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Abstract: The Whittle estimator (Whittle (1962)) is widely used in time series

analysis. Although it is asymptotically Gaussian and efficient, this estimator suf-

fers from large bias, especially when the underlying process has nearly unit roots.

In this paper, we apply the jackknife technique to the Whittle likelihood in the fre-

quency domain, and we derive the asymptotic properties of the jackknifed Whittle

estimator. In particular, the second-order bias of the jackknifed estimator is shown

to vanish for non-Gaussian stationary processes when the unknown parameter is

innovation-free. The effectiveness of the jackknife technique for reducing the bias

of the Whittle estimator is demonstrated in numerical studies. Since the Whittle

estimator is applicable in many fields, including the natural sciences, signal pro-

cessing, and econometrics, the bias-reduced jackknifed Whittle estimator can have

widespread use.

Key words and phrases: Asymptotic efficiency, innovation-free, jackknife, second-
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1. Introduction

Quenouille (1949) introduced a technique for reducing the bias of a serial

correlation estimator by splitting the sample of size n into two sub-samples.

Quenouille (1956) generalized this method to splitting the sample into g groups,

each of size h, so that n = gh. This procedure, termed the jackknife by Tukey

(1958), has been employed in various estimation and testing problems. In using

the jackknife method for the estimation of ratios, Rao (1965) proved that g = n

is the optimal choice of g for a normal auxiliary distribution. The classical jack-

knife was extended by Schucany, Gray, and Owen (1971) to a more general type

of estimator called the generalized jackknife. A comprehensive survey of these

developments was given by Miller (1974). Regarding higher-order asymptotic

theory, Akahira (1989) showed that the asymptotic deficiency of the jackknife

estimator relative to a bias-adjusted maximum likelihood estimator is 0.

For certain types of stochastic processes, mainly those with stationary in-

dependent increments, Gray, Watkins, and Adams (1972) introduced a coun-

terpart of the jackknife as a sort of intensity index and gave a necessary and

sufficient condition for the proposed jackknife estimator to be unbiased. Künsch
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(1989) considered the jackknife in the context of estimating a functional of the

m-dimensional marginal distribution of a general stationary process. Based on

the jackknifed m-dimensional empirical distribution, Künsch (1989) proposed an

estimator of the variance of the functional estimator and derived the asymptotic

mean and variance of the variance estimator. For analyzing seismic data, Vernon

(1994) proposed a jackknifed spectral estimator of window type and considered

its jackknife variance estimator.

For stationary processes, the Whittle estimator θ̂n is one of the most funda-

mental estimators of the spectral parameter θ. Dzhaparidze (1986) showed that

θ̂n is approximately the maximum likelihood estimator under Gaussian assump-

tions and that it is first-order asymptotically efficient. When θ is a coefficient

of a Gaussian ARMAprocess, Taniguchi (1983) proved that θ̂n is second-order

asymptotically efficient and calculated the second-order bias. Since the second-

order bias becomes large when the process has nearly a unit root, a method for

reducing bias is desirable.

In this paper, we propose a jackknifed Whittle estimator θ̂jk for the spec-

tral parameter θ of a general non-Gaussian stationary processes; the jackknif-

ing is performed in the frequency domain. We show that θ̂jk is asymptotically

equivalent to θ̂n, and we calculate the second-order biases of θ̂n and θ̂jk. Un-

fortunately, both of these estimators fail to be second-order unbiased in general.

To eliminate the second-order bias, we modify the Whittle likelihood, thereby

obtaining a modified Whittle estimator θ̂∗n and the corresponding jackknifed ver-

sion θ̂∗jk. It is shown that θ̂∗n and θ̂∗jk are asymptotically equivalent and that θ̂∗jk
is second-order unbiased if θ is innovation-free, although θ̂∗n is not unbiased to

second-order. Note that the second-order bias of θ̂∗jk is shown to hold even if

the process is non-Gaussian. The modified jackknifed variance V̂ ∗
jk

2 is also given,

and the standardized statistic n1/2(θ̂∗jk − θ)/V̂ ∗
jk is shown to be asymptotically

standard normal. These results are also generalized to the case where the un-

known parameter θ is vector-valued. Numerical studies are provided confirming

that the absolute bias of θ̂∗jk is remarkably smaller than the absolute biases of

θ̂n, θ̂jk and θ̂∗n in finite samples. These results are compelling because Whittle

estimation is fundamental, and widely used in various applications.

2. Setting and Notation

Suppose that {Xt : t ∈ Z} is generated by

Xt =
∞∑
l=0

alut−l, (2.1)

where {al} satisfies
∑∞

l=0|al| < ∞, {ut} is a sequence of independent and iden-

tically distributed random variables having E(ut) = 0, E(u2t ) = σ2, and finite
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fourth-order cumulant for all t ∈ Z, Z the set of all integers. To simplify the

notation and discussion, we initially assume that al and σ2 are functions of an

unknown scalar parameter θ ∈ Θ, al = al(θ) and σ2 = σ2(θ). Here, al(θ) and

σ2(θ) are assumed to be five times continuously differentiable with respect to θ.

In Section 4, the results are extended to the case where θ is vector-valued. Note

that {Xt} is second-order stationary and has spectral density function

fθ(λ) =
σ2(θ)

2π

∣∣∣∣∣
∞∑
l=0

al(θ)e
ilλ

∣∣∣∣∣
2

.

Let R(s) ≡ E(XtXt+s) be the autocovariance function of {Xt}. Based on the

observed stretch {X1, . . . , Xn} of {Xt}, the Whittle estimator is

θ̂n = argmax
θ∈Θ

Dn(θ),

where Dn(θ) is the Whittle likelihood defined by

Dn(θ) = −1

2

n∑
s=1

{log fθ(λs) + fθ(λs)
−1Īn(λs)},

with λs = 2πs/n and Īn(λ) = (2πn)−1|
∑n

t=1Xte
itλ|2. Dzhaparidze (1986)

showed that, when {ut} is Gaussian, Dn(θ) is an approximation to the log-

likelihood and that θ̂n is asymptotically optimal, i.e., first-order asymptotically

efficient. For the case where θ is a coefficient of a Gaussian ARMA process,

Taniguchi (1983) showed that θ̂n is second-order asymptotically efficient, and

hence, a satisfactory estimator. However, if the process has a root near to 1,

Taniguchi (1983, p.168) showed that θ̂n can have very large second-order bias.

Consideration of a jackknifed version of the Whittle estimator is motivated by

the need for bias reduction.

Calculations are simplified by using the following notation. Let D
(i)
n =

∂iDn (θ)
/
∂θi (i = 1, 2, 3), and

Z1 ≡ n−1/2D(1)
n =

1

n1/2

n∑
t=1

ρt, Z2 ≡ n−1/2
{
D(2)

n − E
(
D(2)

n

)}
=

1

n1/2

n∑
t=1

γt,

In ≡ n−1E
(
−D(2)

n

)
=

1

n

n∑
t=1

∆t, Ln ≡ n−1E
(
−D(3)

n

)
=

1

n

n∑
t=1

κt,

where ρt, γt, ∆t, and κt are defined appropriately in terms of the addends of
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Dn(θ). Furthermore, let

W (λ) ≡ {fθ(λ)}−1 ∂

∂θ
fθ(λ), Y (λ) ≡ {fθ(λ)}−2 ∂

∂θ
fθ(λ),

bθ(λ) ≡
1

2π

∞∑
l=−∞

|l|R(l)eilλ, (2.2)

B ≡ 1

4π

∫ π

−π
Y (λ)bθ(λ)dλ, I ≡ 1

4π

∫ π

−π
{W (λ)}2dλ, (2.3)

K ≡ 1

2π

∫ π

−π
{W (λ)}3dλ, J ≡ −K +

1

4π

∫ π

−π
Y (λ)

∂2

∂θ2
fθ(λ)dλ, (2.4)

Ing ≡ 1

8π

∫ π

−π

∫ π

−π
Y (λ)Y (µ)Q4(−λ, µ,−µ)dλdµ, (2.5)

Jng ≡ 1

8π

∫ π

−π

∫ π

−π
Y (λ)

∂2

∂θ2
{fθ(µ)−1}Q4(−λ, µ,−µ)dλdµ, (2.6)

where Q4(λ, µ, ω) is the fourth-order cumulant of the spectral density of {Xt}.
Noting that

∂2

∂θ2
log fθ =− f−2

θ

(
∂

∂θ
fθ

)2

+ f−1
θ

∂2

∂θ2
fθ,

∂2

∂θ2
f−1
θ =2f−3

θ

(
∂

∂θ
fθ

)2

− f−2
θ

∂2

∂θ2
fθ,

and that E(Īn(λ)) = fθ(λ) + O(n−1), we have In = I + O(n−1). Also it follows

from Theorem 7.6.1 of Brillinger (2001) that

E(Z1
2) = I + Ing +O(n−1), E(Z1Z2) = J + Jng +O(n−1),

Ln = 3J +K +O(n−1).
(2.7)

Evidently, if {Xt} is Gaussian, then Ing and Jng are both 0. Furthermore,

if θ is innovation-free, i.e., if σ2(θ) does not depend on θ, then Lemma A2.2,

Corollary 3.1, Proposition 3.1, and Remark 3.1 of Hosoya and Taniguchi (1982)

yield

Ing = 0, Jng = 0, (2.8)

even if the process {Xt} is non-Gaussian. The assumption that θ is innovation

free is not restrictive; for example, when {Xt} ∼ARMA(p, q) and θ is anARMA

coefficient of {Xt}, then θ is innovation-free. To ensure that Ing = 0 and Jng = 0

for subsequent calculations, we make the following assumption.

Assumption 1 (G-I). The process {Xt} is Gaussian or the parameter θ is

innovation-free.
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3. Jackknifed Whittle Estimators

We propose jackknifed Whittle estimators for the process (2.1) with un-

known parameter θ. The advantage of working in the frequency domain is

that, in the Whittle likelihood, the observations are replaced by the variables

fθ(λs)
−1Īn(λs) (s = 1, . . . , n), which are asymptotically independent. Conse-

quently, a dependent-data problem is reduced to an independent-data one, and

thus the usual jackknife technique, designed for independent data, can be applied

in this stochastic-process framework.

Let

D
(j)
n−1(θ) ≡ −1

2

n∑
s=1
s̸=j

{log fθ(λs) + fθ(λs)
−1Īn(λs)},

θ̂
(j)
n−1 ≡ argmax

θ∈Θ
D

(j)
n−1(θ).

The jackknifed Whittle estimator is

θ̂jk ≡ nθ̂n − n− 1

n

n∑
j=1

θ̂
(j)
n−1.

To derive the asymptotic properties of θ̂jk, we require the following proposition.

Proposition 1. The jackknifed Whittle estimator θ̂jk has the stochastic expan-

sion

n1/2(θ̂jk − θ) = − 1

n3/2
I−2
n

n∑
j=1

ρjγj

+
1

2n3/2
I−3
n (3J +K)

n∑
j=1

ρ2j + n1/2(θ̂n − θ)

+op(n
−1/2). (3.1)

Taniguchi (1987) proved the validity of Edgeworth expansions for generalized

Whittle-type estimators. In what follows, we use E to denote expectation derived

from these Edgeworth expansions.

All proofs are given in the Appendix. Proposition 1 yields the following.

Theorem 1. 1. The asymptotic distributions of n1/2(θ̂jk − θ) and n1/2(θ̂n − θ)

are the same.
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2. The second-order biases of n1/2(θ̂jk − θ) and n1/2(θ̂n − θ) are

E{n1/2(θ̂n − θ)} = − 1

n1/2
I−1B − 1

2n1/2
I−2(J +K)

− 1

2n1/2
I−3(3J +K)Ing +

1

n1/2
I−2Jng

+o(n−1/2), (3.2)

E{n1/2(θ̂jk − θ)} = − 1

n1/2
I−1B − 1

2n1/2
I−3(3J +K)Ing

+
1

n1/2
I−2Jng + o(n−1/2). (3.3)

The jackknife eliminates the term −
(
2n1/2

)−1
I−2 (J +K) from the second

order bias of n1/2(θ̂n − θ). Thus, although the jackknife does not change the

order of the bias, it does tend to reduce its magnitude, as is demonstrated in the

simulation studies of Section 5.

Corollary 1. Under Assumption (G-I),

E{n1/2(θ̂n − θ)} = − 1

n1/2
I−1B − 1

2n1/2
I−2(J +K) + o(n−1/2),

E{n1/2(θ̂jk − θ)} = − 1

n1/2
I−1B + o(n−1/2).

It is known that the second-order bias of the usual maximum likelihood

estimator θ̂ml of θ is −(2n1/2)−1I−2(J + K); see Taniguchi (1983). The above

results imply that jackknifing in the frequency domain reduces the asymptotic

bias of θ̂ml. When {Xt} ∼ AR(1) with autoregressive coefficient θ, it is seen from

Taniguchi (1983) that I−1B = θ and I−2(J +K) = 2θ. Hence, from Corollary 1,

E
(
θ̂n

)
= θ − 2

n
θ + o(n−1),

E
(
θ̂ml

)
= θ − 3

n
θ + o(n−1),

E
(
θ̂jk

)
= θ − 1

n
θ + o(n−1).

Let θ̄j ≡ nθ̂n − (n− 1)θ̂
(j)
n−1. The jackknife variance estimator for n1/2θ̂jk is

V̂ 2
jk ≡ 1

n− 1

n∑
j=1

(θ̄j − θ̂jk)
2.

Theorem 2. Under Assumption (G-I), as n → ∞,

Tn ≡ n1/2 (θ̂jk − θ)

V̂jk

→ N(0, 1)
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in distribution.

It follows from Theorem 2 that Tn can be used for testing and interval estima-

tion of the innovation-free parameter θ even if the process {Xt} is non-Gaussian.

Although jackknifing eliminates the second-order bias of the usual maximum

likelihood estimator θ̂ml when θ is innovation-free, the term −n−1/2I−1B persists

in the second-order bias of the jackknifed Whittle estimator θ̂jk. To eliminate this

term, we modify the Whittle likelihood. Note that the periodogram is expressed

as

Īn(λ) =
1

2π

n−1∑
l=−n+1

(
1− |l|

n

)
R̂(l)e−ilλ,

where

R̂(l) =
1

n− |l|

n−|l|∑
t=1

XtXt+|l|.

Since the quantity B appearing in the second-order bias stems from the part of

the periodogram given by

H1 ≡
1

2πn

n−1∑
l=−n+1

|l|R̂(l)e−ilλ,

we modify the periodogram as

Ī∗n(λ) =
1

2π

n−1∑
l=−n+1

R̂(l)e−ilλ, (3.4)

whose Fejér transformation at λ is equal to Īn(λ); see Hannan (1970, p.506)

Since the Fejér kernel tends to the delta function and Īn(λ) ≥ 0 a.e., we see that

Ī∗n(λ) ≥ 0 a.e., as n → ∞. Define the modified Whittle likelihood to be

D∗
n(θ) ≡ −1

2

n∑
s=1

{log fθ(λs) + fθ(λs)
−1Ī∗n(λs)}.

Similarly, we define the modified Whittle estimator θ̂n and its jackknifed version

θ̂∗jk by

θ̂∗n ≡ argmax
θ∈Θ

D∗
n(θ),

θ̂∗jk ≡ nθ̂∗n − n− 1

n

n∑
j=1

θ̂
(j)∗
n−1.

Then we have
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Theorem 3. 1. The asymptotic distributions of n1/2(θ̂∗jk − θ) and n1/2(θ̂∗n − θ)

are the same.

2. The second-order biases of n1/2(θ̂∗jk − θ) and n1/2(θ̂∗n − θ) are given by

E{n1/2(θ̂∗n − θ)} = − 1

2n1/2
I−2(J +K)

− 1

2n1/2
I−3(3J +K)Ing +

1

n1/2
I−2Jng + o(n−1/2),

E{n1/2(θ̂∗jk − θ)} = − 1

2n1/2
I−3(3J +K)Ing +

1

n1/2
I−2Jng + o(n−1/2).

Corollary 2. Under Assumption (G-I),

E{n1/2(θ̂∗n − θ)} =− 1

2n1/2
(J +K)I−2 + o(n−1/2),

E{n1/2(θ̂∗jk − θ)} =o(n−1/2).

These results show that jackknifing the modified Whittle estimator elimi-

nates the second-order bias in the innovation-free setting. Now let θ̄∗j ≡ nθ̂∗n −
(n− 1)θ̂

(j)∗
n−1. The jackknife variance estimator estimator for n1/2θ̂∗jk is

V̂ ∗
jk

2 ≡ 1

n− 1

n∑
j=1

(θ̄∗j − θ̂∗jk)
2.

Theorem 4. Under Assumption (G-I), as n → ∞,

T ∗
n ≡ n1/2(θ̂∗jk − θ)/V̂ ∗

jk → N(0, 1)

in distribution.

4. Generalization to Vector Parameters

For simplicity and clarity, the discussion thus far has focused on the case

where θ is a scalar. However, to make the results practically relevant, it is

necessary to deal with the case where θ is vector-valued. This section han-

dles the case where the process (2.1) has spectral density fθ(λ) that depends

on θ = (θ1, . . . , θp)′ ∈ Θ ⊂ Rp. Write ∂α = ∂/∂θα, and in analogy to the

previous definitions, let Z∗
α = n−1/2∂αD

∗
n(θ) = n−1/2

∑n
t=1 ρ

∗,t
α and Z∗

αβ =

n−1/2[∂α∂βD
∗
n(θ) − E{∂α∂βD∗

n(θ)}] = n−1/2
∑n

t=1 γ
∗,t
αβ (α, β = 1, . . . , p). The
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fundamental quantities (2.3)-(2.6) in the scalar-parameter case generalize to

Iαβ ≡ 1

4π

∫ π

−π
{∂α log fθ(λ)}{∂β log fθ(λ)}dλ,

Jαβδ ≡ − 1

2π

∫ π

−π
{∂αfθ(λ)}{∂βfθ(λ)}{∂δfθ(λ)}{fθ(λ)}−3dλ

+
1

4π

∫ π

−π
{∂αfθ(λ)}{∂β∂δfθ(λ)}{fθ(λ)}−2dλ,

Kαβδ ≡
1

2π

∫ π

−π
{∂αfθ(λ)}{∂βfθ(λ)}{∂δfθ(λ)}{fθ(λ)}−3dλ,

Ingαβ ≡ 1

8π

∫ π

−π

∫ π

−π
[∂α{fθ(λ)}−1][∂β{fθ(µ)}−1]Q4(−λ, µ,−µ)dλdµ,

Jng
αβ ≡ 1

8π

∫ π

−π

∫ π

−π
[∂α{fθ(λ)}−1][∂β∂δ{fθ(µ)}−1]Q4(−λ, µ,−µ)dλdµ,

for α, β, δ = 1, . . . , p. Denote the αth components of θ̂∗n and θ̂∗jk by θ̂∗,αn and θ̂∗,αjk ,

respectively, and let Iαβ denote the (α, β)-component of the inverse of the p× p

matrix (Iαβ). Proposition 2 and Theorems 5 and 6 are stated below without

proofs, since their proofs are similar to the proofs of Proposition 1 and Theo-

rems 1−4.

Proposition 2. The αth component of θ̂∗jk has the stochastic expansion

n1/2(θ̂∗,αjk − θα)

= − 1

n3/2

n∑
j=1

Iαα
′
Iββ

′
γ∗,jα′βρ

∗,j
β′

+
1

2n3/2

n∑
j=1

Iαα
′
Iββ

′
Iδδ

′
(Jα′βδ + Jβδα′ + Jδα′β +Kα′βδ)ρ

∗,j
β′ ρ

∗,j
δ′

+ n1/2(θ̂∗,αn − θα) + op(n
−1/2).

This expression and others throughout this section use the Einstein summa-

tion convention whereby summation over the range 1, . . . , p is implied for any

index appearing once as a subscript and once as a superscript.

Theorem 5. 1. The asymptotic distributions of n1/2(θ̂∗jk − θ) and n1/2(θ̂∗n − θ)

are the same.
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2. The second-order biases of n1/2(θ̂∗jk − θ) and n1/2(θ̂∗n − θ) are given by

E{n1/2(θ̂∗,αn − θα)}

= − 1

2n1/2
Iαα

′
Iβδ(Jα′βδ + Jβδα′ − Jδα′β +Kα′βδ)

− 1

2n1/2
Iαα

′
Iββ

′
Iδδ

′
(Jα′βδ + Jβδα′ − Jδα′β +Kα′βδ)I

ng
β′δ′

+
1

n1/2
Iαα

′
Iββ

′
Jng
β′α′β + o(n−1/2),

E{n1/2(θ̂∗,αjk − θα)}

= − 1

2n1/2
Iαα

′
Iββ

′
Iδδ

′
(Jα′βδ + Jβδα′ − Jδα′β +Kα′βδ)I

ng
β′δ′

+
1

n1/2
Iαα

′
Iββ

′
Jng
β′α′β + o(n−1/2).

Corollary 3. Under Assumption (G-I),

E{n1/2(θ̂∗,αn − θα)} = − 1

2n1/2
Iαα

′
Iβδ(Jα′βδ + Jβδα′ − Jδα′β +Kα′βδ)

+ o(n−1/2),

E{n1/2(θ̂∗,αjk − θα)} = o(n−1/2).

As before, let θ̄∗j ≡ nθ̂∗n − (n− 1)θ̂
(j)∗
n−1, and now take

Σ∗
jk ≡ 1

n− 1

n∑
j=1

(θ̄∗j − θ̂∗jk)(θ̄
∗
j − θ̂∗jk)

′.

Theorem 6. Under Assumption (G-I), as n → ∞,

T ∗
n ≡ n1/2(Σ∗

jk)
−1/2(θ̂∗jk − θ) → Np(0, I)

in distribution, where Np(0, I) is the p-dimensional standard normal distribution.

As in the scalar-parameter case, these results imply that for vector param-

eters, if θ is innovation-free, jackknifing in the frequency domain reduces the

second-order bias of the modified Whittle estimator, and the standardized statis-

tic T ∗
n has a pivotal asymptotic distribution, even if the process is non-Gaussian.

Assumption (G-I) is not restrictive, and the results have many practical

applications, illustrated as follows. Even if {Xt} is non-Gaussian, the results

are useful in important problems such as prediction. Suppose, for example, that

{Xt} ∼ non-Gaussian AR(p), i.e., that Xt = θ1Xt−1+· · ·+θpXt−p+ut. Then the
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best predictor of Xt is known to be θ1Xt−1+ · · ·+θpXt−p; see Fan and Yao (2003,

p.118). Since θ1, . . . , θp are “innovation-free,” we can use the Jackknife-estimated

predictor θ̂∗1jkXt−1 + · · ·+ θ̂∗pjkXt−p.

5. Numerical Investigations

We examined, by a Monte Carlo simulation study, the biases, variances,

and coverage errors associated with five estimators, θ̂n, θ̂jk, θ̂∗n, θ̂∗jk, and the

conditional Gaussian maximum likelihood estimator, for the AR(1) model

Xt = θXt−1 + εt,

and the ARMA(1,1) model

Xt = θXt−1 + εt + 0.25εt−1,

where {εt} is a sequence of independent and identically distributed random vari-

ables. For the simulation study, the innovations εt were taken to be distributed

as N(0, 1), t5, and χ2
5 − 5. Since the variance of εt is known in each case, the

coefficient θ is innovation-free. Furthermore, the sample sizes were taken to be

n = 200 and 500, and the parameter values θ = 0.3, 0.6, 0.9, and 0.95 were used.

No negative values θ were considered, since the absolute values of the biases, the

variances, and the coverage errors of confidence intervals as functions of θ are

nearly symmetric about 0.

Tables 1 and 2 show the values of E{n(θ̂ − θ)} as estimated from 10,000

simulations for each of the five estimators θ̂ and each of the four values of θ.

The values of var{n1/2(θ̂ − θ)} are shown in parentheses. For each situation,

including the two non-Gaussian cases, the absolute bias of the jackknifed Whittle

estimator is remarkably smaller than that of the Whittle estimator, and the

jackknifed modified Whittle estimator has by far the absolute smallest bias of

the five estimators. The variance of the jackknifed modified Whittle estimator is

very similar to the variances of the other estimators. Thus, the reduction in bias

is achieved without a noticeable increase in variance, so the mean squared error

of the jackknifed modified Whittle estimator is smaller than that of the other

estimators.

The performance of two-sided confidence intervals is evaluated by the sum of

the absolute one-sided coverage errors. For a confidence interval (θ[α/2], θ[1−α/2]),

the sum of the absolute one-sided coverage errors is given by

|pr(θ < θ[α/2])− α/2|+ |pr(θ > θ[1−α/2])− α/2|.

For each of the five estimators θ̂, and for each of the four values of θ, Table 3

shows estimates of the sums of the absolute one-sided coverage errors of nominal
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Table 1. Estimates of E{n(θ̂ − θ)} for five estimators θ̂ of the parameter θ
in AR(1) models.

θ = 0.3 0.6 0.9 0.95
Sample size n = 200

Model εt ∼ N(0, 1)
Conditional MLE −0.73 (0.91) −1.36 (0.66) −1.81 (0.22) −1.91 (0.13)
Whittle −1.03 (0.91) −1.94 (0.66) −2.72 (0.23) −2.95 (0.14)
Jackknifed Whittle −0.76 (0.91) −1.38 (0.67) −1.84 (0.24) −2.20 (0.14)
Modified Whittle −0.74 (0.91) −1.37 (0.66) −1.84 (0.23) −1.99 (0.14)
Jackknifed modified Whittle −0.36 (0.92) −0.61 (0.67) −0.86 (0.23) −1.42 (0.13)

Model εt ∼ t5
Conditional Gaussian MLE −0.56 (0.90) −1.20 (0.64) −1.86 (0.22) −1.89 (0.12)
Whittle −0.87 (0.89) −1.80 (0.64) −2.79 (0.24) −2.94 (0.13)
Jackknifed Whittle −0.60 (0.90) −1.28 (0.65) −1.95 (0.24) −2.31 (0.13)
Modified Whittle −0.57 (0.90) −1.20 (0.64) −1.90 (0.23) −1.99 (0.13)
Jackknifed modified Whittle −0.20 (0.91) −0.49 (0.65) −0.97 (0.24) −1.56 (0.13)

Model εt ∼ χ2
5 − 5

Conditional Gaussian MLE −0.72 (0.88) −1.27 (0.63) −1.73 (0.22) −1.98 (0.13)
Whittle −0.97 (0.88) −1.83 (0.63) −2.65 (0.22) −3.00 (0.14)
Jackknifed Whittle −0.70 (0.89) −1.28 (0.64) −1.78 (0.23) −2.30 (0.14)
Modified Whittle −0.72 (0.88) −1.27 (0.63) −1.74 (0.22) −2.07 (0.14)
Jackknifed modified Whittle −0.34 (0.89) −0.51 (0.64) −0.78 (0.23) −1.54 (0.13)

Sample size n = 500
Model εt ∼ N(0, 1)

Conditional MLE −0.48 (0.91) −1.56 (0.64) −1.89 (0.21) −1.75 (0.11)
Whittle −0.80 (0.91) −2.16 (0.64) −2.78 (0.21) −2.71 (0.12)
Jackknifed Whittle −0.51 (0.92) −1.58 (0.65) −1.90 (0.22) −1.74 (0.12)
Modified Whittle −0.48 (0.91) −1.57 (0.64) −1.89 (0.21) −1.79 (0.12)
Jackknifed modified Whittle −0.07 (0.92) −0.77 (0.65) −0.76 (0.21) −0.66 (0.12)

Model εt ∼ t5
Conditional Gaussian MLE −0.85 (0.90) −0.96 (0.64) −1.56 (0.20) −1.83 (0.11)
Whittle −1.15 (0.90) −1.57 (0.65) −2.45 (0.21) −2.83 (0.12)
Jackknifed Whittle −0.87 (0.90) −1.00 (0.65) −1.58 (0.21) −1.90 (0.12)
Modified Whittle −0.85 (0.90) −0.98 (0.65) −1.57 (0.20) −1.88 (0.12)
Jackknifed modified Whittle −0.45 (0.91) −0.19 (0.65) −0.45 (0.21) −0.80 (0.12)

Model εt ∼ χ2
5 − 5

Conditional Gaussian MLE −0.48 (0.91) −0.96 (0.63) −1.77 (0.21) −1.96 (0.11)
Whittle −0.79 (0.90) −1.57 (0.63) −2.66 (0.21) −2.90 (0.12)
Jackknifed Whittle −0.50 (0.91) −0.99 (0.64) −1.78 (0.21) −1.96 (0.12)
Modified Whittle −0.48 (0.91) −0.97 (0.63) −1.77 (0.21) −1.97 (0.11)
Jackknifed modified Whittle −0.08 (0.91) −0.17 (0.64) −0.64 (0.21) −0.87 (0.12)

MLE is the maximum likelihood estimator; simulated estimates of var{n1/2(θ̂ − θ)} are
shown in parentheses; estimates are based on 10,000 simulations.
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Table 2. Estimates of E{n(θ̂ − θ)} for five estimators θ̂ of the parameter θ
in ARMA(1,1) models.

θ = 0.3 0.6 0.9 0.95
Sample size n = 200

Model εt ∼ N(0, 1)
Conditional MLE −0.58 (0.91) −1.44 (0.64) −1.97 (0.22) −2.57 (0.13)
Whittle −1.16 (0.91) −2.33 (0.65) −3.21 (0.24) −4.00 (0.16)
Jackknifed Whittle −0.88 (0.92) −1.76 (0.66) −2.27 (0.25) −3.05 (0.15)
Modified Whittle −0.50 (0.91) −1.27 (0.65) −1.73 (0.24) −2.43 (0.14)
Jackknifed modified Whittle −0.14 (0.92) −0.57 (0.66) −1.01 (0.23) −1.95 (0.15)

Model εt ∼ t5
Conditional Gaussian MLE −0.66 (0.88) −1.35 (0.63) −2.11 (0.22) −2.58 (0.13)
Whittle −1.26 (0.89) −2.23 (0.66) −3.41 (0.25) −4.01 (0.15)
Jackknifed Whittle −1.00 (0.90) −1.70 (0.66) −2.50 (0.25) −3.16 (0.15)
Modified Whittle −0.59 (0.89) −1.17 (0.65) −1.87 (0.24) −2.46 (0.14)
Jackknifed modified Whittle −0.24 (0.90) −0.51 (0.66) −1.21 (0.23) −2.12 (0.14)

Model εt ∼ χ2
5 − 5

Conditional Gaussian MLE −0.59 (0.88) −1.18 (0.63) −1.97 (0.21) −2.63 (0.13)
Whittle −1.16 (0.88) −2.06 (0.65) −3.26 (0.24) −4.06 (0.16)
Jackknifed Whittle −0.89 (0.89) −1.51 (0.65) −2.33 (0.25) −3.20 (0.15)
Modified Whittle −0.52 (0.89) −0.99 (0.65) −1.77 (0.23) −2.49 (0.14)
Jackknifed modified Whittle −0.17 (0.90) −0.31 (0.65) −1.07 (0.23) −2.11 (0.14)

Sample size n = 500
Model εt ∼ N(0, 1)

Conditional MLE −0.60 (0.90) −1.29 (0.64) −1.96 (0.20) −2.06 (0.11)
Whittle −1.18 (0.90) −2.17 (0.64) −3.20 (0.22) −3.41 (0.12)
Jackknifed Whittle −0.89 (0.90) −1.58 (0.64) −2.28 (0.22) −2.36 (0.12)
Modified Whittle −0.53 (0.90) −1.11 (0.64) −1.69 (0.21) −1.82 (0.12)
Jackknifed modified Whittle −0.14 (0.90) −0.33 (0.65) −0.68 (0.21) −0.91 (0.12)

Model εt ∼ t5
Conditional Gaussian MLE −0.55 (0.91) −1.49 (0.63) −1.95 (0.20) −2.21 (0.12)
Whittle −1.21 (0.92) −2.43 (0.63) −3.20 (0.21) −3.48 (0.13)
Jackknifed Whittle −0.92 (0.92) −1.85 (0.64) −2.30 (0.22) −2.45 (0.13)
Modified Whittle −0.53 (0.92) −1.35 (0.63) −1.68 (0.21) −1.91 (0.12)
Jackknifed modified Whittle −0.14 (0.92) −0.58 (0.64) −0.70 (0.21) −1.04 (0.12)

Model εt ∼ χ2
5 − 5

Conditional Gaussian MLE −0.56 (0.91) −1.39 (0.64) −2.09 (0.21) −2.04 (0.11)
Whittle −1.14 (0.91) −2.32 (0.65) −3.33 (0.22) −3.40 (0.13)
Jackknifed Whittle −0.85 (0.91) −1.74 (0.65) −2.42 (0.22) −2.38 (0.13)
Modified Whittle −0.49 (0.91) −1.23 (0.65) −1.82 (0.21) −1.82 (0.12)
Jackknifed modified Whittle −0.10 (0.92) −0.46 (0.65) −0.82 (0.21) −0.94 (0.12)

MLE is the maximum likelihood estimator; simulated estimates of var{n1/2(θ̂ − θ)} are
shown in parentheses; estimates are based on 10,000 simulations.
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90% confidence intervals based on the asymptotic standard normal distribution

of a standardized version of n1/2(θ̂−θ). The coverage errors were estimated from

10,000 simulations and expressed as percentages in the table. When θ is nearly

a unit root, the coverage errors of the jackknifed modified Whittle intervals are

remarkably smaller than those of the Whittle intervals. Indeed, when θ = 0.9

and θ = 0.95, the intervals having the smallest coverage errors are the ones based

on the jackknifed modified Whittle estimator in all three distributional cases.

6. Proofs

This section provides proofs of Proposition 1 and Theorems 1−4, which

pertain to the case where θ is scalar-valued.

Lemma 1. Suppose that fθ(λ) is continuously five times differentiable with re-

spect to θ. Then

n1/2(θ̂
(j)
n−1 − θ)

=n1/2(θ̂n − θ)

+
1

n
I−2
n ∆jZ1 −

1

n1/2
I−1
n ρj (6.1)

− 1

n
I−2
n ρjZ2 −

1

n
I−2
n γjZ1 +

2

n3/2
I−3
n ∆jZ1Z2 (6.2)

+
1

n3/2
I−2
n ρjγj

+
1

2n3/2
I−3
n κjZ

2
1 − 3

2n3/2
I−4
n (3J +K)∆jZ

2
1 +

1

n
I−3
n (3J +K)ρjZ1 (6.3)

− 1

2n3/2
I−3
n (3J +K)ρ2j + op(n

−3/2).

Proof. For simplicity, write D
(j)
n−1(θ) and θ̂

(j)
n−1 as D̃ and θ̃, respectively. Ex-

panding the right hand side of the equation

0 =
1

n1/2

∂

∂θ
D̃(θ̃)
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Table 3. Estimates of sum of absolute one-sided coverage errors for nominal
90% confidence intervals for θ in AR(1) and ARMA(1,1) models.

AR(1) ARMA(1,1)
θ = 0.3 0.6 0.9 0.95 0.3 0.6 0.9 0.95

Sample size n = 200
Model εt ∼ N(0, 1)

Conditional MLE 0.89 1.27 3.19 4.34 0.42 1.53 2.95 7.00
Whittle 1.44 2.50 6.24 8.64 1.38 3.11 7.39 13.99
Jackknifed Whittle 1.02 1.24 2.94 4.62 0.95 2.06 3.77 9.47
Modified Whittle 0.88 1.10 3.23 4.29 0.27 1.21 2.00 7.58
Jackknifed modified Whittle 0.32 1.23 2.61 3.23 0.22 0.72 1.85 6.53

Model εt ∼ t5
Conditional Gaussian MLE 0.16 1.24 3.27 3.82 0.52 1.29 3.26 7.60
Whittle 0.59 2.07 6.21 8.63 1.47 3.07 7.58 13.97
Jackknifed Whittle 0.34 1.18 3.20 4.86 1.03 2.02 4.30 9.50
Modified Whittle 0.16 1.17 3.11 4.37 0.35 1.02 2.25 7.68
Jackknifed modified Whittle 0.41 0.26 2.55 3.00 0.19 0.39 1.77 6.16

Model εt ∼ χ2
5 − 5

Conditional Gaussian MLE 0.58 1.06 2.73 4.81 0.20 1.14 3.16 7.39
Whittle 0.96 1.95 5.54 9.19 0.44 2.58 7.27 14.48
Jackknifed Whittle 0.50 0.91 2.31 5.00 0.10 1.62 3.97 9.91
Modified Whittle 0.50 0.77 2.71 5.33 0.31 0.61 2.40 7.28
Jackknifed modified Whittle 0.17 0.59 2.05 3.63 0.66 0.76 1.94 5.99

Sample size n = 500
Model εt ∼ N(0, 1)

Conditional MLE 0.23 1.36 2.63 2.10 0.12 0.81 2.75 2.97
Whittle 0.56 2.00 4.30 5.45 0.51 1.88 5.18 7.21
Jackknifed Whittle 0.27 1.44 2.46 2.35 0.21 1.29 3.17 3.66
Modified Whittle 0.19 1.33 2.45 2.93 0.10 0.70 1.63 2.28
Jackknifed modified Whittle 0.14 0.51 1.84 1.40 0.58 0.31 1.38 2.22

Model εt ∼ t5
Conditional Gaussian MLE 0.62 0.62 1.55 2.81 0.21 1.16 2.63 3.56
Whittle 0.88 1.35 3.90 5.43 0.57 2.29 5.00 7.24
Jackknifed Whittle 0.58 0.69 1.82 2.25 0.28 1.63 3.01 4.23
Modified Whittle 0.49 0.76 1.85 2.49 0.07 1.16 1.68 2.30
Jackknifed modified Whittle 0.15 0.27 0.90 2.03 0.37 0.21 1.25 2.01

Model εt ∼ χ2
5 − 5

Conditional Gaussian MLE 0.37 0.54 1.93 2.94 0.25 0.83 2.45 2.88
Whittle 0.47 1.21 3.80 5.86 0.47 1.96 5.09 6.97
Jackknifed Whittle 0.41 0.66 1.65 2.68 0.13 1.24 3.27 3.82
Modified Whittle 0.35 0.61 1.82 2.90 0.27 0.53 1.96 2.33
Jackknifed modified Whittle 0.45 0.36 0.98 1.96 0.68 0.41 1.27 1.95
Table entries are percentages; estimates are based on 10,000 simulations.
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yields

0 =
1

n1/2

{
∂

∂θ
D̃(θ) +

∂2

∂θ2
D̃(θ)(θ̃ − θ) +

1

2

∂3

∂θ3
D̃(θ)(θ̃ − θ)2 + · · ·

}
=

1

n1/2

∂

∂θ
D̃(θ) +

{
1

n

∂2

∂θ2
D̃(θ)

}
√
n(θ̃ − θ)

+
1

2n1/2

{
1

n

∂3

∂θ3
D̃(θ)

}
{n1/2(θ̃ − θ)}2 + · · ·

=Z̃1 + E

{
1

n

∂2

∂θ2
D̃(θ)

}
n1/2(θ̃ − θ) +

1

n1/2
Z̃2n

1/2(θ̃ − θ)

+
1

2n1/2
E

{
1

n

∂3

∂θ3
D̃(θ)

}
{n1/2(θ̃ − θ)}2 + · · · , (6.4)

where

Z̃1 =
1

n1/2

∂

∂θ
D̃(θ), Z̃2 =

1

n1/2

[
∂2

∂θ2
D̃(θ)− E

{
∂2

∂θ2
D̃(θ)

}]
.

The desired stochastic expansion is obtained by substituting n1/2(θ̃− θ) = A1 +

n−1/2A2 + n−1A3 + · · · into (6.4), and noting that Z̃1 = Z1 − n−1/2ρj , Z̃2 =

Z2 − n−1/2γj , and

E

{
− 1

n

∂3

∂θ3
D̃(θ)

}
= Ln − κj

n
;

see Taniguchi and Kakizawa (2000, Chap. 4) for related calculations.

Proof of Proposition 1. Note that

n1/2(θ̂jk − θ) =

n∑
j=1

{n1/2(θ̂n − θ)− n1/2(θ̂
(j)
n−1 − θ)}+ 1

n

n∑
j=1

n1/2(θ̂
(j)
n−1 − θ).

(6.5)

It is easily seen that

n∑
j=1

(6.1) = 0,

n∑
j=1

(6.2) = 0,

n∑
j=1

(6.3) = 0.

By substituting the stochastic expansion of n1/2(θ̂
(j)
n−1 − θ) from Lemma 1 into

(6.5), we obtain (3.1).

Proof of Theorem 1.

1. This result follows from (3.1).

2. Formula (3.2) follows from (2.7), and Theorem 5 and equation (5.5) of Taniguchi

(1983). From (3.1) and (2.7), we obtain (3.3).
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Proof of Theorem 2. From the definition of V̂ 2
jk, we have

V̂ 2
jk =

n− 1

n

n∑
j=1

{
n1/2(θ̂

(j)
n−1 − θ)− 1

n

n∑
k=1

n1/2(θ̂
(k)
n−1 − θ)

}2

. (6.6)

By substituting the stochastic expansion from Lemma 1 into (6.6), we obtain

V̂ 2
jk =

n∑
j=1

(
1

n1/2
I−1
n ρj

)2

+ lower order terms

→ I−1, in distribution, as n → ∞,

which, together with Slutsky’s lemma, produces the desired conclusion.

Proof of Theorems 3 and 4. From the definitions of bθ(λ) and Ī∗n(λ) given

by (2.2) and (3.4), respectively, it follows that

E{Īn(λ)} − E{Ī∗n(λ)} = − 1

n
bθ(λ) + o(n−1).

Let

Z∗
1 =

1

n1/2

∂

∂θ
D∗

n(θ), Z∗
2 =

1

n1/2

[
∂2

∂θ2
D∗

n(θ)− E

{
∂2

∂θ2
D∗

n(θ)

}]
.

We observe that E(Z∗
1 ) = o(n−1/2), and that Z∗

1 and Z∗
2 have the same asymp-

totic properties as those of Z1 and Z2 shown in (2.7); see the proof of Lemma A3.3

of Hosoya and Taniguchi (1982). Hence, Theorems 3 and 4 follow by applying

the same arguments as those used in the proofs of Theorems 1 and 2.

Acknowledgement

This paper was presented at the Fourth Brussels-Waseda Seminar on “Time

Series and Financial Statistics” at ENSAI (Rennes) in 2009. The first author

thanks all the attendants for their comments. This work was partially supported

by Japan-Belgium Research Cooperative Program (JSPS & FNRS) and Grand-

in-Aid (A) (19204009) of Japan. The authors would like to thank Professor Peter

Hall and two anonymous referees for their helpful comments and suggestions,

which improved the original version of this paper.

References

Akahira, M. (1989). Behaviour of jackknife estimators in terms of asymptotic deficiency under

true and assumed models. J. Japan Statist. Soc. 19, 179-196.



1304 MASANOBU TANIGUCHI ET AL.

Brillinger, D. R. (2001). Time Series: Data Analysis and Theory. Society for Industrial and
Applied Mathematics, Philadelphia, PA.

Dzhaparidze, K. (1986). Parameter Estimation and Hypothesis Testing in Spectral Analysis of
Stationary Time Series. Springer-Verlag, New York.

Fan, J. and Yao, Q. (2003). Nonlinear Time Series. Springer-Verlag, New York.

Gray, H. L., Watkins, T. A. and Adams, J. E. (1972). On the jackknife statistic, its extensions,
and its relation to en-transformations. Ann. Math. Statist. 43, 1-30.

Hannan, E. J. (1970). Multiple Time Series. John Wiley and Sons, New York.

Hosoya, Y. and Taniguchi, M. (1982). A central limit theorem for stationary processes and the
parameter estimation of linear processes. Ann. Statist. 10, 132-153.

Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann.
Statist. 17, 1217-1241.

Miller, R. G. (1974). The jackknife—a review. Biometrika 61, 1-15.

Quenouille, M. H. (1949). Approximate tests of correlation in time-series. J. Roy. Statist. Soc.
Ser. B 11, 68-84.

Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43, 353-360.

Rao, J. N. K. (1965). A note on estimation of ratios by Quenouille’s method. Biometrika 52,
647-649.

Schucany, W. R., Gray, H. L. and Owen, D. B. (1971). On bias reduction in estimation. J.
Amer. Statist. Assoc. 66, 524-533.

Taniguchi, M. (1983). On the second order asymptotic efficiency of estimators of Gaussian
ARMA processes. Ann. Statist. 11, 157-169.

Taniguchi, M. (1987). Validity of Edgeworth expansions of minimum contrast estimators for
Gaussian ARMA processes. J. Multivariate Anal. 21, 1-28.

Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time
Series. Springer-Verlag, New York.

Tukey, J. W. (1958). Bias and confidence in not-quite large samples. Ann. Math. Statist. 29,
614.

Vernon, F. L. (1994). Jackknifed multiple-window spectra and coherence applied to seismicdata.
IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings-
94 6, 93-96.

Whittle, P. (1962). Gaussian estimation in stationary time series. Bull. Inst. Internat. Statist.
39, 105-129.

Department of Applied Mathematics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo,
169-8555, Japan.

E-mail: taniguchi@waseda.jp

Faculty of Political Science and Economics, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku,
Tokyo, 169-8050, Japan.

E-mail: tamaki@waseda.jp

Department of Social Statistics, Cornell University, Ithaca, New York 14853, U.S.A.

E-mail: tjd9@cornell.edu

Faculty of Economics, University of Sannio, Via Calandra 1, 82100 Benevento, Italy.

E-mail: acmonti@unisannio.it

(Received May 2011; accepted September 2011)

taniguchi@waseda.jp
tamaki@waseda.jp
tjd9@cornell.edu
acmonti@unisannio.it

	1. Introduction
	2. Setting and Notation
	3. Jackknifed Whittle Estimators
	4. Generalization to Vector Parameters
	5. Numerical Investigations
	6. Proofs

