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Abstract: We define a nonparametric prewhitening method for estimating condi-

tional quantiles based on local linear quantile regression. We characterize the bias,

variance and asymptotic normality of the proposed estimator. Under weak condi-

tions our estimator can achieve bias reduction and have the same variance as the

local linear quantile estimators. A small set of Monte Carlo simulations is carried

out to illustrate the performance of our estimators. An application to US gross

domestic product data demonstrates the usefulness of our methodology.
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1. Introduction

Since the seminal work of Koenker and Bassett (1978), there has developed
a large literature on (conditional) quantile estimation. There are a variety

of approaches to estimating conditional quantiles. These can be divided into
three categories: fully parametric, semiparametric, and purely nonparametric.

For a recent account of the parametric approach, see Kim and White (2003)

and Komunjer (2005). The second approach includes Koenker and Zhao (1996),
He and Liang (2000), Lee (2003), and Engle and Manganelli (2004), whereas the

third approach includes Chaudhuri (1991) Fan, Hu and Truong (1994), Portnoy
(1997), Yu and Jones (1998), Cai (2002), and Hansen (2004a), among many oth-

ers.
Prior to Kim and White (2003) and Komunjer (2005), most papers in para-

metric quantile regressions assume explicitly or implicitly that the conditional
quantile regression model is correctly specified. When the parametric model is

misspecified, Kim and White (2003) show that confidence intervals and hypoth-
esis tests based on the conventional covariance matrix are invalid, and yet we

can still estimate the pseudo-true parameters consistently, under certain regu-
larity conditions, based on the principle of quasi-maximum likelihood estimation

(QMLE). Komunjer (2005) establishes necessary conditions for QMLE to work.

It is worth mentioning that, under misspecification, the resultant estimator for
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the conditional quantile is usually inconsistent with the true quantile function,

even though the parameter estimator in the misspecified model is still consistent
with the pseudo-true parameter. Nevertheless, one can estimate consistently the

conditional quantile function nonparametrically.

In this paper, we propose a nonparametric prewhitening estimator for con-

ditional quantiles based on local linear quantile regression. The principle of
prewhitening has a long history in the time series literature. See Press and Tukey

(1956) and Andrews and Monahan (1992), among many others. Recently the

principle has been applied in the context of kernel density estimation, conditional

mean regression, and conditional variance estimation by Hjort and Glad (1995)
and Hjort and Jones (1996), Glad (1998), and Mishra, Su and Ullah (2006), re-

spectively. All these authors start with a parametric specification and propose

an nonparametric correction term for the parametric estimator. Consequently,

these are two-stage estimators that can be viewed as semiparametric and thus
termed as semiparametric prewhitening estimators. They outperform the purely

nonparametric estimators in terms of bias reduction and mean squared error

(MSE) under weak conditions (for example, the parametric start can capture
some roughness feature of the underlying density, conditional mean or variance

function). In case of misspecification, they are consistent whereas the parametric

ones are not.

Despite the advantage of the semiparametric prewhitening estimators over
their parametric or nonparametric analogues, their bias terms usually do not

disappear when the optimal rates of bandwidth are applied. One exceptional

case is when the first stage parametric specification is correct, so that the object

of interest can be estimated consistently (and more efficiently) by the parametric
model. In principle, one can extend the semiparametric prewhitening idea to the

conditional quantile regression, and we conjecture that the result will be similar.

To get rid of bias terms, we propose instead to adopt a nonparametric estimator in

the first stage. Under weak conditions, the first stage nonparametric estimator is
consistent. After another smoothing, the new estimator will have negligible bias

and the same variance as that of the traditional local linear quantile estimator,

even if we adopt the optimal rates of bandwidth. Because of the nonparametric

nature, we call the resulting quantile estimator a nonparametric prewhitening
estimator.

In comparison with Hjort and Glad (1995), Hjort and Jones (1996) and Glad

(1998), our paper is different in three aspects. First, the estimators obtained in

these early papers are all two-step semiparametric estimators where the first
step starts with parametric model estimation, and the second step involves the

nonparametric estimation of the correction term. In our case we are doing a

two-step nonparametric estimator where, in both steps, nonparametric modeling

and estimation are done.
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Second, the two-step semiparametric estimator can keep the same variance
as the ordinary nonparametric estimator and potentially has a smaller bias than
the latter. The bias reduction can be achieved as long as the parametric pilot
model is in the “neighborhood” of the true model. The bias can also increase

if the parametric start is far away from the true model. In contrast, with our
two-step nonparametric estimation we find that the asymptotic variance is the
same as the one-step local quantile estimation, but our estimator always gives
reduction in the bias.

Third, more generally, bias reduction in the two-step semiparametric esti-
mation depends crucially on the degree of misspecification at the first stage. If
the first stage parametric model is highly misspecified, then the gain will be very
little and bias can actually increase in some cases. Such an issue of misspecifica-
tion at the first stage does not arise in our two-step nonparametric estimation. In
fact, we demonstrate through simulations that if the first step parametric model
is highly misspecified, then the two-step nonparametric estimator will be more
efficient than the two-step semiparametric estimator in terms of MSE.

We provide asymptotic theory for the normality of the nonparametric
prewhitening quantile estimator. In terms of bias reduction and MSE, it dom-
inates the local linear quantile estimator of Yu and Jones (1998) in the i.i.d.
framework, and that of Honda (2000) and Lu, Hui and Zhao (2001) for depen-
dent data. We provide both simulation and empirical data analysis to assess the
strength and weakness of our nonparametric prewhitening quantile estimator. In
simulations we consider a variety of data generating processes (DGPs) and fit
parametric, nonparametric, semiparametric, and our nonparametric prewhiten-
ing quantile regression models to them. We compare them by the median length
of 90% out-of-sample prediction intervals, coverage frequencies, and mean
squared errors (MSEs), and we find significant gains can be achieved by using
our modelling strategy. In the empirical data analysis, we illustrate the relative
performance of various conditional quantile estimators with an application to the
U.S. GDP growth rate.

The paper is structured as follows. In Section 2 we introduce our nonpara-
metric prewhitening quantile estimators and their asymptotic properties. We
conduct a Monte Carlo study to check the relative performance of the proposed
estimator in Section 3. Section 4 provides an empirical data analysis. All tech-
nical details are relegated to Section 5.

2. The Nonparametric Prewhitening Estimation

2.1. The nonparametric prewhitening quantile (NPPQR) estimators

In this section, we propose a nonparametric prewhitening estimator of condi-
tional quantiles that aims at reducing bias of the local linear quantile estimator.
The data are given by {(Yt,Xt), t = 1, . . . , n}.
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Let ρτ (z) = z(τ − 1(z ≤ 0)) be the “check” function. It is well known that

the τ -th conditional quantile qτ (x) of Yt given Xt = x satisfies

qτ (x) = arg min
f

E
[
ρτ (Yt − f(Xt)|Xt = x)

]
, (2.1)

where we assume that the solution to the above minimization problem is unique

and that f belongs to a space of measurable functions defined on R
d. Denote

by
.
qτ (x) = (∂qτ (x)/∂x1, . . . , ∂qτ (x)/∂xd)

′ the first order derivative of qτ (x) at

x = (x1, . . . , xd)
′ ∈ R

d, where x′ denotes the transpose of a vector x. The idea of

the local linear fit is to approximate the unknown τ -th quantile qτ (
.) by a linear

function qτ (z) ≃ qτ (x)+
.
qτ (x)

′(z−x) ≡ β0 +β′1(z−x) for z in a neighborhood of

x. Locally, estimating qτ (x) is equivalent to estimating β0, and estimating
.
qτ (x)

is equivalent to estimating β1. This motivated Yu and Jones (1998) to define a

local linear quantile regression (LLQR) estimator of qτ (x) by q+τ (x) ≡ β+
0 , where

{β+
0 , β

+
1 } ≡ arg min

{β0,β1}
n−1

n∑

t=1

ρτ

(
Yt − β0 − β′1(Xt − x)

)
Kh0

(Xt − x), (2.2)

Kh0
(x) = K(x/h0), K is a kernel function on R

d, and h0 ≡ h0(n) is the band-

width.

Under suitable conditions, Lu, Hui and Zhao (2001) showed that q+τ (x) has

the Bahadur representation

√
nhd

0

(
q+τ (x)−qτ (x)

)
= φτ (x)

1√
nhd

0

n∑

t=1

ψτ (Y
∗
t (x, τ)Kh0

(Xt−x)+oP (1), (2.3)

where ψτ (y) = τ − 1(y ≤ 0), Y ∗
t (x, τ) = Yt − qτ (x) −

.
qτ (x)

′(Xt − x), φτ (x) =

1/[fY |X(qτ (x)|x)fX(x)], fY |X(.|x) is the conditional density of Y given X = x,

and fX(.) is the marginal density of X. If one further assumes that the second

order derivatives of qτ (x) exist, then for an interior point x,

MSE(q+τ (x))≃
{

1

2
h2

0tr
[

..
qτ (x)

∫
uu′K(u)du

]}2

+
τ(1−τ)

∫
K(u)2du

nhd
0[fY |X(qτ (x)|x)]2fX(x)

, (2.4)

where
..
qτ (x) = [∂2qτ (x)/∂xi∂xj ]. Consequently, the optimal rate of bandwidth

in terms of minimizing the MSE is proportional to n−1/(d+4). When x lies on the

boundary of the support, the MSE formula looks similar. This reflects the two

major advantages of local linear fitting and shows that these advantages apply

to the local quantile regression too: (a) no dependence of the asymptotic bias

on the density fX(x), and (b) automatic good behavior at boundaries. From

the formula in (2.4), we can see that the asymptotic bias depends on the simple
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quantile curvature function
..
qτ . When

...
q τ (x) = 0, the MSE of q+τ (x) is dominated

by the asymptotic variance. This motivates us to consider the following local

linear quantile regression

{β∗0 , β∗1} ≡ arg min
{β0,β1}

n−1
n∑

t=1

ρτ

(Ytqτ (x)

qτ (Xt)
−β0−β′1(Xt−x)

)
Kh(Xt−x), (2.5)

where h ≡ h(n) is the bandwidth.

For simplicity, we assume that the observed Yt are positive. (If not, let

Cn be a positive number so that Y t ≡ Yt + Cn are all positive. One can first

obtain the conditional quantile of Y t given Xt, and then subtract Cn to get

the conditional quantile of Yt given Xt.) Denote by ncτ (x) the τ -th conditional
quantile of Yt/qτ (Xt) given Xt = x, and by qcτ (x) the τ -th conditional quantile

of Ytqτ (x)/qτ (Xt) given Xt = x. Then ncτ (x) = 1, qcτ (x) = qτ (x), so that

the pseudo-true parameter β0 = (β0
0 , β

0′
1 )′ for the regression in (2.5) is β0

0 =

ncτ (x)qτ (x) = qτ (x) and β0
1 =

.
ncτ (x)qτ (x) = 0. In comparison with β+

0 , the

estimator β∗0 can have the same variance as β+
0 but negligible asymptotic bias

because ncτ (x) is a constant function whose derivatives are all zero.

Since qτ (
.) is not observable, we propose to replace it in (2.5) by q+τ (.). To

summarize, we propose nonparametric prewhitening quantile estimators that are
obtained in two steps:

1. Obtain the usual local linear quantile estimator of qτ (x̃) as in (2.2) and

denote it by q+τ (x̃) for x̃ = X1, . . . ,Xn.

2. Obtain the nonparametric prewhitening quantile regression (NPPQR) es-

timator of qτ (x) by replacing qτ (
.) in (2.5) with q+τ (.) to obtain q̂τ (x) ≡ β̂0, where

{β̂0, β̂1} ≡ arg min
{β0,β1}

n−1
n∑

t=1

ρτ

(
Ytq

+
τ (x)

q+τ (Xt)
− β0 − β′1(Xt − x)

)
Kh(Xt − x). (2.6)

Remark 1. As Kauermann, Müller and Carroll (1998) remark, there are two
general ways to reduce bias in nonparametric regression: (a) estimate the second

derivative function (
..
qτ (x) here) and subtract a multiple of it from the usual

nonparametric estimator; (b) reduce the bias indirectly either by undersmoothing

or by the twicing technique. Method (a) is sensitive to the choice of a second

bandwidth, whereas method (b) will increase the variance (say by a factor 1.44

for the Gaussian kernel and 1.42 for the Epanechnikov kernel, independent of

the problem). In contrast, we show that our two-stage nonparametric estimator

offers an effective way to reduce the bias and keep the variance of the one-step

nonparametric estimator unchanged.

Remark 2. We show that q̂τ (x) behaves similarly to β∗0 and it dominates q+τ (x)

in terms of MSE. To see why our two-step procedure helps, from (2.8) below one
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deduces that, uniformly in x,

q+τ (x)− qτ (x)

=
φτ (x)

nhd
0

n∑

t=1

E[ψτ (Y ∗
t )Kh0

(Xt − x) +
φτ (x)

nhd
0

n∑

t=1

{
ψτ (Y

∗
t )Kh0

(Xt − x)

−E[ψτ (Y
∗
t )Kh0

(Xt − x)]
}

+ oP

(
n−

1

2h
− d

2

0

)

≡ bn(x) + vn(x) + oP

(
n−

1

2h
− d

2

0

)
. (2.7)

That is, bn(x) and vn(x) contribute to the asymptotic bias and variance of q+τ (x),

respectively. Under Assumptions A.1-A.3 below, one can show that supx|bn(x)| =
O(h2

0), supx|vn(x)| = OP (n−1/2h
−d/2
0

√
log n) = oP (n−1/2h−d/2), and hence

q+τ (x)

qτ (x)
= 1 +

bn(x)

qτ (x)
+ oP

(
n−

1

2h−
d

2

)
uniformly in x.

Consequently

q+τ (Xt)

qτ (Xt)
× qτ (x)

q+τ (x)

=

[
1 +

bn(xt)

qτ (Xt)
+ oP

(
n−

1

2h−
d

2

)]
×

[
1− bn(x)

qτ (x)
+Op(h

4
0) + oP

(
n−

1

2h−
d

2

)]

= 1 +

[
bn(xt)

qτ (Xt)
− bn(x)

qτ (x)

]
+ oP

(
n−

1

2h−
d

2

)

= 1 + oP

(
n−

1

2h−
d

2

)
on the set {Kh(Xt − x) > 0},

where the second equality follows from the fact that h4
0 = o(n−1/2h−d/2) by

Assumption A.3, and the last equality follows from Assumptions A.1(vi) and

A.2. See Corollary 5.3 for details. The last result implies that q+τ (x)/q+τ (Xt)

is equal to qτ (x)/qτ (Xt) to order oP (n−1/2h−d/2), and replacing qτ (x)/qτ (Xt) in

(2.5) by q+τ (x)/q+τ (Xt) in (2.6) has negligible effect on the estimation of β0. In

other words, q̂τ (x) is asymptotically equivalent to β∗0 .

Remark 3. Our result relies on the crucial assumption that (h/h0)
d log n =

o(1), which implies that h0 ≫ h and seems contradictary to bias reduction.

For example, undersmoothing is frequently used in practice to correct for bias.

Typical twicing techniques (e.g., Jones, Linton and Nielsen (1995), Kauermann,

Müller and Carroll (1998)) choose the same bandwidth in both stages, which

can make the leading bias terms from the first stage and second stage cancel

out but inflate the variance at the same time. In our case, by choosing a larger

bandwidth in the first-stage nonparametric regression, we can effectively control
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the variance of the first-stage estimator. The bias can be reduced because we
find that only the ratio q+τ (x)/q+τ (Xt) matters, and only those observations Xt

in the neighborhood of x play key roles in the second-stage smoothing.

2.2. Asymptotic Theory for the Nonparametric-prewhitening Estima-
tors

To introduce the theory, we make the following assumptions.
(A1) (i) The process {Yt,Xt} is strictly stationary α-mixing, with mixing co-

efficients α(j) satisfying
∑∞

j=1 j
aα(j)δ/(δ+2) < ∞ for some δ > 0 and

a > δ/(δ + 2).
(ii) The marginal density function fX(.) of Xt is continuous and fX(x̃) > 0

for all x̃ on its bounded support X .
(iii) The conditional density function fY |X(y|x̃) of Yt given Xt = x̃ is con-

tinuous as a function of y in a neighborhood of qτ (x), uniformly for all
x̃ ∈ X , and continuous as a function of x̃ for all y in a neighborhood of
qτ (x). Also, fY |X(qτ (x̃)|x̃) > 0 for all x̃ ∈ X .

(iv) The joint density function fj(x̃, x
∗) of (X1,X1+j) is bounded uniformly

in j > 0.
(v) The quantile function qτ (

.) has continuous second order derivatives on
its support.

(vi) The functions fX(.), fY |X(.|.), qτ (.),
..
qτ (

.) are Lipschitz continuous of
degree 1.

(A2) The kernel K is a bounded density function with compact support on R
d

such that
∫
uK(u)du = 0 and µ2 =

∫
uu′K(u)du is positive definite.

(A3) As n→∞, (i) (h/h0)
d log n→ 0, nhdh6

0 → 0, (ii) nhd →∞.

Assumptions A1−A3 parallel those of Lu, Hui and Zhao (2001) but are
stronger than theirs. Assumption A1(i) is standard in nonparametric regres-
sion whereas Assumptions A1(ii)−(v) are frequently assumed in nonparametric
quantile regression. Assumption A1(vi) can be weakened to allow fX(.), fY |X(.|.),
qτ (

.) and
..
qτ (

.) to satisfy Lipschitz condition of degree κ (0 < κ ≤ 1). In this case,
the conditions for the bandwidth sequences will be modified correspondingly. As
Hall, Wolf and Yao (1999) remark, the requirement in Assumption A2 that K is
compactly supported can be removed at the cost of lengthier arguments used in
the proofs and, in particular, Gaussian kernel is then allowed. Assumption A3
implies that h→ 0, h0 → 0 and nhd

0/ log n→∞ as n→∞. It also implies that

n−1/2h
−d/2
0

√
log n and h3

0 are both of smaller order than n−1/2h−d/2.
Next, we state a theorem that is used in the proof of our main theorem.

Theorem 2.1. Under Assumptions A1−A3,
√
nhd

0(q
+
τ (x)−qτ (x)) = φτ (x)

1√
nhd

0

n∑

t=1

ψτ (Y
∗
t (x, τ))Kh0

(Xt−x)+oP (1), (2.8)
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where oP (1) holds uniformly in x ∈ X .

Remark 4. Honda (2000) obtains uniform strong Bahadur representation for
local polynomial estimators of conditional quantiles under a different set of con-
ditions. In particular, he assumes that qτ (x) is p-times differentiable and applies
h0 ∝ n−1/(d+2p). One has to modify his condition on the bandwidth in order to
adapt his result to our framework. Lu, Hui and Zhao (2001) obtain weak Ba-
hadur representation for local linear quantile regression estimators. Their result
is a pointwise result and can be extended to obtain the uniform result in the above
theorem. Some other results for Bahadur representations are available in the lit-
erature. For example, He and Shao (1996) obtain strong Bahadur representation
for a general class of M -estimators which include our quantile regression estima-
tors. Portnoy (1997) establishes Bahadur representations for local parameters of
the quantile smoothing splines.

We now state the main theorem.

Theorem 2.2. Under Assumptions A1−A3,

√
nhd(q̂τ (x)− qτ (x)) d→ N

(
0,

τ(1− τ)
∫
K(u)2du

[fY |X(qτ (x)|x)]2fX(x)

)
. (2.9)

Remark 5. The above theorem implies that the asymptotic bias of
√
nhdq̂τ (x)

is negligible, whereas its asymptotic variance remains the same as the asymptotic
variance of

√
nhdq+τ (x) when the same bandwidth and kernel are used in both

cases. From Assumption A3, we see that we can take h to be proportional to
n−1/(d+6−ǫ) for arbitrarily small positive ǫ. This implies that q̂τ (x) is infinitely
more efficient than the conventional local linear quantile estimator, because q̂τ (x)
can converge to qτ (x) at a rate approximating n−1/2+d/[2(d+6)] whereas the tra-
ditional one can converge to qτ (x) at the best rate n−1/2+d/[2(d+4)].

3. Monte Carlo Simulations

We illustrate the performance of the proposed nonparametric prewhitening
quantile estimator with a small set of simulations. In addition to the proposed
estimator, we also study several other parametric, nonparametric and semipara-
metric quantile estimators.

3.1. Other Estimators for Conditional Quantiles

Parametric Quantile Regression (PQR) Estimator
A linear parametric quantile regression (PQR) estimator for qτ (x) is given

by q̂pqr
τ (x) = x′

−→
β , where x = (1, x′)′ and

−→
β ≡ arg min

β∈Rd+1
n−1

n∑

t=1

ρτ (Yt −X ′
tβ). (3.1)
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Weighted Nadaraya-Watson (WNW) Estimator

Denote by FY |X(y|x) the conditional distribution function Y given X =

x. Motivated by the good boundary properties of local polynomial estimators,

Hall, Wolf and Yao (1999) suggest estimating F (y|x) by a weighted version of

the well known Nadaraya-Watson (NW) estimator:

F̂wnw(y|x) =

n∑
t=1

pt(x)Kh1
(Xt − x)1(Yt ≤ y)

n∑
t=1

pt(x)Kh1
(Xt − x)

, (3.2)

where h1 ≡ h1(n) is the bandwidth, and one chooses the nonnegative weight

functions pt(x), 1 ≤ t ≤ n, such that

n∑

t=1

pt(x) = 1, and

n∑

t=1

pt(x)(Xt − x)Kh1
(Xt − x) = 0. (3.3)

More recently, Cai (2002) proposed choosing {pt(x)} based on the idea of

empirical likelihood, i.e., to maximize
∑n

t=1 log{pt(x)} subject to the constraints

specified in (3.3). He proposed inverting F̂wnw to get the conditional quantile

estimator:

q̂wnw
τ (x) ≡ inf

{
y ∈ R : F̂wnw(y|x) ≥ τ

}
. (3.4)

Smoothed Local Linear (SLL) Estimator

Let l be a symmetric density function on R and L the corresponding distribu-

tion function. Yu and Jones (1998) propose a smoothed local linear estimator for

conditional quantiles that is based on the observation that E[L((y−Yt)/h2)|Xt =

x]→ F (y|x)as the bandwidth h2 → 0. To obtain the smoothed local linear (SLL)

estimator for the conditional quantile function, one first obtains

(
←−
β 0,
←−
β 1) ≡ arg min

β

n∑

t=1

{
L

(y − Yt

h2

)
− β0 − β′1(Xt − x)

}2

Kh2
(Xt − x), (3.5)

where β = (β0, β
′
1)

′ ∈ R × R
d, h2 ≡ h2(n) is the bandwidth. Set F̂sll(y|x) =

β̂0. Yu and Jones (1998) proposed inverting F̂sll to get the conditional quantile

estimator

q̂sll
τ (x) ≡ inf{y ∈ R : F̂sll(y|x) ≥ τ}. (3.6)

Note that F̂sll(y|x) can range outside [0, 1]. In the special case where d = 1,

it can be expressed as F̂sll(y|x) =
∑n

t=1 wt(x)L((y − Yt)/h2)
∑n

s=1ws(x), where

wt(x) = Kh1
(Xt − x)(1 − β̂x(x − Xt)), in which β̂x ≡ (

∑n
t=1Kh1

(Xt − x)(x −
Xt)

2)−1
∑n

t=1Kh1
(Xt−x)(x−Xt). To obtain an monotone estimator for F (y|x)
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that lies between 0 and 1, Hansen (2004a) proposed replacing wt(x) by w∗
t (x) ≡

Kh1
(Xt − x)(1− β̂x(x−Xt))1{β̂x(x−Xt) ≤ 1}.

Semi-parametric Prewhitening Quantile Regression (SPPQR) Estima-
tor

Motivated by the important work of Hjort and Glad (1995), Hjort and Jones

(1996) and Glad (1998), we can start with parametric quantile regression (PQR)

estimation in the first stage, and then proceed to the nonparametric estimation
in the second stage. The resulting estimator is obtained as q̂sppqr

τ (x) ≡ β̃0, where

{β̃0, β̃1} ≡ arg min
{β0,β1}

n−1
n∑

t=1

ρτ

(
Ytq̂

pqr
τ (x)

q̂pqr
τ (Xt)

−β0−β′1(Xt−x)
)
Kh(Xt−x). (3.7)

3.2. Simulation

We first consider an ARCH(1) process:

Yt = 0.6Yt−1 +
√

0.3 + 0.9Y 2
t−1εt,

where {εt} are i.i.d. N(0, 1). Here, Xt = Yt−1. Despite the linear feature of the
conditional mean function, the conditional quantile function is highly nonlinear

so we expect that the linear quantile regression works poorly in this case. Like Cai

(2002), we generated n + 5 data points {Yt,Xt}, where the first n observations
were used for estimation of the conditional quantiles, whereas the last 5 data

points were used for out-of-sample evaluation. We chose n = 100, 200 and 500.

The 90% prediction intervals (PI) [q0.05(Yn+j−1), q0.95(Yn+j−1)] (1 ≤ j ≤ 5) were

computed for each of the quantile estimators under study.
Hansen (2004a,b) proposed plug-in bandwidth selection for estimating

F̂wnw(y|x) and F̂sll(y|x) in the case where Xt is a scalar random variable. Since

d = 1 here, our preliminary choice of (h, h1, h2) is obtained according to Hansen

(2004a,b). Since our interest is to estimate the conditional quantiles, we then ad-
justed the preliminary choice of bandwidth according to the rule of thumb recom-

mended by Yu and Jones (1998): for example, h = h∗{τ(1−τ)[φ(Φ−1(τ))]−2}1/5,

where h∗ is the preliminary bandwidth obtained from Hansen (2004a), φ and Φ
are the standard normal pdf and cdf, respectively. To obtain the nonparametric

prewhitening estimator, we set h0 = 0.75hn−1/6/n−1/5 = 0.75hn1/30 to guarantee

h≪ h0.

It is worth mentioning that according to Hansen (2004a,b), his choices of
bandwidth are designed to minimize the (in-sample) integrated mean squared

error of F̂sll(y|x). We used them to obtain other estimators for conditional quan-

tiles with no attention to optimizing the performance of either the conventional

nonparametric quantile estimators or our nonparametric prewhitening quantile
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Table 1. The postsample prediction for the ARCH model: ratio of PI length
vs. range of data

n Estimators Yn+1 Yn+2 Yn+3 Yn+4 Yn+5

100 PQR 1 1 1 1 1

WNW 0.674 0.673 0.673 0.676 0.686

SLL 0.857 0.858 0.856 0.852 0.861
LLQR 0.702 0.701 0.702 0.703 0.707

NPPQR 0.606 0.614 0.604 0.612 0.615

SPPQR 0.701 0.704 0.698 0.703 0.706

200 PQR 1 1 1 1 1

WNW 0.643 0.638 0.642 0.647 0.644
SLL 0.840 0.837 0.832 0.848 0.837

LLQR 0.678 0.665 0.670 0.675 0.674

NPPQR 0.574 0.578 0.567 0.580 0.571

SPPQR 0.678 0.667 0.672 0.675 0.674
500 PQR 1 1 1 1 1

WNW 0.613 0.616 0.617 0.619 0.619

SLL 0.857 0.864 0.864 0.858 0.856

LLQR 0.657 0.661 0.654 0.658 0.654

NPPQR 0.561 0.568 0.551 0.557 0.556
SPPQR 0.659 0.661 0.654 0.658 0.655

Note: The table reports the normalized ratio of the length of PI vs the IQR of the data for

different quantile estimators: the entry elements are the PI length of different estimators over

the PI length of the PQR estimator. Small numbers mean tighter PI. The number of repetitions

is 1,000 for each n.

estimator. In all cases, we chose K and l (in obtaining the SLL quantile estima-

tor) to be the standard normal density function. The number of repetitions was

1,000 for each n unless otherwise stated.

In Table 1 we present the median of the 1,000 values for the ratio of the length

of PI versus the interquantile range (IQR) of the data {Yt}, where the ratio of

PQR PI versus IQR is normalized to be 1. We find the following interesting

points: (1) in terms of PI length, the PQR is worst; (2) the NPPQR outperforms

the LLQR and all other estimators, indicating potential gain of nonparametric

prewhitening in reducing the length of prediction interval.

In Table 2 we present the coverage frequencies of 90% PI based on quantile

estimation. We find: (1) the PQR and SLL estimation of PI tends to be overcov-

ered for small sample sizes and, as sample sizes increase, the coverage frequency

of the PQR estimate tends to the nominal 90%; (2) the WNW estimate of PI

tends to be under-covered; (3) in terms of correct coverage ratio, the LLQR,

NPPQR and SPPQR estimators work reasonably well.

Next, we considered the following DGPs in the i.i.d. framework:
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Table 2. The postsample prediction for the ARCH model: coverage frequencies.

n Estimators Yn+1 Yn+2 Yn+3 Yn+4 Yn+5

100 PQR 0.93 0.94 0.93 0.92 0.91

WNW 0.85 0.85 0.85 0.84 0.82

SLL 0.95 0.96 0.96 0.94 0.94

LLQR 0.90 0.91 0.92 0.91 0.89
NPPQR 0.88 0.89 0.88 0.88 0.87

SPPQR 0.90 0.91 0.92 0.91 0.89

200 PQR 0.92 0.92 0.92 0.93 0.92

WNW 0.84 0.84 0.82 0.84 0.83

SLL 0.95 0.96 0.95 0.95 0.94
LLQR 0.90 0.91 0.91 0.92 0.91

NPPQR 0.88 0.90 0.89 0.89 0.89

SPPQR 0.90 0.91 0.91 0.92 0.91

500 PQR 0.91 0.91 0.92 0.91 0.90
WNW 0.80 0.82 0.80 0.80 0.82

SLL 0.95 0.95 0.96 0.96 0.95

LLQR 0.90 0.90 0.89 0.91 0.89

NPPQR 0.89 0.90 0.88 0.89 0.88

SPPQR 0.90 0.90 0.89 0.90 0.89

Note: The table reports the coverage frequencies for different quantile estimators to be com-

pared with 90%. The numbers are calculated based on 1,000 repetitions.

DGPs 1−3: Yt = 1+Xt +εt, Xt ∼ uniform[−2, 2], and εt ∼ N(0, 1), Gamma

(1, 2), and Cauchy (0, 1) in DGPs 1−3, respectively;

DGPs 4−6: Yt = 1 +Xt + 2cos(X2
t ) sin(Xt) + εt, Xt ∼ uniform(−2, 2), and

εt ∼ N(0, 1), Gamma (1, 2), and Cauchy (0, 1) in DGPs 4−6, respectively;

DGP 7: Yt = sin(0.75Xt) + 1 + 0.3
√

sin(0.75Xt) + 1εt, Xt ∼ N(0, 0.0625),

εt ∼ N(0, 1);

DGP 8: Yt = 2.5 + sin(2Xt) + 2 exp(−16X2
t ) + 0.5εt, Xt ∼ N(0, 1), εt ∼

N(0, 1);

DGP 9: Yt = 2+2 cos(2Xt)+exp(−4X2
t )+εt, Xt ∼ N(0, 1), εt is exponential

with mean 1;

DGP 10: Yt = 2 + Xt + exp(−Xt)(εt − log 2.6), Xt ∼ uniform(0, 5), εt is

exponential with mean 1.

DGPs 1−6 were studied in Min and Kim (2004) whereas DGPs 7−10 were

studied in Yu and Jones (1998). Clearly, the true quantile function is linear for

DGPs 1−3 and almost linear in DGPs 7 and 10 given the range of realizations

of {Xt}. DGPs 2, 4, and 9−10 are used to examine the effect of skewness on

quantile estimation, whereas DGPs 3 and 6 are for checking the effect of fat tails

on quantile estimation. We have heteroskedastic errors in DGPs 7 and 10.
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Table 3. Mean square errors for conditional median estimators

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9 DGP10

PQR 0.028 0.071 0.048 1.016 1.081 1.070 0.002 0.663 0.967 0.002

WNW 0.087 0.157 0.134 0.294 0.481 0.575 0.100 0.388 0.712 0.375

SLL 0.037 0.103 0.086 0.152 0.348 0.386 0.003 0.202 0.141 0.009
LLQR 0.042 0.102 0.077 0.168 0.343 0.376 0.003 0.289 0.123 0.005

NPPQR 0.065 0.154 0.113 0.108 0.275 0.193 0.004 0.143 0.066 0.006

SPPQR 0.043 0.104 0.077 0.169 0.345 0.376 0.003 0.294 0.124 0.005

Note: The table reports the MSEs of conditional median estimators based on different quantile

estimation techniques. The MSEs are averaged across 200 simulation repetitions and across all

observations of Xt that lie within 1.5 standard deviations of the sample averages. Boldfaced

elements indicate the corresponding estimator is best for the DGP in the column. n = 100.

We report in Table 3 the mean square errors (MSEs) of the conditional

median estimators averaged over 200 simulation repetitions and over observations

on Xt that lie within 1.5 standard deviations of the sample averages. To save on

computation time, we limited ourselves to the case where n = 100. The results

are interesting. (1) As expected, the PQR estimator is the best when the true

quantile function is linear (DGPs 1−3), or almost linear (DGPs 7 and 10), and it

is the worst when the true conditional quantile function is highly nonlinear. (2)

NPPQR outperforms LLQR in cases where the true conditional median function

is highly nonlinear (DGPs 4−6, 8 and 9), as well as all other estimators under

study. This suggests that a test of linear conditional quantile function may be

extremely helpful toward obtaining better conditional quantile estimators. If one

rejects linearity with strong evidence, one should use the NPPQR estimator.

To check whether nonparametric prewhitening can help reduce the length of

a prediction interval, we also estimated the 5th and 95th conditional percentiles

at a fixed point x = 0.25, and then evaluated the 90% PI based on these two

quantile estimators for all DGPs and all estimators under study. In this case, the

true realization of Y was obtained by drawing the error term randomly from the

corresponding distribution and taking the regressor to be 0.25. Table 4 reports

the PI vs IQR and the coverage frequencies. First, we focus on the PI vs IQR. For

ease of comparison, we normalize the PI vs IQR for the PQR estimator to be 1.

A number smaller than 1 means reduction in PI length. As we can see from the

top part of Table 4, for all DGPs, the NPPQR outperforms other estimators in

most cases. It is worth mentioning that even if the true quantile function is linear

(DGPs 1−3), one can still shorten the prediction interval by applying NPPQR.

When the true quantile function is nonlinear, more gains can be obtained by

applying NPPQR than LLQR in most cases.

For the 90% coverage frequency, we can see from the second part of Table 4:

that (1) NPPQR is relatively more stable than other estimators, (2) for DGP7,
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Table 4. The PI vs IQR and coverage frequencies

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9 DGP10

PI/IQR

PQR 1 1 1 1 1 1 1 1 1 1

WNW 1.31 1.17 0.97 1.13 1.09 0.96 1 0.97 0.91 1.56
SLL 1.31 1.17 0.98 1.14 1.10 0.97 1.07 0.90 0.94 1.98

LLQR 1 1 0.98 0.88 0.97 0.97 0.99 0.77 0.84 1.63

NPPQR 1 1 0.98 0.83 0.95 0.95 0.98 0.71 0.81 1.61

SPPQR 1 1 0.98 0.89 0.98 0.97 0.99 0.78 0.84 1.62

Coverage

PQR 0.91 0.90 0.91 0.96 0.94 0.90 1 0.96 0.89 0.62
WNW 0.97 0.94 0.91 0.98 0.95 0.90 1 0.99 0.93 0.73

SLL 0.97 0.95 0.91 0.98 0.95 0.90 1 0.99 0.93 0.95

LLQR 0.91 0.90 0.91 0.94 0.95 0.90 1 0.98 0.92 0.85

NPPQR 0.91 0.90 0.91 0.91 0.94 0.89 1 0.98 0.93 0.85
SPPQR 0.91 0.90 0.91 0.93 0.95 0.89 1 0.98 0.92 0.85

Note: The table reports the PI vs IQR of the data, and coverage frequency for different quantile

estimators. The PI vs IQR is normalized to be 1 for the PQR estimator. The theoretical coverage

frequency is 90%. The numbers were calculated based on 1000 repetitions. n = 200.

the coverage frequency is 100% across all estimators because the signal/noise

ratio is very large in this case (a similar story holds for DGP 8), and (3) for

DGP 10, where both skewness and heteroskedasticity are present, even though

the true quantile function is almost linear the coverage frequency for PQR and

WNW breaks down.

4. Empirical Analysis

Here we check the relative performance of quantile estimators with appli-

cation to the U.S. real gross domestic product (GDP) growth rate. Let GDPt

denote the level of quarterly real GDP. Let Yt ≡ 100(ln(GDPt) − ln(GDPt−4))

denote the annual quarter-to-quarter growth rate. Set Xt = Yt−1. We have the

data on real GDP from the first quarter of 1946 to the first quarter of 2004,

yielding 229 observations, the number of observations on {Yt,Xt} is 224.

To see how different quantile estimators can be used to predict future GDP

growth rates, we leave the last 40 observations for forecasting evaluation and

use the rolling window forecasting scheme. To be specific, the sample is divided

into an in-sample part of size n1, and an out-of-sample part of size n2, where

n1 = 184 and n2 = 40. At time t ≥ n1, we use all observations up to time t to

form the quantile estimation, and then predict the conditional quantiles for time

t+ 1, with τ = 0.05, 0.50, and 0.95. We take the 50th conditional percentile as

the point forecast, and the 5th and 95th conditional percentile as the lower and
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Figure 1. 5th, 50th and 95th 1-quarter-ahead predicted quantile estimators

for various estimation techniques (1994Q2-2004Q1).

Table 5. The postsample prediction for the U.S. quarterly GDP growth rate:

MAE, MSE and ratio of the length of PI vs the range of the data.

5th 50th 95th Ratio of PI vs

MAE MSE MAE MSE MAE MSE range of data

PQR 2.684 7.705 0.556 0.477 2.700 7.767 0.343

WNW 2.912 9.233 0.710 0.882 3.069 10.51 0.381

SLL 3.326 11.673 0.517 0.463 3.020 9.689 0.404
LLQR 2.742 8.019 0.549 0.465 2.591 7.291 0.340

NPPQR 2.568 7.300 0.531 0.462 2.294 6.061 0.310

SPPQR 2.749 8.012 0.552 0.461 2.628 7.470 0.342

Note: The table reports the MAE and MSE of the 5th, 50th and 95th conditional percentile

estimators calculated from the 40 out-of-sample predictions. The last column reports the average

ratio of length of the PI versus the range of the data. Numbers in boldface denote the lowest

value in each column.

upper bound. Figure 1 displays the true GDP growth rates for all time t > n1,

and the 5th, 50th and 95th conditional percentile estimators based on various

techniques. (For clarity, we did not include the SPPQR estimator in the figure.)

From the figure, we can see that (1) the 50th percentile predictors can trace the

true GDP growth rates fairly well, and (2) the NPPQR estimator outperforms

all other quantile estimators in that they tend to have shorter PIs than others.

Table 5 displays the MAE, MSE of the 5th, 50th and 95th conditional quan-
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tile predictors based on the 40 out-of-sample predictions. The last column of

Table 5 reports the average ratio of the length of the 90% PI versus the range

of the data. From the table, we see that in most cases, the nonparametric

prewhitening quantile estimator helps reduce MAE, MSE, and the length of PI.

5. Proof of Theorems in Section 2

We use ‖ · ‖ to denote the Euclidean norm, C to signify a generic constant

whose exact value may vary from case to case, and a′ to denote the transpose

of a. To save space, we frequently write the distribution or density functions

FY |X(.|.), fY |X(.|.) as F (.|.) and f(.|.).
First we state a lemma that is used in the proof of our main theorem.

Lemma 5.1. Let Vn(∆) be a vector function that satisfies

(i)−∆′Vn(λ∆) ≥ −∆′Vn(∆), λ ≥ 1,

(ii)sup‖∆‖≤M ‖Vn(∆) + fY |X(qτ (x)|x)D∆ −An‖ = op(1),

where ‖An‖ = Op(1), 0 < M < ∞, fY |X(qτ (x)|x) > 0, and D is a positive

definite matrix. Suppose that ∆n satisfies ‖Vn(∆n)‖ = op(1). Then, ‖∆n‖ =

Op(1) and

∆n = [fY |X(qτ (x)|x)]−1D−1An + op(1). (5.1)

The above lemma is proved in Koenker and Zhao (1996, p.809). To apply

it to Theorem 2.1, we need a stronger result. For this purpose, we strengthen

Condition (ii) in Lemma 5.1 to

(ii∗) supx∈X sup‖∆‖≤M ‖Vn(∆) + fY |X(qτ (x)|x)D∆ −An‖ = op(1).

One can follow the proofs of Koenker and Zhao (1994, 1996) and prove the fol-

lowing lemma.

Lemma 5.2. Let Vn(∆) be a vector function that satisfies the conditions in

Lemma 5.1 with Condition (ii) replaced by (ii∗). Then, ‖∆n‖ = Op(1) and

∆n = [fY |X(qτ (x)|x)]−1D−1An + op(1) uniformly in x. (5.2)

Proof of Theorem 2.1. The proof is analogous to the proof of Theorem 3.1

in Lu, Hui and Zhao (2001). The main difference is to verify Condition (ii*)

in Lemma 5.2 instead of Condition (ii) in Lemma 5.1. This can be done by

repeatedly using Bickel’s (1975) standard chaining argument.

Corollary 5.3. Suppose Assumptions A1−A3 hold. Then

max
{Khi>0}

q+τ (Xi)qτ (x)

qτ (Xi)q
+
τ (x)

= 1 + oP

(
n−

1

2h−
d

2

)
, (5.3)

where Khi = K(Xhi), and Xhi = (Xi − x)/h.
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Proof. Under Assumptions A1 and A3, Theorem 2.1 implies that, uniformly in

x ∈ X ,

q+τ (x)

qτ (x)
= 1 + Ψn(x) + oP

(
n−

1

2h
− d

2

0

)
,

qτ (x)

q+τ (x)
= 1−Ψn(x) + oP

(
n−

1

2h
− d

2

0

)
,

where Ψn(x) = φτ (x)qτ (x)
−1(nhd

0)
−1

∑n
t=1 ψτ (Y ∗

t (x, τ))Kh0
(Xt − x). Let Ψn(x)

= E(Ψn(x)). Following the standard argument of Masry (1996b), and using

Assumptions A1−A3, one can show

sup
x∈X
|Ψn(x)−Ψn(x)| = OP

(
n−

1

2h
− d

2

0

√
log n

)
= oP

(
n−

1

2h−
d

2

)
,

and supx∈X |Ψn(x)| = O(h2
0). Consequently, q+τ (x)/qτ (x) = 1+Ψn(x)+oP (n−1/2

h−d/2), and qτ (x)/q
+
τ (x) = 1−Ψn(x) + oP (n−1/2h−d/2), uniformly in x. Then

q+τ (Xi)qτ (x)

qτ (Xi)q
+
τ (x)

= 1 + Ψn(Xi)−Ψn(x) + oP

(
n−

1

2h−
d

2 ).

Since K(.) is a bounded density function with compact support, ‖Xhi‖ ≤ C
for some C when Khi > 0. Then

|Ψn(x̃)−Ψn(x)|

= (nhd
0)

−1

∣∣∣∣∣

n∑

j=1

{
E

[
ψτ (Y

∗
j (x̃, τ))α(x̃)Kh0

(Xj − x̃)
]

−E
[
ψτ (Y

∗
j (x, τ))α(x)Kh0

(Xj − x)
]}∣∣∣∣∣

=
1

2
h−d

0

∣∣∣∣E
[
f(qτ (X1)|X1)(x̃−X1)

′ ..qτ (X1+c1(x̃−X1))(x̃−X1)α(x̃)Kh0
(X1−x̃)

]

−E
[
f(qτ (X1)|X1)(x−X1)

′ ..qτ (X1 + c2(x−X1))(x −X1)α(x)Kh0
(X1 − x)

]∣∣∣∣

+O(h3
0)

=
h2

0

2

∣∣∣∣
∫ [

f(qτ (x̃+ h0u)|x̃+ h0u)u
′...q τ (x̃+ (1− c1)h0u)uα(x̃)K(u)du

]

−
∫ [

f(qτ (x+ h0u)|x+ h0u)u
′ ..qτ (x+ (1− c2)h0u)uα(x)K(u)du

]∣∣∣∣ +O(h3
0)

=
h2

0

2

∣∣∣∣∣tr
{∫ [

α(x̃)f(qτ (x̃)
∣∣∣x̃+ h0u)

..
qτ (x̃+ (1− c1)h0u)
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−α(x)f(qτ (x)
∣∣∣x+ h0u)

..
qτ (x+ (1− c2)h0u)]uu

′K(u)du

}∣∣∣∣∣ +O(h3
0),

where α(x) = φτ (x)qτ (x)
−1, and c1 and c2 lie between 0 and 1. It follows from the

Lipschitz continuity of fY |X(.|.), fX(.), qτ (
.) and

..
qτ (

.), that sup
‖ex−x‖≤Ch

|Ψn(x̃) −

Ψn(x)| = O(h2
0h + h3

0), and by Assumptions A2−A3, max{Khi>0} q
+
τ (Xi)qτ (x)

/[qτ (Xi)q
+
τ (x)] = 1 + oP (n−1/2h−d/2).

Let Hn =
√
nhd, θn = Hn(β̂0 − qτ (x), h(β̂1 − 0)′)′, and θ = Hn(β0 −

qτ (x), h(β1 − 0)′)′, where (β0, β
′
1)

′, (β̂0, β̂
′
1)

′ ∈ R × R
d. Define Y ∗∗

i = Yiq
+
τ (x)

/q+τ (Xi)−qτ (x), Y ∗
ni(θ) = Y ∗∗

i −Uni(θ), where Uni(θ) = θ′Xhi/Hn, Xhi = (1,X ′
hi)

′.

Then

Y ∗
ni(θ) =

Yiq
+
τ (x)

q+τ (Xi)
− qτ (x)− Uni(θ) =

Yiq
+
τ (x)

q+τ (Xi)
− β0 − β′1(Xi − x). (5.4)

Also, when ‖θ‖ ≤ M and Khi > 0, |Uni(θ)| ≤ CH−1
n → 0 as n → ∞. It follows

from (2.6) that

θn = arg min
θ∈R1+d

n∑

i=1

ρτ (Y
∗
ni(θ))Khi. (5.5)

Set

Vn(θ) = H−1
n

n∑

i=1

ψτ (Y
∗
ni(θ))XhiKhi. (5.6)

The proof of Theorem 2.2 is based on the following lemma.

Lemma 5.4. Suppose Assumptions A1−A3 hold. Then

(i) sup
‖θ‖≤M

‖Vn(θ)− Vn(0)− E[Vn(θ)− Vn(0)]‖ = oP (1);

(ii) sup
‖θ‖≤M

‖E[Vn(θ)− Vn(0)] + fY |X(qτ (x)|x)Dθ‖ = o(1);

(iii)‖Vn(θn)‖ ≤ (d+ 1)H−1
n maxi≤n ‖X ′

hiKhi‖;
(iv)E[c′(Vn(0)− EVn(0))]2 = τ(1− τ)fX(x)

∫
(c0 + c′1u)

2K2(u)du + o(1),

where D = fX(x)diag(1,
∫
uu′K(u)du), and c = (c0, c

′
1)

′ ∈ R× R
d.

Proof. The proof of the lemma is similar to that of Lemmas B2−B5 in Lu, Hui

and Zhao (2001), and is thus omitted. The main difference is that we need to

use (5.3) and standard dominance convergence arguments repeatedly.

Proof of Theorem 2.2. To apply Lemma 5.1, take An = Vn(0), ∆ = θ and

∆n = θn. Then Lemma 5.4(iv) implies that An = Op(1). By Lemmas 5.4(i)−(ii)

sup‖θ‖≤M ‖Vn(θ)+fY |X(qτ (x)|x)Dθ−Vn(0)‖ = oP (1), whereas by Lemma 5.4(iii),
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‖Vn(θn)‖ = oP (1). So it suffices to verify that Condition (i) of Lemma 5.1 holds.

This is true since ψτ increasing implies that

−θ′Vn(λθ) = H−1
n

n∑

i=1

ψτ

(
Y ∗∗

i −
λθ′Xhi

Hn

)
(−θ′Xhi)Khi

is increasing in λ. Consequently, θn = [fY |X(qτ (x)|x)]−1D−1Vn(0) + oP (1), im-

plying that
√
nhd(q̂τ (x)− qτ (x)) = ϕτ (x)H

−1
n

∑n
i=1 ψτ (Y

∗∗
i )Khi + oP (1).

Let Ỹ ∗∗
i = Yi − qτ (Xi). Then

√
nhd(q̂τ (x)− qτ (x))

= ϕτ (x)H−1
n

n∑

i=1

ψτ (Ỹ
∗∗
i )Khi + ϕτ (x)H−1

n

n∑

i=1

(
ψτ (Y ∗∗

i )−ψτ (Ỹ
∗∗
i )

)
Khi + oP (1)

≡ An1 +An2 + oP (1). (5.7)

Let vi = h−d/2ϕτ (x)ψτ (Ỹ ∗∗
i )Khi. Then

E(An1 − EAn1)
2 = Var(v1) + 2

n∑

j=2

(
1− j − 1

n

)
Cov(v1, vj). (5.8)

Since E(v1) = h−d/2ϕτ (x)E[{τ − 1[Y1 ≤ qτ (X1)]}Kh1] = 0,

Var(v1) = E(v2
1) = h−dϕ2

τ (x)E

{[
τ2 + (1 − 2τ)1(Yi ≤ qτ (Xi))

]
K2

hi

}

= τ(1− τ)ϕ2
τ (x)fX(x)

∫
K2(u)du+ o(1). (5.9)

To bound the second term on the right hand side of (5.8), we split it into two

terms as follows:

n∑

j=2

|Cov(v1, vj)| =
dn∑

j=2

|Cov(v1, vj)|+
n∑

j=dn+1

|Cov(v1, vj)| ≡ J1 + J2, (5.10)

where dn is a sequence of positive integers such that dnh
d → 0 as n→∞. Since

for any j > 1, E(v1vj) = O(hd),

J1 = O(dnh
d) = o(1). (5.11)

By the Davydov inequality (e.g., Bosq (1998, p.19)) and Assumption A1, we have

J2 ≤
n∑

j=dn+1

C[α(j − 1)]
δ

2+δ

{
E

[
|v1|2+δ

]} 2

2+δ
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≤ Ch−
δd

2+δ

n∑

j=dn+1

[α(j − 1)]
δ

2+δ

≤ Ch−
δd

2+δ d−a
n

∞∑

j=dn

ja[α(j)]
δ

2+δ = o(1), (5.12)

by choosing dn such that da
nh

δd/(2+δ) →∞. The last condition can be simultane-

ously met with dnh
d → 0 for a well-chosen sequence {dn} because a > δ/(2 + δ)

by Assumptions A.1 and A.3. Consequently, (5.8)−(5.12)imply that

E(An1 − EAn1)
2 = τ(1− τ)ϕ2

τ (x)fX(x)

∫
K2(u)du+ o(1).

Using the standard Doob small-block and large-block technique, (e.g., Cai,

Fan and Yao (2000), Cai and Ould-Säıd (2003) and Masry (1996a)), we can show

that

An1
d→ N

(
0, τ(1 − τ)ϕ2

τ (x)fX(x)

∫
K2(u)du

)
. (5.13)

Noting that (q+τ (Xi)qτ (x)/q+τ (x) − qτ (Xi))Khi = oP (n−1/2h−d/2) by Corol-

lary 5.3, we have

E
[
|ψτ (Y ∗∗

i − ψτ (Ỹ
∗∗
i )|Khi

]

= E

[∣∣∣1(Yi ≤ qτ (Xi))− 1
(
Yi ≤

q+τ (Xi)qτ (x)

q+τ (x)

)∣∣∣Khi

]

≤ E
[
1{|Yi − qτ (Xi)| ≤

∣∣∣
q+τ (Xi)qτ (x)

q+τ (x)
− qτ (Xi)

∣∣∣
}
Khi

]

= o
(
n−

1

2h
d

2

)
.

Consequently, E|An2| ≤ ϕτ (x)H
−1
n

∑n
i=1E[|ψτ (Y ∗∗

i ) − ψτ (Ỹ
∗∗
i )|Khi] = o(1). It

follows from the Chebyshev’s inequality that

An2 = oP (1). (5.14)

The conclusion of Theorem (2.2) follows from (5.7), (5.13) and (5.14).
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