching as an econometric evaluation

estimator: Evidence from evaluating a job training programme. The review of economic

studies 64, 605–654.

Heckman, J. J., Ichimura, H. and Todd, P. (1998). Matching as an econometric evaluation

estimator. The Review of Economic Studies 65, 261–294.

Hernán, M. A. and Robins, J. M. (2006). Instruments for causal inference: an epidemiologist’s

dream?. Epidemiology 17, 360–372.

Huber, M., Laffers, L. and Mellace, G. (2017). Sharp IV bounds on average treatment effects

on the treated and other populations under endogeneity and noncompliance. Journal of

Applied Econometrics 32, 56–79.

Imbens, G. W. and Angrist, J. D. (1994). Identification and estimation of local average treatment

effects. Econometrica: Journal of the Econometric Society 62, 467–475.

Matsouaka, R. A. and Tchetgen Tchetgen, E. J. (2014). Likelihood based estimation of logistic

structural nested mean models with an instrumental variable.

Miettinen, O. S. (1974). Proportion of disease caused or prevented by a given exposure, trait or

intervention. American Journal of Epidemiology 99, 325–332.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing.

Handbook of Econometrics 4, 2111–2245.

Ogburn, E. L., Rotnitzky, A. and Robins, J. M. (2015). Doubly robust estimation of the local

average treatment effect curve. Journal of the Royal Statistical Society, Series B (Statistical

Methodology) 77, 373-396.

Pearl, J. (1995). On the testability of causal models with latent and instrumental variables. In

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 435-443.

Morgan Kaufmann Publishers Inc.

Poterba, J. M. and Venti, S. F. (1994). 401 (k) plans and tax-deferred saving. In Studies in the

Economics of Aging, 105–142. University of ChicagoPress.

Poterba, J. M., Venti, S. F. and Wise, D. A. (1995). Do 401 (k) contributions crowd out other

personal saving? Journal of Public Economics 58, 1–32.

Robins, J. M. (1989). The analysis of randomized and non-randomized AIDS treatment trials

using a new approach to causal inference in longitudinal studies. Health Service Research

Methodology: A Focus on AIDS ,113–159.

Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested

mean models. Communications in Statistics-Theory and Methods 23, 2379–2412.

Robins, J. M. and Ritov, Y. (1997). Toward a curse of dimensionality appropriate (CODA)

asymptotic theory for semi-parametric models. Statistics in Medicine 16, 285–319.

Rotnitzky, A. and Robins, J. M. (1997). Analysis of semi-parametric regression models with

non-ignorable non-response. Statistics in Medicine 16, 81–102.

Robins, J. M. and Rotnitzky, A. (2004). Estimation of treatment effects in randomised trials with



IDENTIFICATION AND INFERENCE FOR MARGINAL ETT WITH AN IV 1541

non-compliance and a dichotomous outcome using structural mean models. Biometrika 91,

763–783.

Robins, J. M., Rotnitzky, A. and Scharfstein, D. (2000). Sensitivity analysis for selection bias

and unmeasured confounding in missing data and causal inference models. In Statistical

Models in Epidemiology, the Environment, and Clinical Trials, 1–94. Springer.

Tan, Z. (2006). Regression and weighting methods for causal inference using instrumental vari-

ables. Journal of the American Statistical Association 101, 1607–1618.

Tan, Z. (2010). Marginal and nested structural models using instrumental variables. Journal of

the American Statistical Association 105, 157–169.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.

Vansteelandt, S. and Goetghebeur, E. (2003). Causal inference with generalized structural mean

models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65,

817–835.

Varadhan, R. and Gilbert, P. (2009). BB: An R package for solving a large system of nonlinear

equations and for optimizing a high-dimensional nonlinear objective function. Journal of

Statistical Software 32, 1–26.

Wright, S. (1928). Appendix to the tariff on animal and vegetable oils. New York: MacMil-

lan.(1934),” The Method of Path Coefficients,” Annals of Mathematical Statistics 5, 161–

215.

School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA.

E-mail: liux3771@umn.edu

Guanghua School of Management, Peking University, Beijing 100871, China.

E-mail: mwfy@gsm.pku.edu.cn

National University of Singapore, 119077, Singapore.

E-mail: stasb@nus.edu.sg

Harvard T.H. Chan School of Public Health, Harvard University, MA, 02115, USA.

E-mail: robins@hsph.harvard.edu

The Wharton School, University of Pennsylvania, PA, 19104, USA.

E-mail: ett@wharton.upenn.edu

(Received April 2017; accepted September 2018)

mailto:liux3771@umn.edu
mailto:mwfy@gsm.pku.edu.cn
mailto:stasb@nus.edu.sg
mailto:robins@hsph.harvard.edu
mailto:ett@wharton.upenn.edu

	Introduction
	Preliminary Results
	Nonparametric Identification
	Estimation
	IPW estimator
	OR and DR estimators
	Local efficiency

	Simulations
	Application
	Discussion

