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S1 Conditions

To show asymptotic results of our estimators, we need to make following

assumptions.

1. Let Ky, Ky ,K and K be bounded and symmetric function with a
support [—1, 1] as well as bounded and continuous second derivatives.

We assume that K, Ky and K have orders 7, 72 and ry, respectively.
(

1 j=0

For example, f_ll WKy (p)dp =<4 1<j<r —1

| #0 Jj=mn

2. There exists a sequence B = Bn such that H,@ — B = 0,(n~1/?).

3. The derivatives p*) (), pF1:k2) (2, 1), pkvk2) (2 1), oFrk2) (2 1), pk2)(t),
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V(kZ)(t)’ kl = ]-a e ,7‘1+1, k? = ]-7 T ,7‘2+1; q(k)(w)v f(k)(w)’ m(k)(w)v

k=1,---,s+ 1 exist and are uniformly bounded over z,t and w.

4. The random vector X and 7" are associated with bounded supports.

5. \/lfh_%%o, \)%—H)and j’%’g%o.

The assumptions on Ay, hy and h in Theorems 1 and 2 can be satis-
fied, for example, K; is a sixth-order kernel, Ky and K are fourth-order
kernels, hy o< =9 and hy & n=1/5, h & n='/5. The higher-order kernel for
K is needed to assure sufficiently rapid convergence because ji;(z,t) is a
functional of derivatives of K;. The high order kernel can be taken from
Muller (1984). The initial value of 8 given in Step 1 is a y/n—consistent
estimator, hence, Assumption 2 can be satisfied. Assumption 3, the exis-
tence of higher-order derivatives of p(z), p(z,t), u(z,t), o(z,t), p(t), V(t),
q(w), f(w) and m(w), is needed to assure that bias terms associated with
the kernel estimators pu,(2,t), pin(2,t), p2n(z,t), pu(z,t) and E,(w) van-
ish sufficiently fast (Horowitz, 1996). Assumption 4 is commonly used in
nonparametric literature (Horowitz, 1996; Carroll et al., 1997) and can be

relaxed at the expense of more complex proofs.
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S2 Proofs

S2.-1 Lemmas

Lemmas 1-3 establish asymptotic forms of the convergence of p(Z, 1),

py(Z,t) and their derivatives, which are estimates of p(z,t), u(z,t)p(z,t)

and their derivatives. These are used in proving Theorem 1 and Lemma

4, which results in a linear approximation to LEDPEY (hat is used in
! “l(zvt)p(zvt)

proving Theorems 1 and 2. Because the arguments used to prove Lemma
3 is essentially same with that in Lemma 2 | Lemma 3 is stated without a
proof.

Lemma 1: Under the conditions in Supplementary Material S1, we

have

-1 k1+ka+ks ZZ _ tii —t
ke (2522 g (=
h11+ h22+ hl h2

X S(Zij tig)} = {8z, )p(z, )} 5 4 O(h + hi2),

where ki, ky = 0,1,2, and S is a function, the derivatives S(1+1m2+1 (2 ¢)
exist and are uniformly bounded over x € € and t € . Q; and 2, are
the supports of X;; and t;;, respectively, z = x'3.

Proof of Lemma 1: see Horowitz (1996).



4 HUAZHEN LIN, LING ZHOU AND BINHUAN WANG

Lemma 2: Define

R n o n; 2 o —t
plz,t) = NhthZZKl (—) Kz( . )

=1 j=1

no n; . t”_t
Pnlert) = NhthZZKl( )KQ( s )

=1 j5=1

n X! 3 o
@(Z,t) = Nh1h2 ZZ (L) K2 (tzjhz t) ’

=1 j—l

Pyn(z,t) = NhthZZ (X/L) = (tijh;t)’

=1 j=1

Under the conditions in Supplementary Material S1, as n — oo, hy — 0

and hy — 0, if logn/(nh3hy)'/? — 0, we have

KB, 1) = pa(x'B,1) + (B — B)TI(x'B,1,%) + 0,(8 — B),
PU(X'B, 1) = pya (X' B, 1) + (B — BY A1 (x'B, 1, %) + 0,(B — B),

uniformly over x € ; and t € o, where I'(z,t,x) = —p(z,1) [o(z, 1) — x],
and A(z,t,x) = —p(z,t) [o(z,t) — x| u(z,1).

Proof of Lemma 2. We only present the proof of the first equation,
and others can be argued in a similar manner. By the mean value theorem
of differential calculus

0B — i 33 (S g ()

i=1 j=1

~ ~

h2h2 ZHIZK ( I )’B) Ky (%) (Xij —x)'(B—B)+ 0,(B—B)

i=1 j5=1

= pa(XB,1) + g5(x,1) (B — B) + 0,(B — B). (S2.1)
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By Theorem 2.37 of Pollard (1984, p.34),
Sup g, (x, 1) = Egy(x,1)] = of(log n)/(nhihs)'?. (S2.2)
v,
Using Lemma 1, we get
Egi(x,t) — T (2 x ) = O(hI* + hi?). (S2.3)
By (822), (823) and the conditions on h; and hs, we have
gi(x,t) =T (2 ¢ x) — 0. (S2.4)

By (82), (824) and the conditions on hy, hy, Lemma 2 follows.

Lemma 3: Denote w = X'8+V (t), Wi; = X};8+V (t;;), 0 = X' B+V (t)

1 « Wi —w
=1 j5=1

and W\ij = X;J,/B\ + ‘A/(t”) Define

1 n  n; Wl
:N_hZZYUK< :

i=1 j=1 ~ Nh
N 1 no n; /MZ] 1 n
f(w)zN—h;;K< ) ful Nh;;K( )

Under the conditions in Supplementary Material S1, as n — oo, h — 0, if

logn/(nh®)Y2? — 0, we have

Fu@) = fya(w) + (B = BYA O (w,x) + A0(w) (V(1) = V(1))

N2 2": ZY KW <—w> (‘7(75117) - V(%‘))

=1 j=1
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F(@) = faw) + (B = BT (w,x) — () (V1) - V(1))

1 KX W, —
+Nh2ZZK(1)( 7 w)(

i=1 j=1

<>
—~
o~
S
N~—
<
—~
~
S
N~—
N——

"’OP(B —B)+0,

uniformly over w, where T(w, x) = — f(w) [q(w) — %], AQw, %) = — (1) [g(w) — x] m(w),
A(w) = —f(w)m(w), ¢(w) = E{X;;|W;; = w} and f(w) is the density
function of W.

Lemma 4: Asn — oo, if logn/(nh3h3)/? — 0 and logn/(nh3hy)'/? —

0, then we have

POB,Y) = plOB,t)+ (B —B)TEV(XB,t,x) + 0,(8 — B)
POVB,Y) = PV B, 1)+ (B - B)THI (X B,t,x) + 0,(8 — B),
Bt = py VB, t) + (B - BYANO (XS, 1,%) + 0,(8 — B),

Bt = pullO(B.) + (B = BYATO (KB 1.x) + 0,(B - ),

uniformly over x € Q; and ¢t € Qy, where A(z,t,x) = —p(z,t) [o(z,t) — x] u(z,t).

Lemma 5: Let

U(z,t) = p(z, t)p(z,t), Ur(z,t) = " (z,)p(z,1), Us(z,t) = O (2, t)p(z, 1),

_ of(zt) .~ Ofi(z.1)
Up(z,t) = il )p(z,t), Us(z,t) = Iu(@i >P(Zat)a

where 11 and p are obtained by pu,, and p,, with 8 replaced by B , respectively.
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Denote

Qi (t) Aﬂmh@ iljl;l;;{xk [LZPQ}KE(gii£&>lgn(&%§i)’

Q) = szth Z{Y — 2y, )} K (%) e (”’“hj),

Qus(t) = — 3z 3y h2p an - ;U;{Yrk 1(Zij, )}{p(m)(Zij’tig(_zz(,tgf(lo)(Zij’t)}
o (B e ()

Q) = ﬁE (Zigs 1) (619 (Zg, O Zigs 1) — 0 (Zig, O (Zig, 1)

where p(t) is defined in Section 3. Then we have

S S Ua(Zigt) S S Un(Ziji t)
Z?:l 2?1:1 Al(/Z\z‘ﬁt) Zz 12 ( ij )

= O (£) + Qua(t) + Qus(t) + Q) (B — B) + 0,(B — B).

Proof of Lemma 5: Since

U —(10) py(z, t)p" (2, 1) — o) U(z,t)p"(z, 1)
U1(27t> py (27 ) 1/9\(271; 5 Ul(Z? ) U (Z? ) p(z,t) y
~ _ (2, )pOY (2, t Uz pOV (5. ¢
U2(27t) — py(OI)(Z,t) _ py(Z?/\)p (27 )7 UQ(Z,t) _ U(01)<Z,t) (27 )p (Z )
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Note that us(z,t) = v(t)p1(z,t), then we have the expansion,

S S Ua(Zigy ) 2 0 w)
ST S D(Zig ) Yot gy Un(Ziji t)
—y

112
- 22{@@ - Uz}

2;{ Z.t) = U1 (Zy, 1))
ZZ :” (2. 1) = o (25, )} (P Zis,t) — p(Zi 1))
ZZ ((ij’ (5 (Zist) ~ P (2, 0)

Lemma 5 follows by Lemmas 2-4, the conditions on h; and h, and some
tedious computations.

Lemma 6: Define

O I T

Un(y) = %ZZZI(?JO <G <y)S(G)

i=1 j=1

where p = 1,2 and the derivative SU»*V(u) exists and uniformly bounded

over the bounded set of y. If nhff" — 0, then

To(y) — In(y) = Op(nilﬂ)a
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uniformly over the bounded set of y.

Proof of Lemma 6: It is easy to show
E[Ta(y) = duly)] = O(By). (52.5)

2
Since F [fy MKp(&h;p")du —I(yo <& < y)S(&)] = O(h,), by Theorem

Yo hp

2.37 of Pollard (1984), we have

Sup 1T (y) = 0ay) — E[Tuly) = 9u ()]l = o(h,*(logn) /n'/?) ~ (S2.6)

almost surely. Combining (§823) and (§828) with the condition on h,,p =

1,2, we obtain Lemma 6.

S$2-2 Proof of Theorem 1

Proof of Theorem 1 relies on two steps. The first step includes an
asymptotic expansion of \7(t) Combining asymptotic expansions and the
estimating equation on 3, the asymptotic expansion of B is obtained, this
is the second step.

Step 1. Note that v(t) = ua(z,t)/pi(z,t), by the result in Lemma 5

and (2.7), we have

V(t) —V(t) = /0 Q1 (u)du _|_/0 Qo () du
+/0 Qus(u)du + (8 — B)'7(t) + 0,(B — B).  (S2.7)
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where 7(t fo t)dt. Define
R, (t) = Ru1(t) — R (0),
where

Rnl

- {}/7”_ r:)}p( ) tr _t
)= iy 2o T ) (1=t

r=1 k=1

and p is the density function of Z. Exchanging the summation in 2,; and

using the conditions on h;, we get

) =~y 2o 2 = o O ZKE (=) + 0,0

=1 k=1

Hence, by the conditions on h; and hs
! 1 Yo — 1 Zow, 1)} (Zor) E—t
Q1 (t) = ‘ AR, [ S h't
/0 1() NhQEZ p(t) 2< hy >+Op( 1)
1 = . [t top —t
= mli) - N@EZ/ KQ( s )

_#Q(Zrka t) . {Y;"k - M(Zrlm t)} p(l) (t) r1
R 20 |- 0,0

Similarly, we get

n o ne

[ oo | NZE’;}@;;[M— B2 )} P (Zra) = 1 (Zras O (Z00)]

« Ky <t . )dt+0(h;‘1)
o e PO 2 ) — o0 (Z1)
/0 Qng(t) = — ; thp(t) Zl ; {Y;“k - /L(Zrkat)} { p(ZTk’t) }

r=

2

tok —t "
Xp(z,,k)zg,( kh )dt+0p(h1 ).
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Note that v(t) = pa(z,t)/p1(z,t), hence,

/in /Qm dt+/ Qn3(t)

_ 1
= Ralt) + 5 Z Z [ (2 ) s Vi (1)
+ o) B PO (Zope, t) — v(t)p1O(Ze, 1) .
{ (0 Zm) - § L bz e+ 0,0
~ R ZZI <pfmtn) o g YO, ) (52.8)

r=1 k=1 ptr)
where £(z,t) is defined in Section 3.
Step 2. Denote w = wy and w = V(t)+x’,@. First, it follows from (2.8)
that E(Y|t,x) = E(y|®) = py(@)/p(@). Applying the results in Lemma 3,

we obtain

BVID) — () — P — m{w)i()

7()
S T (Vi — m(w)) K (VerXasor)
B Nhfo(w)
L (B= B {AM (w,x) — m{u)T M) (w, x)}
()
Nh2f 2 2; Yis = m(w)) K (V(%) TXLB w) (Vtes) = V()

~ 2
) sy (V(0) = V(1))
h

($2.9)

uniformly over x and ¢.

Second, noting that N = O(n), the estimate B is the root of the fol-
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lowing equation,

n

%ZZ{ Y|VVZ]>}XU = 0,

=1 j=1
which can be rewritten as follows,

n

IS IRy e 30 S BT, m()1X, =0

i=1 j=1 11]1

(S2.10)

Using (829), exchanging the order of two summations, and applying Con-

dition on h, we obtain

_ZZ{E Y’VVU m( ZJ)}XU

:—ZZ i — m(Wij)) (W)
__ZZme W) (W) = Xii}' (B~ o)

= Z S (¥, — mW) 4O (W) — m () () — X, ]} (Vti) = Vt)

7,1]1

~

e (V00— V(1)
h

+O, (") + 0,(B — B) + O

(S2.11)
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Substituting (8271) and (§823) into (82Z), we get

n o n;

S S BT - m(W)}X,

i=1 j=1

1 S T 3 E(Zij. tij)  k(ti)p(Zij)
=N Z Z (Y;j (Wij)) {Q(VVW) + p(tij) + p(tij> }

i=1 j=1

+% Z Z {mD (W) [a(Wiy) = X)) 7 (855) = Xim™ (Wiy) {a(Wyy) = Xi5}'} (B - B)
subregon (V) = V(1))
; :

+op,(n” 2+ 18 = Bll) + O, (S2.12)

where w(t) = B {m®(W) [g(W) = a(W, 0]} f(t W)}, and [(w) is the
conditional density of T" given W = w. Substituting (§8212) into (S210),

Theorem 1 follows.

S52-3 Proof of Theorem 2

By (827), (823), the conditions on hq,b and Theorem 1, we have

V() = V(1) = Runlt) + % »3 /0 K (“’“b_ t) ﬁ Yo — 1(Zogotoi)} €(Zog )t

g () g e~ e

—|-Nib ZZ/;[C (trkb— t) %M(OQ)(Zrk7t)(trk: . t)Qf(Zrk,t)dt/Q

+0,(h1") + 0,(b%)

= R (t) + Qn(t) + agh*7(t) + O, (h}') + 0,(b*), (S2.13)
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0)
where 7(t) = [, %dt ©1(t,t) and @o(t) are defined in Section 3,

Q)= 35 223 [ (571 5 0k = st €
Since
VarQu) = & (Var WialZustal /OtIC(“’“b‘t) e

g(Zrkvtrk) f(Zrk,trk) 2
—I1(0 <ty < t)W +1(0 <ty < t)W} ) ,

2
and £ {fg K (fe=t) 5(pr,i,;)¢) dt — 1(0 <t <) (p(t’ii;k)} = O(b), we have

B ﬁ i ur f(Z’rka trk) 2
Var{Q.(t)} = O(N) + NE <V Yokl Z ks k] {I(O <t < t)_p(trk) } )
= O(x)

This coupled with E{Q,(t)} = 0 results in
Qn(t) = O(n~Y?). (S2.14)
Now, we consider R,,;(t). It can be shown that

ERu(t) = %E (200 (2,0) + 1 2,0p(2,0)/2) [ K(a)ds

(S2.15)

and

Var{R,(t)} = NbQE{{Y’“’f 1 Zrks )} P(Zr )/c<t”’“b_t>}2(1+op(1))

p(t)
1 E[H(Z.t)p(Z, O)p( )
=N 20 / o

x) da(1 4 0,(1)), (S2.16)
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where H(z,t) = Var(Y,x|Z = z,tx = t). Hence, Theorem 2 follows from

(8213), (5213), (821F) and (8Z1D).
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