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S1 Lemmas

Lemma 1. LHD-based block bootstrap mean is unbiased, i.e.,

Proof of Lemma 1: Since the data points are equally distributed over all

the blocks, we have EYy (7x) = m~4 D vy Yitoia = Yn-0

.....

Lemma 2. Let y; = ﬁ D weeB(iy Ys: V8= (i1,...,4q). Assuming (A.1),

(A.2) and m = o(n'/?), we have
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Proof of Lemma 2: Let A, = - >, . (Yiy, iy — w)?. We can show
that Cov(A,, A,) =0 and E(A,) = 72.

n _ n _
Cov(ATHA") = CO’U( m2d Z (yil ,,,,, id /J‘)27 T od (yil ,,,,, id //L)Q)

= % > > Cov{(ys, — 1) (Ysy — 1), (Y2 — 1) (Yo — 1)}

i By By, Bty Ty EBn (1)

DY S Cov{(y — 1) we — 10wy — 1) vis — 1)}

1] sy @5y €EBn(3) Tty , @iy €B(F)

By expanding two terms above separately, we have Cov(A,, 4,) = O(+ +

%d) S 0asm = o(nl/d). In addition, we have

BA)-7=2Y Y ) y@) = o)

1£] €8, (1),2:€EBR ()

Thus, A, — 72 0. o

Lemma 3. Assume (A.1)- (A.2), then

2 _ P
iy’ /mét — 12 =0,

n
*2 * —*% %
where 73" = Covy ,(Jx, Un)-

Proof of Lemma 3: Based on the definition of n13?/m?!, we have

nTy /md 1= & COUNw(Z/zlayzl) + 2n Cova(y117y12>

For the first term on the right, we have

no- 2
m Cova(y’Ll7y’Ll - m2d Z yll, old _(yn — IU) = ATL — Bn

U15ee08d

By Lemma 2, we have A, — 72 2.0, For B, = 2 (Jn — p)?, by the

central limit theorem for 7,, we have B, .. Next, it suffices to show
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that %COU*NM(Q,'T,@,';) converges to 0 in probability under P. The

following double summation are taken over i = (i1,...,1)

UlseesJdrJ1sed

and j = (j1,. .., Ja) such that B,,(¢) and B, (7) are not equal and are selected

together.
—n(ﬂ;; 1)COU}kv,w(gi’{7gi§) = n(ﬂ;;d 2 ] —1d( ) > @ — )@ — w)
i#g
n(m —1) 2md B )
md - m{md —1—d(m — 1)}](y —#)

= Cp+D,.

Similar to A, and B,, we can show that C, P, 0 and D, L5 0. The

result follows immediately. O

Lemma 4. Under (A.1)-(A.3), for each ¢ € O,

hmP{P* (IN- qu LW, @) + N7k (w, @)

n—o0
—n! qu(w, —nlr(w, @) > 6) > | =
s=1

Proof of Lemma 4: Rewrite the bootstrapped likelihood function as
I+ Iy + I, where I = N™' 330 {g3(w, ) — B3 w, )},

= {N 'L EGw d) —n T D 5w, d)), Iy = N7y (- w, ¢) —
n~'r,(w, @). By Lemma 3, I, = 0. For I3, it can be shown that n™'r,(w, ¢) —
0in P and N~'ri (-, w, @) — 0, prob-Py , prob-P. For notation simplicity,

we omit 6 in the following discussion. The expectation and variance of
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nr,(w, @) are:

[E{n " 70 (w, @)}

1
—)\max En )\max D 1 1 A n D_l
2n0—2(1+g) ( ) ( )+’ Og{ + max( )| n }’
= o(1)
and
1
-1
Va’r(n rn(w,cﬁ)) < mvaﬂ“{; ]Zlumgj
\4

where ¢; is the i"" entry of D, (y, — X,8) and u; = (u;;) is the i*" row of

Uny Cn = maXl{Zg 1 z]

In addition, as Amax(E%) < Amax(En) and Apax (D5 ™) < Amax(D7Y),

n

we have

1
20%(1 4+ g*)

1 — * *
T‘_Z)\max(En)Amax(Dnl)”yN - XNBH%

(yn — XnB)" Dy ExDy ™ (yy — Xy0)

IN

According to Lemma 6 below, we have N7 Y|yy — X385 — n Yy, —
X33 — 0 prob-P}, prob-P. Similarly, we can bound log |Iy+U3 " Dy~ UR|.

As Mpax(Ern) — 0, we have w, @) — 0, prob-Py, , prob-P.

nrv(sw

So when n is sufficiently large, we only need to show that lim, . P[Py (/11| >
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§) > ¢] = 0. By Chebyshev’s inequality,
* 1 * %
PN,w(’[1| > 5) < ﬁva’rN,w(qN('7w>¢))'

By Lemma 1, r'Vary,,(Gy(-,w, @) = Oy(1), together with the fact that

N =n/md-1,
. n 1 . n
P[Py (L] >6)>¢] < P[W(;GVCWN,W(QN(',W,@) > fmd_l]
= O(m*2/n* — 0.
O

The next lemma further extends Lemma 4 to the uniform weak law of

large numbers for the LHD-based block bootstrap likelihood functions.

Lemma 5. (Uniform Weak Law of Large Numbers) Under (A.1)-(A.5), ¥
0, >0,

N
lim P|:P1t1,w(sup |N_1Zq:('7w7¢)+N_lr}(\/('7w7¢)
n—oo ¢,€(_)

s=1

'Y as(w, ) —nTra(w, @) > 6) > €| = 0.
s=1
Proof of Lemma 5: By Lemma 4, [n"'r,(w, ) — N7'ri(-,w, )| can be

arbitrarily small as n is large enough uniformly over ©. We only need to

show that

n

N
lim P[P]"{W(sup |N_1 ZQ:('?wa ¢) - n_l ZQS(wa ¢)| > 5) > g} = 0.
s=1

n—oo ¢€® —1

Given € > 0 that will be selected later, let {n(¢;,¢),j = 1,...,K} be a
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finite cover of ©, where n(¢;,¢) = {¢ € © : |¢p — ¢;| < ¢}. Then

N n
Sup INTDY qiCw ) —n ) gl
s=1 s=1

K " _
= malx sup |qN(',w7 ¢) - Qn<wv¢>"
=5 gpen(g;.€)

It follows that V 6 > 0 with fixed w,

PN,w( sup |(.77V<'7w7 ¢) - Qn(w’ ¢)| > 5)
»cO

K
< ) Pro( sup [gx(nw, @) — Gulw, @)| > 6).
j=1

For V ¢ € n(¢;, €), by Global Lipschitz condition,

N n
Tn (- w, @) — Gu(w, D)] < |qN (- w, b)) — Gulw, @)+ N> Lie+n™ ') L,
s=1 s=1

where L7 is the bootstrapped Lispchitz coefficient.
By Markov inequality and the fact that sup,{n~'> " | EL;} = O(1),
we have P(n™' Y7 Ly > §/3) < 3eA/d < £/3, where A is a large constant.

If we choose € < £0/(9A), we have

P[PY,( sup |Gy (w, @) — Gulw, @) > 0) > ¢]
Pen(d;€)

< P[P]*vw(lf*(-w¢l)—’( b;)| > 9) > ¢/3]
+P [Py (N7 ZL*6>5/3)>§/3 | + Pln ZL6>5/3
= L+ L+15

According to Lemma 4, I; < £/3 when n is large enough. By Markov’s
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inequality,

Pi (NI Lie>6/3) < N E*Ly/(5/3¢) =n"! zn: L,/ (8/3¢€).

The last equality is because of Lemma 1. Thus, I, < £/3 as well as I3. O

S2 Consistency of the LHD-based block bootstrap

mean

Before studying the asymptotic performance of MLEs, we first focus on
understanding properties of the LHD-based block bootstrap mean, which
is an important foundation to the theoretical development of (;Ab*N later.
The LHD-based block bootstrap can be formulated mathematically as
follows. Given the underlying probability space (€2, F, P) of a Gaussian
process, a sample of size n with settings @;(w), ..., z,(w) and responses
y(x)’s are observed from a given realization w € Q. Let (A,G) be a
measurable space on the realization. For each w € (2, denote Py, as
the probability measure induced by the m-run LHD-based block boot-
strap on (A,G). The proposed bootstrap is a method to generate new
dataset on (A, G, Py,,) conditional on the n original observations. Let
7+ A — {1,...,n} denote a random index generated by the LHD-based

block bootstrap. So, 7; is the tth index in the intersect index of observa-
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tions and {B,(¢]), ..., B.(%,,)}, where (¢],...,%,,) is a randomly generated
m-run LHD. Therefore, for (A\,w) € A x Q, we have the tth bootstrap
sample: x} (A, w) = x,, () (w).

Suppose {Y (x;),t € R} follows a GP with mean u. Given n observa-

tions, the sample estimation of mean p is
RS
Yn = E ; Ys,
and the LHD-based block bootstrap mean with N samples is given by

N
T *
s=1
With a slight abuse of notation, we replace the notation of random variable

Y by its realization y unless otherwise specified. The following lemma shows

the asymptotic consistency of the LHD-based block bootstrap mean.

Lemma 6. Under (A.1)-(A.2), if m — oo and m = o(n*/?), then

* 1/ —* — — P
sup | Py, (v/n/ma=Y Gy = Gn) /70 < x) = P(V0(Gn — 1) /70 < )| — 0,
when n — 00.

Note that E(-) and Cov(-, -) denote the expectation and variance under

P while EYy ,(-) and Covly (-, ) denote the expectation and variance under
Py

Proof of Lemma 6: It suffices to show that (1) Ey (7x) = ¥n; (2)

2 . o s

nti?/mit — 7, = 0; and (3) sup, |Py,,((Ux — Ex,(UN)/™8 < @) —

n
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O (z)| 5 0, where ®(-) denotes standard normal distribution function and
%" = Covy, (Ui, In)-

Lemmas 1 and 3 imply the results in (1) and (2). Note that y§ =
% Z;n:l Yir and (iz, .-, Ysx,) follows Latin Hypercube sampling distribu-
tion. According to Loh (1996), we have the Berry-Essen type of bound for

Latin Hypercube sampling
sup | Py, (G — Tn)/Th < ) — ®(2)] < 'm ™2,

3 < 0. So

where ¢ is a constant that depends only on d, given EY ||9:

we only need to show that EY [|7: || is bounded uniformly in probabil-

ity under P. Since Ey ||7s, || = -2 >, %3 and according to Minkowski’s

inequality, it follows that

A B < s Y el 2 Bu)f <o
i i " @B (i)

S3 Proof of Theorem 1

To investigate the asymptotic properties of the estimators from LHD-based
block bootstrap, we decompose the likelihood function into blocks. For
each block, denote y, = (ys(xs),xs € B,(2)), Xi = (x5, x5 € B,(2))7,

Ri5(0)=[v(y(@,).y(x:); 0), @, € Ba(d), @ € Bu(4)] and z; = R;;*(60) (y; -
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X ;3). Then, we can rewrite the penalized log-likelihood function n™0(X ., y,,, @)

as

Qn( X0, Yy, @) = —(2n0®) 7' 300 22 — (2n) 7t Y00 log(As)
—(2n)~' 300 log(0®) + 0 (X, Y, D)

=1 2A(15s])

= n 'Y gs(w, @) +ntr(w, @) — D0 pa(lBs])
(S3.1)

where {As,s = 1,...,n} = {eigenvalues of |R;;(0)],%2 = (i1,...,iq)} with
(i1,...,1q) in lexicographical order and eigenvalues from the largest to the
smallest. Note that 7, (w, @) = (X, Y,, d) — > .o, ¢s(zs, @) contains all
terms involving the off block-diagonal terms. Define D,,(0) = diag(R; ;(0))

and E,(0) = R,(0)— D, (0). Assuming that E,(0) = U,(0)UT(0), we have

n

0 8) = s W~ XoB) D O)F(0)D;(0) y, — X0
b log L + U7 (6)D;" ()1, (6)],

where g = trace(E,(0)D,1(8)).

~

The MLE is obtained by ¢, = argmax, Q,(X,,y,, ®). Analogue to

the decomposition for Q,(X,,y,, @), the log-likelihood function for LHD-
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based block bootstrap samples can be written as

N
QX3 uh @) = N gi(hw @)+ N ri(hw, ¢)
s=1

p

= " palIB) (S3.2)

s=1

where 3 (+,w, ¢) contains all terms involving the off block-diagonal terms

with bootstrapped samples. Specifically,

T}kv('a W, ¢)

1 x —1

= m(y}‘v — X408 Dy H0)EL(0) Dy H0) (v — XiB)

1 _
45 log |y + U3 (6) Dy~ (6)U3(6),

where D}(0) = diag(R;» ;:(6),7 = 1,...,m) and E}(0) = Ry (0) — D3(6)
with E3(0) = Ux(0)ULT(0); g* = trace(E%(0)D5y (0)). The boot-
strapped version of c}bn is dA)j\, = argmax,, QN (X, ¥y, @). Theoretical
properties of the LHD-based block bootstrap likelihood function (S3.2) are
established in lemmas 4 and 5, which leads to a proof of convergence proper-
ties of the bootstrap estimator q}bj\, Lemma 4 first established the pointwise
weak law of large numbers for the LHD-based block bootstrap likelihood
functions. Lemma 5 further extends Lemma 4 to the uniform weak law of

large numbers for the LHD-based block bootstrap likelihood functions.
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Proof of Theorem 1: Based on Lemma 5, we have
lim P[Py, (sup |Q, — Q| > d) > &£ =0,
n—oo ¢>66

where @, and Q} are given in (S3.1) and (53.2). With the full preparation
of the likelihood convergence developed in Lemmas 4 and 5, the convergence
of bootstrap parameter estimation follows immediately given the existence
of (Aﬁn and &j\,

Denote i (- w, @) = N7 3L, g (,w, @) and G (w0, @) = ™' 1L ai(w, ).
By (A.6), ¢i(-,w,) : AXO — Rand ry(-,w,) : AX© — R are measurable-
G for each ¢ € ©. In addition, ¢f(\,w,-) and 7} (A, w, ) are continuous on
O for all A. Thus, we have (Aﬁjv(,w) exists as a measurable-G function by
Jennrich (1969).

Following the procedure in Goncalves and White (2004), for any sub-
sequence {n'}, given that an/ is identifiable and unique, there exists a fur-
ther subsequence {n”} such that (Aﬁn,, is identifiably unique with respect
to {Qnv} for all w € F in some F € F with P(F) = 1. By condi-
tion (A.6), there exists G € F with P(G) = 1 such that for all w € G,
{Q%n(-,w, @)} (N” is corresponding bootstrapped sample size of n”) is a
sequence of random function on (A, G, Py ) continuous on © for all A € A.
Hence, by White (1996), for fixed w € G, there exists (Aﬁ}k\,,,(-,w) A — 0O

measurable-G and ¢y, (-, w) = arg max, Qx (-, w, @). By the uniform weak
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law of large numbers for Q% (X%, Yy, @) obtained from Lemma 5, we
have Qyu (- w, @) — Qur(w, @) — 0 as n” — oo prob — Py, prob — P
uniformly on ©, where we write Q}‘V — 0 prob — Py ,,prob — P if, for
any € > 0 and 0 > 0, limn%mP{Pj{[’w(@}‘v > ¢ > §)} = 0 and omit
prob— Py, prob— P in the text for notation simplicity. Hence, there exists
a further subsequence {n”’} such that QN (-, w, @) — Qur(w,¢) — 0 as
n" — oo prob — Py, prob— P for all w in some H € F with P(H) = 1.

Choose w € FFNG N H, by White (1996), we have (Aﬁjvm — ¢, — 0 as

n///
n" — oo prob— Py, prob— P. Since this is true for any subsequence {n'},

we have P(FNGN H) = 1. Thus, é’)j\, — ¢, — 0 prob— Py, prob — P.

Then ¢y = = SE bn(i) — ¢, — 0 prob— Py, prob— P. O

S4 Proof of Theorem 2

Proof. Define B = Var{n="23""_ Vq.(-,w, ¢)}. We first show that

V/n/miIBT2YQx (- w, ¢,) — N(0,1). Denote by (¢p) = N=' o8 Vg (25, ¢)
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and h, () =n~1 3" Vs(z, ). We have

Vi /mE R (@) = hal(d,)] = /n/m by (d,) — hiy(°)]
+y/n/m 73 (@7) = (7))
v/ /m (@) = hu(9,,)]

= J1—|—J2+J3.

Since h,, and h} are functions whose secondary derivative are continuous,
Ji+J3 — 0 as qAbn — ¢y — 0 by Theorem 3.1 in Chu (2011). Moreover, the
two terms in .J, are both evaluated at ¢, which is a fixed value, then by
Lemma 6, we have B~Y2J, — N(0,1).

By condition (A.10) and follow a similar proof as Lemma 5, we have
VQyn(w, @) — VQu(w, ) = 0 prob— Py, prob — P.

Let H,(w) = V2Q,(w,9,). According to White (1996), given the result

by — b, — 0 prob — Py, prob — P and assumption (A.8), we have

VN(py = ¢,) = —H,'(W)WVNVQy("w,¢,)+op; (1)
= —Hu(¢) ' (W)VNVQx(w, d,) + opy (1).

Given the fact that

\/n/md—lB_l/ZVQ}k\,(~,w, é’)n) — N(0,I) prob— Py, prob — P.
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we have
B™Y2H,(pg)VN(by — b,) — N(0, ).

For 3y, B and H can be written as J(3,,) and J(3,,) + G(8,,). For ,[A%;,,l,

we have
VNI (Buo) + G(B10){Bxa = Baat = N0, J (Bro).
For sub-bagging estimator 3 N1 = S B;l(z), we have

VENI[J(8y) + G(IBIO)]{BN,I - Bm} — N(0, J(B1p)),

then the result follows.

S5 Proof of Theorem 3

Using the same technique before, we decompose the log-likelihood by blocks

and rewrite the likelihood of 3 based on the OSE approach as follows:

- ~(0) ~. (0 A
QuB) = 1Y q(w,8,6, 2 ") 40w, 8,05 52"
s=1

= > AUBDIB
j=1
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The likelihood based on subsampled data can be written as:

N
*(0) % *(0) 1.« ~x(0)  ~ *(0)
Qn(B) = Z Oy ox )N ry(w, 8,0y 0% )
=1

Z B:18)1.

By the fact that qAZ)jV — é&n — 0 and the results in Lemma 2, Lemma 3 and
Lemma 6 still hold, we have ¢A>*N7OSE — qASmOSE — 0. Then follows the same

technique in the proof of Theorem 2, the result follows. n



