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Abstract: Analyses of modern biomedical data are often complicated by missing

values. When variables of interest are missing for some subjects, it is desirable to

use observed auxiliary variables, which are sometimes high dimensional, to impute

or predict the missing values in order to improve the statistical efficiency. Although

many methods have been developed for prediction using high-dimensional variables,

it is challenging to perform a valid inference based on such predicted values. In this

study, we develop an association test for an outcome variable and a potentially

missing covariate, where the covariate can be predicted using variables selected

from a set of high-dimensional auxiliary variables. We establish the validity of

the test under data-driven model-selection procedures. We also demonstrate the

validity of the proposed method and its advantages over existing methods using

extensive simulation studies and an application to a major cancer genomics study.

Key words and phrases: Association test, integrative analysis, missing data, post-

selection inference, variable selection.

1. Introduction

In many clinical and epidemiological studies, investigators are interested in

testing the presence of an association between an outcome variable and covariates

of interest. In practice, such association analyses are often complicated by miss-

ing data, arising because of costs or other constraints. The problem of missing

data is especially prevalent in large-scale genomic studies, where multiple types of

genomic data are collected on a large number of subjects, often for different loca-

tions and periods. For example, in The Cancer Genome Atlas (TCGA) (https:

//cancergenome.nih.gov/), over 10,000 subjects with 33 cancer types are mea-

sured for multiple types of genomic data, including DNA alterations, RNA ex-

pressions, and protein expressions, but protein expressions are not measured for a

substantial number of subjects. As another example, in the Trans-Omics for Pre-

cision Medicine (TOPMed) program (https://www.nhlbi.nih.gov/research/

resources/nhlbi-precision-medicine-initiative/topmed), whole-genome se-
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quencing data are available for hundreds of thousands of subjects, but other types

of genomic data, such as RNA sequencing, methylation, and metabolites, are

available for only tens of thousands of subjects, or fewer.

A naive approach to handling missing data is to perform a complete-case

analysis, where subjects with missing data are discarded. Such an approach

is obviously inefficient when subjects with missing data are measured on some

relevant auxiliary variables, because information on the auxiliary variables would

be discarded. An alternative approach is imputation, where the missing values

are imputed by plausible values based on the observed data, and conventional

methods are then applied to the imputed data set. However, although estimation

based on imputed data may be more efficient than a complete-case analysis,

conventional inferential procedures based on (singly) imputed data are, in general,

invalid. More sophisticated statistical methods for handling missing data involve

modeling the missing-data mechanism or the variables with missing values; see

Little and Rubin (2019) for detailed discussions.

Although regression analysis with missing data has been studied extensively,

association testing for incomplete data has received relatively less attention. To

perform association tests with missing genotype data, Hu et al. (2015) considered

a score test based on imputed genotype data, and proposed a variance estima-

tor that properly accounts for the differential quality between the observed and

the imputed genotypes. Under outcome-dependent sampling designs, Derkach,

Lawless and Sun (2015) and Lawless (2018) proposed modeling the variable with

missing values, and studied the score test based on the full likelihood. Under ex-

treme phenotype sampling designs in genetic association studies, Bjørnland et al.

(2018) considered a similar model-based score test and a complete-case score test

based on the conditional likelihood, given the sampling mechanism. Wong, Zeng

and Lin (2019) proposed modeling the variable with missing values semipara-

metrically, and developed a score test that is robust against a misspecification

of the missing-variable model. In all existing works, the observed variables are

low dimensional, and the methods cannot be readily extended to accommodate

high-dimensional data.

Therefore, we consider an association test between an outcome of interest

and an incomplete covariate, where the incomplete covariate may be associated

with potentially high-dimensional auxiliary variables. We consider a missing-at-

random scenario, where the missing mechanism may depend on the outcome of

interest and the observed covariates, and a complete-case analysis or a simple

imputation approach is, in general, invalid. We propose selecting a subset of

the auxiliary variables, and fitting a regression model of the covariate of interest
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against the selected variables. Then, we perform the score test for the covari-

ate effect in the outcome model under the full likelihood, which includes both

the outcome and the covariate models. We show that the proposed procedure,

though derived by assuming a prespecified covariate model, is valid, even when

the selection event of the auxiliary variables is random.

The current problem is inherently a post-selection inference problem, where

we wish to perform an inference using a model selected based on the observed

data. It is well known that, in general, conventional inferential procedures, such as

the F -test and the t-test, on a selected model are invalid, because the parameters

to be estimated or tested arise from a data-driven model-selection procedure and

are “random.” There is a rapidly growing body of literature on post-selection

inference. One approach is to perform a conditional inference for the model

parameters, given the model-selection event (Lee et al. (2016); Tibshirani et al.

(2016); Heller et al. (2018); Tian, Loftus and Taylor (2018)). This approach

depends on distributional assumptions, and is applicable only when the model is

selected using a prespecified formal selection procedure, such as forward selection

or the lasso. An alternative approach is to develop uniformly valid inferential

procedures that can be used after arbitrary model selection (Berk et al. (2013);

Bachoc, Leeb and Pötscher (2019); Kuchibhotla et al. (2020)). Such procedures

are based on uniform tail probability inequalities, and thus are often conservative.

The proposed approach is akin to the uniform approach, which is not re-

stricted to a specific model-selection procedure, and we make no assumptions on

the correctness of the selected model. Nevertheless, an essential difference be-

tween the current framework and those considered in the literature is that the

selected model, that is, the covariate model, is only of secondary interest, and

the parameter of interest does not vary with the selected model. As a result of

this special structure, the variability of the model selection does not affect the

asymptotic distribution of the score statistic. Therefore, unlike existing methods

that are potentially conservative, the proposed score test is as efficient as the

standard score test that treats the selected covariate model as prespecified.

There is a related body of literature on high-dimensional inference based on

debiased estimators or decorrelated score functions (van de Geer et al. (2014);

Zhang and Zhang (2014); Ning and Liu (2017)). These approaches conduct in-

ferences on the parameters in the full, high-dimensional regression model, in

contrast to post-selection approaches, which focus on an inference of a selected

model. One may prefer these high-dimensional approaches because the full model

is considered to be more scientifically relevant than the selected model. Neverthe-

less, in the current framework, this potential advantage is not pertinent, because
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the high-dimensional model is only of secondary interest, and the parameter of

interest remains the same, regardless of whether the full or reduced model is

fit. Because these high-dimensional approaches require sparsity assumptions on

the true model and involve selecting multiple tuning parameters, they are not

considered in this paper.

The rest of this paper is structured as follows. In Section 2, we formulate

the model and develop a post-selection score test. In Section 3, we establish

the asymptotic properties of the proposed score test. In Section 4, we report

the results from our simulation studies. In Section 5, we provide an application

to a data set from TCGA. Section 6 concludes the paper. Technical details are

relegated to the Appendix.

2. Model and the Post-Selection Score Test

Consider an outcome of interest Y , a covariate of interest S, a vector of other

covariates X, and a potentially high-dimensional vector of auxiliary variables A.

For example, in genomic studies, Y may represent a disease phenotype, S may

represent a genomic variable of interest, X may represent clinical or demographic

variables, andA may represent other types of genomic or environmental variables

collected in the study. The vector of covariates X includes a constant component

of one. Assume that

Y | (X, S) ∼ FY (;αTX + βS), (2.1)

where α and β are regression parameters, and FY is a distribution function

such that, for some known function µ(·), E[{Y − µ(αTX + βS)}(XT, S)T] = 0

at the true values of α and β. This formulation includes as special cases the

linear regression model, with µ(x) = x, and the logistic regression model, with

µ(x) = ex/(1 + ex). The parameter β captures the effect of S on Y , given

X. In cancer genomic studies, we typically set X to be clinical or demographic

variables, and do not include mediator variables in the effect of S on Y (such as

downstream variables of S) in X. In this case, β represents the total effect of S

after accounting for the clinical/demographic covariates. We do not assume an

explicit model for S, but allow an arbitrary association structure with (X,A).

Because the major purpose of fitting the model of S is to predict missing S values,

we can set A to be (potential) predictive variables of S.

Suppose that S may be missing, and let R be the indicator of whether S

is observed. Specifically, R = 1 if S is observed, and R = 0 otherwise. We

assume that R is conditionally independent of (S,A), given (Y,X). This missing
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Figure 1. Relationships among the observed and incomplete variables.

mechanism is common in two-phase studies, where the outcome Y and the basic

covariates X are measured for all subjects in the first phase, and subjects with a

certain outcome or covariate values are selected to be measured for an expensive

covariate S in the second phase. We do not allow R to depend directly on A,

because the auxiliary variables, though completely observed, may not be selected

into the model of S. If R depends on a component of A that is associated

with S and is not selected, then the missing mechanism becomes not at random.

For a sample of size n, the observed data consist of {(Yi,Xi,Ai, RiSi, Ri) : i =

1, . . . , n}. The assumed relationships among these variables are illustrated in

Figure 1.

We wish to test the null hypothesis H0 : β = 0. Because of the missing

data, we propose fitting a working model of S on (X,A), and adopt a score

test based on the full model (including both models of Y and S). Fitting a

working model of S against (X,A) allows us to use information about the missing

S-values contained in the auxiliary variables and, in general, is more efficient

than ignoring the auxiliary variables. We consider the score test rather than

the Wald test or likelihood-ratio test, because it involves estimation only under

the null hypothesis, whereas the other two tests involve estimation under the

alternative hypothesis. Note that estimation under the alternative hypothesis is

more challenging, because the likelihood generally involves an integration without

a closed-form expression.

Because A is potentially high dimensional, maximum likelihood estimation

for the model of S may be infeasible. In addition, the model of S is only of

secondary interest, so a full specification of the model may not be necessary.

Therefore, we propose a two-step approach. In the first step, we select a low-

dimensional subset of A into the model of S, and in the second step, we perform

a score test based on the model of Y and a working model of S.

In the first step, we perform variable selection on A. Let K∗ be a general

model-selection operator, such that for an m-vector of outcome variables Y and
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an (m × p)-matrix of covariates Z, K∗(Y,Z) : Rm × Rm×p → Cp, where Cp is

the collection of subsets of {1, . . . , p}. For example, for marginal screening (Fan

and Lv (2008); Fan and Song (2010)) with a quantitative outcome variable and

standardized Z, K∗ can be defined as K∗ : (Y,Z) 7→ {j : |YTZj | > λ}, where

λ is a tuning parameter, and Zj is the jth column of Z. Likewise, for the lasso

(Tibshirani (1996)),

K∗ : (Y,Z) 7→
{
j : γ̂j 6= 0, where (γ̂1, . . . , γ̂p)

T = argmin
γ

(
‖Y−Zγ‖2+λ‖γ‖1

)}
.

We use this operator to select a model for S based on the residual S− γ̂T
XX and

A, where γ̂X ≡ (
∑n

i=1RiXiX
T
i )−1

∑n
i=1RiXiSi is the least-squares estimator

of S on X using the subjects with R = 1. The selected components of A are

K∗(S −X γ̂X ,A), where S is a vector that consists of {Si : Ri = 1}, and X and A
are matrices that consist of rows of {Xi : Ri = 1} and {Ai : Ri = 1}, respectively.

For simplicity of presentation, we write K∗ = K∗(S − X γ̂X ,A) and let K be the

observed value of K∗.
Let WK denote a vector consisting of X and the components of A in-

dexed by K. In the second step, we fit model (2.1) and the working model

S = γT
KWK+ δ under the null hypothesis H0, where δ is a mean-zero error term,

and γK is a vector of regression parameters. In particular, we estimate γK by

γ̂K ≡ (
∑n

i=1RiWK,iW
T
K,i)
−1
∑n

i=1RiWK,iSi, the least-squares estimator using

the subjects with observed S-values. Let α̂ be the Z-estimator of α under H0,

such that
∑n

i=1

{
Yi − µ(α̂TXi)

}
Xi = 0. The (scaled) score statistic for β is

Uβ(α̂, γ̂K) =
1

n1/2

n∑
i=1

{
Yi − µ(α̂TXi)

}{
RiSi + (1−Ri)γ̂T

KWK,i
}
.

Note that this coincides with the imputation-based score statistic, that is, the

score statistic when the missing values of S are imputed using the estimated mean

γ̂T
KWK.

To obtain an asymptotic size-α test, we need to derive the asymptotic distri-

bution of Uβ(α̂, γ̂K∗) under H0. This is highly challenging, because the model-

selection event {K∗ = K} is random, and the usual arguments based on the

Taylor’s series expansion of the score statistic do not apply. Nevertheless, as we

establish in Section 3, Uβ(α̂, γ̂K∗), properly scaled by a variance term that can

be consistently estimated by an empirical sum-of-squares estimator, is asymptot-

ically normal. In particular, the variance term resembles that derived from the

usual Taylor’s series expansion on the score statistic. Let α0 be the true value of
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α, and for a given selected model K, define γ0K ≡ arg minγ E{R(S−γTWK)2} as

the true value of γK. Let Iαα = E{µ′(αT
0X)XXT}, Iβα = −E[µ′(αT

0X)X{RS+

(1−R)γT
0KWK}], Iγγ = E(RWKW

T
K ), and Iβγ = E[{Y − µ(αT

0X)}(1−R)WK],

where µ′ denotes the first derivative of µ. If the model K is prespecified, then

the Taylor’s series expansion of Uβ(α̂, γ̂K) at (α0,γ0K) yields

Uβ(α̂, γ̂K) =
1

n1/2

n∑
i=1

[
{Yi − µ(αT

0Xi)}
{
RiSi + (1−Ri)γT

0KWK,i + IT
βαI

−1
ααXi

}
+ IT

βγI
−1
γγWK,iRi(Si − γT

0KWK,i)
]

+ op(1), (2.2)

under regularity conditions. Based on this expansion, we can estimate the asymp-

totic variance of Uβ(α̂, γ̂K) by σ̂2(K) = n−1
∑n

i=1{σ̂i(K)− σ(K)}2, where

σ̂i(K) = {Yi − µ(α̂TXi)}
{
RiSi + (1−Ri)γ̂T

KWK,i + ÎT
βαÎ

−1
ααXi

}
+ ÎT

βγ Î
−1
γγWK,iRi(Si − γ̂T

KWK,i),

σ(K) = n−1
∑n

i=1 σ̂i(K), and Îαα, Îβα, Îβγ , and Îγγ , are the empirical coun-

terparts of Iαα, Iβα, Iβγ , and Iγγ , respectively, with the expectations replaced

by the empirical means and true parameters replaced by the estimators. We

can show that, even though this variance term is derived based on fixed K,

Uβ(α̂, γ̂K∗)/σ̂(K∗) converges to the standard normal distribution underH0. There-

fore, for an asymptotic size-α test, we reject H0 if Uβ(α̂, γ̂K∗)2/σ̂2(K∗) > χ2
1,α.

The proposed test does not require correct specifications of the models of Y

and S. For the outcome model, we require only that E[{Y−µ(αT
0X)}(XT, S)T] =

0 under the null hypothesis, because an empirical variance estimator is used

instead of a model-based estimator. For the covariate model, as discussed in

Section 3, we require the association structure between S and X to be correctly

specified, but allow an arbitrary association between S and A; in general, a

correct specification of the association between S and X is needed (Derkach,

Lawless and Sun (2015); Lawless (2018)). The association structure between S

and A affects the power of the test, but not its validity under the null hypothesis.

3. Asymptotic Properties of the Post-Selection Score Test

For any K, let γ0X and γ0A,K be the subvectors of γ0K that correspond to

X and the selected components of A, respectively. Define

σ2
1(K) = Var

[
ε
{
RS + (1−R)γT

0KWK + IT
βαI

−1
ααX

}]
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σ2
2(K) = Var

[
(γT

0X + IT
βαI

−1
αα )
{

E(ε | R,X)X − E(εX | R)
}

+
{

E(ε | R,X)− E(ε | R)
}
γT

0A,KAK

+
{

E(ε | R,X) + IT
βγI
−1
γγWK

}
R(S − γT

0KWK)
]

σ2
3(K) = Var

{
(γT

0X + IT
βαI

−1
αα )E(εX | R) + E(ε | R)γT

0A,KAK

}
,

where ε = Y − µ(αT
0X), and let σ2(K) =

∑3
k=1 σ

2
k(K). Let ‖ · ‖ψξ be an Orlicz

norm, such that ‖X‖ψξ = inf{η > 0 : E(e|X|
ξ/ηξ) ≤ 2}, and let ‖ · ‖ be the

Euclidean norm. We assume the following conditions. Some conditions involve a

generic positive constant M .

(C1) For some ξ ∈ (0, 2], ‖Y ‖ψξ + ‖S‖ψξ + maxj ‖Aj‖ψξ < M . The covariate

X is bounded, such that P (‖X‖ < M) = 1. Furthermore, the estimator α̂

is strongly consistent under β = 0, µ(·) is twice continuously differentiable,

and λmin[E{µ′(αT
0X)XXT}] > M−1, where λmin(C) denotes the minimum

eigenvalue of the matrix C.

(C2) There exists a sequence of collections of models Ωn, such that P (K∗ ∈
Ωn) → 1, supK∈Ωn |K| = O(nτ ), and log |Ωn| = O(nκ), where τ and κ are

constants that satisfy τ < 4ξ/(5ξ+ 12), 5τ/4 + 3κ/ξ < 1, and τ + 4κ/ξ < 1,

and |C| denotes the cardinality of the set C. In addition, infK∈Ωn λmin

{E(RWKW
T
K )} > M−1, supK∈Ωn E{(γT

0KWK)4} < M , and infK∈Ωn σ
2(K) >

M−1.

(C3) The probability P (R = 1 | Y,X) > M−1, almost surely.

(C4) Under β = 0, the residual (S − γT
0XX) and X are independent, and A is

independent of (Y,X).

(C5) The models selected based on the estimated residuals (Si − γ̂T
XXi)i:Ri=1

and the actual residuals (Si − γT
0XXi)i:Ri=1 are such that

P
{
K∗(S − X γ̂X ,A) 6= K∗(S − Xγ0X ,A)

}
= o(1)

and

sup
K∈Ωn

P
{
K∗(S − X γ̂X ,A) = K

}
P
{
K∗(S − Xγ0X ,A) = K

} < M.

(C6) For a random sample of sizem, let S̃ = (S1, . . . , Sm)T, X̃ = (X1, . . . ,Xm)T,

and Ã = (A1, . . . ,Am)T. The random variable
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sup
K∈Ωm

∣∣∣∣P
{
K∗(S̃ − X̃γ0X , Ã) = K | Ã

}
P
{
K∗(S̃ − X̃γ0X , Ã) = K

} − 1

∣∣∣∣
converges in mean to zero as m→∞.

Remark 1. Condition (C1) imposes constraints on the tail probabilities of the

observed variables. With ξ = 1 or ξ = 2, we assume each component of (Y, S,A)

to be sub-exponential or sub-Gaussian, respectively. To maintain a flexible model

for Y , we assume that X is bounded. Desired theoretical results can be obtained

by requiring only maxj ‖Xj‖ψξ < M , but additional conditions on µ would then

be required. Condition (C2) allows the set of “possibly-selected models” Ωn to

grow exponentially with n, and the size of the selected model to increase at a

polynomial rate of n. For example, for ξ = 2, we allow supK∈Ωn |K| = O(n1/4) and

|Ωn| = O{exp(n1/4)}. Note that if the model-selection procedure yields consistent

selection, then Ωn can be chosen as a singleton set, consisting only of the true

model. In our setting, we allow the model-selection event to be genuinely random,

even when n increases to infinity. Condition (C3) ensures that a nonvanishing

portion of subjects have observed S.

Remark 2. Condition (C4) requires that S exhibits a linear association struc-

ture with X and that (Y,X) are independent of the auxiliary variables. This

guarantees that (Y,X) are independent of the model-selection event, which is

based on the residuals in the model of S and the auxiliary variables. In cancer

genomic studies, where X represents demographic variables and A represents

genomic variables (e.g., gene expressions in a tumor), X and A are plausibly

independent. In general, because X is low dimensional, the independence be-

tween A and X can be (approximately) achieved by projecting the components

of A onto the orthogonal complement of the span of X or functions of X. The

independence between A and Y can be relaxed to allow some auxiliary variables

not associated with S to depend on Y ; the technical formulation of the relaxed

condition is deferred to Appendix A. For marginal screening, the relaxed condi-

tion allows the auxiliary variables not in any models in Ωn to depend on Y (and

X). Requiring the (potentially) selected auxiliary variables to be independent

of Y is quite reasonable under the null hypothesis, because these variables are,

in general, associated with S. If they are also associated with Y , then except at

some specific parameter values, S and Y are marginally associated, and the null

hypothesis does not hold.

Remark 3. Conditions (C5) and (C6) impose mild conditions on the model-

selection operator. Condition (C5) requires that the model selected based on the
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estimated residuals and that selected based on the actual residuals are asymp-

totically equal. This is easily satisfied, because the least-squares estimator γ̂X
is consistent. Condition (C6) requires that the marginal probability of select-

ing a model is asymptotically equal to the conditional probability of the same

event, given the auxiliary variables. This is true of common model-selection op-

erators, which select a model based on the association between the outcome and

the covariates, and the covariates alone do not contain information about the

model-selection event. We discuss the verification of these conditions under a

marginal screening procedure in the Supplementary Material.

We impose conditions on the number of possibly selected models rather than

on the total number of auxiliary variables, because the former is directly relevant

to the asymptotic distribution of the score statistic. Nevertheless, for a given

maximal selected model size qn ≡ supK∈Ωn |K|, we have

rn ≡ |Ωn| ≤
qn∑
s=1

(
pn
s

)
≤
(
epn
qn

)qn
,

where pn is the total number of auxiliary variables. The condition on rn is satisfied

if log pn = O(nκ−τ ), with κ and τ satisfying the inequalities in condition (C2). In

fact, if most auxiliary variables are only weakly associated with S, then rn could

be much smaller than the above upper bound.

We have the following results.

Theorem 1. Under conditions (C1)–(C6) and H0, Uβ(α̂, γ̂K∗)/σ(K∗) converges

weakly to the standard normal distribution.

Theorem 2. Under conditions (C1)–(C6) and H0,

E

{
sup
K∈Ωn

|σ̂2(K)− σ2(K)|
}

= o(1).

Remark 4. Theorem 1 states that the scaled score statistic, which is derived

from a randomly selected model, converges in distribution to a standard normal

distribution marginally. A key step in the proof is to show that the score statis-

tic can be (asymptotically) written as a sum of independent variables that are

mean zero, conditional on the model-selection event and possibly other compo-

nents of the observed data. Then, we can employ the Lindeberg approach to

the proof of the central limit theorem to establish the desired result. Theorem 2

states that the scaling term of the score statistic in Theorem 1 can be uniformly

consistently estimated by the proposed sum-of-squares estimator over the set of
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possibly selected models Ωn.

An outline of the proof of Theorem 1 is given in Appendix B; complete proofs

of Theorems 1 and 2 are given in the Supplementary Material. Combining the

above results, we have the following corollary.

Corollary 1. Under conditions (C1)–(C6) and H0, Uβ(α̂, γ̂K∗)/σ̂(K∗) converges

weakly to the standard normal distribution.

4. Simulation Studies

Let X = (X1, . . . , X5)T, where (X1, X2, X3) are mean-zero multivariate nor-

mal variables, with Cov(Xj , Xk) = 0.5|j−k| (j, k = 1, 2, 3), X4 ∼ Bernoulli(0.1),

and X5 ∼ Bernoulli(0.2), and X4 and X5 are independent of each other and

(X1, X2, X3). Let A be a p-vector of independent standard normal variables. We

set S = γT
XX+γT

AA+γT
A,2A

2 + δ, where A2 is a p-vector of the squared compo-

nents of A, δ is standard normal, γX = (0.1, . . . , 0.1)T, and γA,2 is 0.1 at the first

five components, and zero elsewhere. We consider two values of γA. In Setting

1, we set γA to be 0.25 at the first 20 components, and zero at the remaining

components, and in Setting 2, we set γA to be 0.25 at the first 20 components,

0.02 at the subsequent 80 components, and zero at the remaining components.

In Setting 1, the model is sparse, and a small number of auxiliary variables have

strong effects on S. In Setting 2, the model contains a mixture of strong and

weak signals from the auxiliary variables.

We consider a quantitative and a binary outcome variable Y . For the quan-

titative outcome, we set Y = αTX + βS + ε, where ε is standard normal, and

α = (1,−1, 1,−1, 1)T. For the binary outcome, we set logit{P (Y = 1 |X, S)} =

−2.2 +αTX + βS, where α is the same as that under the linear model; the pro-

portion of subjects with Y = 1 is about 15–20%. We consider two missing-data

mechanisms. The first mechanism is missing completely at random (MCAR),

where the missing-data status is independent of the other variables. The second

mechanism is missing at random (MAR). For the quantitative outcome, an equal

number of subjects at the two extreme tails of the distribution of Y are selected

to have observations on S. For the binary outcome, all subjects with Y = 1 are

selected, and a fraction of subjects with Y = 0 are selected to attain the desired

missing proportion. We consider sample sizes of n = 500 and 1000 and numbers

of auxiliary variables of p = 200, 500, 1000, 1500, and 2000. For the alternative

hypothesis, we set β = 2n−1/2 and 6n−1/2 for the quantitative and binary out-

come variables, respectively. For each setting, we simulated 100,000 and 10,000

replicates for β = 0 and β 6= 0, respectively.
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We compare the performance of five tests: (1) the standard score test using

complete data only; (2) the standard score test with missing data imputed under

a working linear model of S on X and components of A selected using marginal

screening, where a component of A is selected if its absolute empirical correlation

with S − γ̂T
XX among the subjects with complete data is larger than a certain

threshold; (3) the score test based on the full likelihood with a working linear

model of S against X alone; (4) the proposed test, where the working model of

S is selected in the same way as in (2); and (5) the score test based on the full

likelihood with a linear model of S against X and the components of A that

are associated with S. We refer to methods (1)–(5) as the complete-case anal-

ysis, simple imputation method, covariate-only method, proposed method, and

true model method, respectively. In the simple imputation, proposed, and true

model methods, only first-order terms of A are in the working models, so none

of the models is “correct.” Nevertheless, according to our theory, the proposed

method is still valid under such a misspecification. For the simple imputation

and proposed methods, the threshold for screening is selected using the BIC. For

the covariate-only and true model methods, the variance of the score statistic is

estimated using the proposed empirical sum-of-squares estimator instead of the

usual estimator based on the second derivative of the log-likelihood. This is for

ease of comparison with the proposed method, and the two variance estimators

are asymptotically equivalent. The true model method is a gold standard, but is

not practical, because it requires knowledge of the relevant predictors of S.

The results under a missing proportion of 60% are plotted in Figures 2 and

3, and the results under a missing proportion of 30% are plotted in Figures S1

and S2 of the Supplementary Material; we do not present the power of methods

that inflate the type-I error. The significance level is set to 0.05. Under missing

at random and the linear outcome model, both the complete-case analysis and

simple imputation method inflate the type-I error, because they underestimate

the variance of the score statistic. The covariate-only method and the true model

method preserve the type-I error; they do not involve model selection, and their

validity follows from a conventional argument. The proposed method, despite

involving model-selection variability, preserves the type-I error; in fact, under

Setting 2, any given model is selected at most 0.006% and 3.804% of the time over

all simulation replicates with sample sizes 500 and 1000, respectively. The pattern

of results under missing at random and the binary outcome model are similar, but

the complete-case analysis preserves the type-I error, owing to the validity of the

inference based on the prospective likelihood under a case-control study and the

logistic regression model (Prentice and Pyke (1979)). Under missing completely
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at random, all methods preserve the type-I error.

Under the alternative hypothesis, the simple imputation method under miss-

ing at random has relatively high power, owing to its underestimation of the

variance of the score statistic; this is similar for the complete-case analysis un-

der missing at random and the logistic outcome model. When the complete-case

analysis preserves the type-I error, the complete-case analysis and the covariate-

only method have similar power, because neither method includes information

on the auxiliary variables. As expected, the proposed method uses information

about the missing data contained in the auxiliary variables, and tends to yield

higher power than that of the covariate-only method. The power gain from incor-

porating the auxiliary variables can be small or even negative when the number

of auxiliary variables p is much larger than the (effective) sample size
∑n

i=1Ri.

In this case, the variable selection procedure cannot effectively identify the rele-

vant auxiliary variables. This results in many noise variables being included in

the working model of S, which in turn results in a worse fit than that of the

covariate-only model, which has no noise variables.

The true model method tends to have high power, because it uses the true

model of S. Nevertheless, it is less powerful than the proposed method in some

scenarios under Setting 2. This is because the true model contains many auxiliary

variables with weak signals, and the extra information contained in these variables

does not compensate for the variability in the estimation of their effects. Thus,

even when the true model is known, it may be desirable to perform variable

selection and retain only those variables with strong signals.

5. A Real Study

Here, we analyze a data set of patients with colorectal adenocarcinoma

from TCGA (The Cancer Genome Atlas Network (2012)), available at http:

//gdac.broadinstitute.org/. The study recorded demographic and clinical

data, including age at diagnosis, sex, and tumor stage, as well as genomic data,

including the expressions of RNA and protein. After removing subjects with

missing clinical data, the sample size is 600. The expressions of 18,068 genes,

measured by RNA sequencing, are available for most subjects. The expressions

of 204 proteins or phospho-proteins are available for only 78.2% of the subjects.

We focus on the association between individual protein expressions and tu-

mor stage. We set the outcome variable to be tumor stage, dichotomized into

stage I/II and stage III/IV, with respective proportions of 0.56 and 0.44. In a

single analysis, we set the covariate of interest S to be the expression of a protein

http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
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Figure 2. Rejection probabilities under a missing proportion of 60% and the null hypoth-
esis.
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Figure 3. Rejection probabilities under a missing proportion of 60% and the alternative
hypothesis.
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or phospho-protein. We set sex and age at diagnosis as the covariates in X, and

set the gene expressions as auxiliary variables. In the resulting model, β repre-

sents the association between a protein and tumor stage for subjects with a given

age and sex. Note that the auxiliary variables are plausibly independent of X,

as required by condition (C4). The gene expression data are incomplete, and we

impute the missing values using k-nearest neighbor imputation, with k = 10. We

set the auxiliary variables A to be the top 200 principal components of the gene

expressions; they appear to be more predictive than the individual gene expres-

sions. We perform the proposed test with the working model of S selected using

the correlation-based marginal screening procedure in the simulation studies, and

the screening threshold selected using the BIC. For comparison, we performed the

score test using complete data only and the covariate-only method described in

the simulation studies.

A total of 46 proteins were identified to be significantly associated with tumor

stage at α = 0.05 under at least one of the three tests. Of the significant pro-

teins, 76% have smaller p-values under the proposed method than they do under

the complete-case analysis, and 78% have smaller p-values under the proposed

method than they do under the covariate-only method. Many of the proteins that

are more significant under the proposed method have been identified as being re-

lated to the progression of colorectal adenocarcinoma; the significant proteins and

relevant references are given in Table S1 of the Supplementary Material. This

suggests that the proposed method is more powerful than the other two methods.

To investigate whether the power gain stems from the auxiliary variables, we

inspect the relationship between the significance level and the variation explained

by the gene expressions in the protein models. For a given protein, we let Z1 and

Z2 be indicators of whether the proposed method yields a smaller p-value than

that of the complete-case analysis and the covariate-only method, respectively.

Let R2 be the coefficient of partial determination of the gene expressions, that

is, the percentage of variation explained by the gene expressions, given that sex

and age are included in the model. Among the significant proteins, the sample

correlations between Z1 and R2 and between Z2 and R2 are 0.32 and 0.22, re-

spectively. In addition, we classify each protein into one of two groups based on

whether it is more significant under the proposed method than it is under the

complete-case analysis. Then, we test the difference in the mean of R2 between

the two groups using the two-sample Wilcoxon test, and the p-value is 0.0381. A

similar analysis comparing the proposed method and the covariate-only method

yields a p-value of 0.1271. The results suggest that proteins with a better fit of the

imputation model tend to have a higher power gain, especially when compared
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with the complete-case analysis.

6. Conclusion

We have considered the association test between an outcome variable and an

incomplete covariate, where the missing covariate values can be imputed using

high-dimensional auxiliary variables. We propose a simple two-step procedure

that does not require accounting for the variability of the model selection in the

first step, and prove that such a procedure is asymptotically valid. This contrasts

with the conventional statistical intuition that standard inferential procedures on

selected models are invalid and proper adjustments are needed (Fithian, Sun and

Taylor (2014); Lee et al. (2016)). In the current setting, the model that involves

variable selection is only of secondary interest. Although the fit of this model

affects the power of the test, the variability of the model selection does not affect

the asymptotic distribution of the score statistic.

We assume a linear working model for the incomplete covariate S, but the

validity of the score test does not depend on the correctness of this model. In

fact, as demonstrated in the simulation studies, a simple working model may yield

higher power than the true model when the latter is complex and involves many

unknown parameters. Nevertheless, we require S to exhibit a linear association

with the low-dimensional covariates X in the outcome model. To relax this

assumption, one may instead assume a nonparametric association between S and

X (Derkach, Lawless and Sun (2015)).

We focus on the asymptotic property of the score test under the null hypoth-

esis. Evaluating the asymptotic power of the test under contiguous alternatives is

highly challenging, because the power depends on specifics of the model-selection

operator. The evaluation is even more complicated when R depends on Y , in

which case the missing mechanism for the data on (S,X,A) is not at random.

To provide some insight into the power gain from the auxiliary variables, we eval-

uate the power under prespecified, fixed-dimensional sets of auxiliary variables in

the Supplementary Material. Under missing completely at random, including ad-

ditional auxiliary variables always increases the (asymptotic) power. In general,

the power does not have a simple form under missing at random. However, our

numerical evaluations suggest that the power tends to increase with the number

of auxiliary variables. Note that these results are asymptotic and may not apply

when the number of auxiliary variables is large compared to the sample size.

Our work can be extended in several directions. First, one may consider

more general outcome models. In cancer genomic studies such as TCGA, some
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outcomes of interest are (possibly censored) times to events, such as the time to

cancer progression or death. It is of interest to consider semiparametric survival

models for univariate or recurrent event times.

Second, in the current work, we use only a low-dimensional subset of aux-

iliary variables to impute the missing data, and the imputation model is fitted

using least-squares estimation. It is of interest to consider a general imputation

procedure that involves many auxiliary variables based on some regularized esti-

mators, such as the lasso, elastic net, and boosting. These imputation procedures

may be more accurate when many auxiliary variables are weakly associated with

the incomplete covariate. Here, a theoretical development is highly challenging,

because the regularized estimators may not have closed-formed expressions, and

the dimension of the working model can be high.

Third, we have focused on hypothesis testing, and developed our theoretical

results under the null hypothesis. One may consider estimation and inference

of the outcome model. In this case, the two-step procedure is invalid, because

the missing mechanism would depend on S through its dependence on Y , and

estimation of the model of S using only subjects with observed data would be

inconsistent. In addition, one generally needs to account for the selection vari-

ability of the model of S using the methods of, for example, Taylor and Tibshirani

(2018).

Supplementary Material

The online Supplementary Material provides a discussion of the model selec-

tion under marginal screening, an evaluation of the power, proofs of all technical

results, and a table and two figures presenting additional simulation and data

analysis results.
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Appendix

A. Relaxation of Condition (C4)

Let Mn ≡ {j : j ∈ K for some K ∈ Ωn} be the collection of all “possibly

selected” auxiliary variables and MC
n be its complement. Let S and X be the

vector or matrix of the values of Si and Xi for subjects with Ri = 1 as defined in
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Section 2, and AMn
be the matrix that consists of rows of {AMn,i : Ri = 1}. For

any given (S,X ,AMn
), let K(S,X ,AMn

) be the collection of models that could

be selected under the given data values, that is,

K(S,X ,AMn
) ={

K : K∗{S − X γ̂X , (AMn
, ÃMC

n
)} = K for some ÃMC

n
∈ R(

∑
iRi)×(pn−|Mn|)

}
.

For any K ∈ Ωn, define

K ={
M :M∈K(S̃, X̃ , ÃMn

) for some (S̃, X̃ , ÃMn
) such that K∈K∗(S̃, X̃ , ÃMn

)
}
.

We can understand K as the collection of models that are “close” to K: there

exist auxiliary variable values ÃMn
that are compatible with the selection of K

as well as the selection of other elements of K. For marginal screening, because

the selection of components of AMn
depends only on (S,X ,AMn

) but not AMC
n
,

K consists of models that include variables in K along with a subset of variables

in AMC
n
.

We can replace condition (C4) in Theorems 1 and 2 and Corollary 1 by

(C4’) Under β = 0, the residual (S − γT
0XX) and the covariate X are indepen-

dent, and AMn
is independent of (Y,X). Also,

∑
K∈Ωn

P (K∗ 6= K,K∗ ∈
K)→ 0.

For marginal screening, elements of {K : K ∈ Ωn} are mutually exclusive. The

second part of condition (C4’) is automatically satisfied, because

∑
K∈Ωn

P (K∗ 6= K,K∗ ∈ K) = P

( ⋃
K∈Ωn

{K∗ 6= K,K∗ ∈ K}

)
≤ P (K∗ /∈ Ωn)→ 0.

B. Outline of the Proof of Theorem 1

We outline the proof of Theorem 1 in this Appendix and relegate the complete

proof to the Supplementary Material. By a version of the portmanteau theorem

(Pollard (2002, p.177)), it suffices to prove that for any function g with bounded

derivatives up to the third order,

E

[
g

{
Uβ(α̂, γ̂K∗)

σ(K∗)

}]
→ E{g(Z)}, (B.1)
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where Z is a standard normal variable. The first step of the proof is to expand

Uβ(α̂, γ̂K) as

1

n1/2

n∑
i=1

{
εi − E(ε | Ri,Xi)

}{
RiSi + (1−Ri)γT

0KWK,i + IT
βαI

−1
ααXi

}
+

1

n1/2

n∑
i=1

[
(γT

0X + IT
βαI

−1
αα )
{

E(ε | Ri,Xi)Xi − E(εX | Ri)
}

+
{

E(ε | Ri,Xi)− E(ε | Ri)
}
γT

0A,KAK,i

+
{

E(ε | Ri,Xi) + IT
βγI
−1
γγWK,i

}
Ri(Si − γT

0KWK,i)

]
+

1

n1/2

n∑
i=1

{
(γT

0X + IT
βαI

−1
αα )E(εX | Ri) + E(ε | Ri)γT

0A,KAK,i

}
+ op(1)

≡ 1

n1/2

n∑
i=1

U1i(K) +
1

n1/2

n∑
i=1

U2i(K) +
1

n1/2

n∑
i=1

U3i(K) + op(1),

where the op(1) terms converge in mean to zero uniformly over K ∈ Ωn. As a

result, the left-hand side of (B.1) can be written as∫
K∈Ωn

E

[
g

{
n−1/2

n∑
i=1

U1i(K) + U2i(K) + U3i(K)

σ(K)

}∣∣∣K∗ = K

]
dPK∗(K) + o(1),

(B.2)

where PK∗ is the probability measure of K∗.
The main argument of the proof is to show that n−1/2

∑n
i=1 Uki(K) for

k = 1, 2, 3 in (B.2) can in turn be replaced by normal variables. Note that

conditional on O1 ≡ (Ri, Si,WK,i)i=1,...,n, U11(K), . . . , U1n(K) are mean zero and

independent. For i = 1, . . . , n, let

Ũ1i(K) = Var(ε | Ri,Xi)
1/2
{
RiSi + (1−Ri)γT

0KWK,i + IT
βαI

−1
ααXi

}
Z1i,

where Z11, . . . , Z1n are i.i.d. standard normal random variables that are indepen-

dent of the observed data. Because the first and second moments of U1i and Ũ1i

given O1 match and {K∗ = K} is implied by O1, the moments given {K∗ = K}
also match. We then use Lindeberg’s telescoping argument for the central limit

theorem (Chung (2001, p.211)) to show that n−1/2
∑n

i=1 U1i(K) in (B.2) can be

replaced by n−1/2
∑n

i=1 Ũ1i(K). We further show that the term can be replaced

by a normal variable with mean zero and variance σ2
1(K).
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Next, we show that under condition (C5), the event {K∗ = K} in the

conditional expectation in (B.2) can be replaced by {K∗0 = K}, where K∗0 ≡
K∗0(S −Xγ0X ,A) is the selected model based on the actual residual (S−γT

0XX).

Then, we note that {K∗0 = K} is implied by O2 ≡ (Ri,Ai, Si − γT
0XXi)i=1,...,n,

and conditional on O2, U21(K), . . . , U2n(K) are mean zero and independent; un-

der this conditional probability space, the random element in U2i(K) is Xi. We

can similarly show that n−1/2
∑n

i=1 U2i(K) in (B.2) can be replaced by a normal

variable with mean zero and variance σ2
2(K).

Finally, we show that after n−1/2
∑n

i=1 U1i(K) and n−1/2
∑n

i=1 U2i(K) are

replaced by normal variables, the conditional expectation in (B.2) can be re-

placed by a marginal expectation under condition (C6). It is easy to see that

U31(K), . . . , U3n(K) are mean zero and independent, and thus n−1/2
∑n

i=1 U3i(K)

can be replaced by a normal variable with mean zero and variance σ2
3(K). Com-

bining the above results, we conclude that the variable in the function g in (B.2)

can be replaced by a standard normal variable, and the desired result follows.

In the conventional argument for the asymptotic distribution of the score

statistic, we expand Uβ(α̂, γ̂K) as in (2.2), and the asymptotic normality of the

score statistic (given X and A) follows from the central limit theorem. However,

conditional on the model selection event {K∗ = K}, (Si − γT
0KWK,i)i=1,...,n are

dependent, and the central limit theorem does not apply. In our proof, instead

of relying on the independence of (Si − γT
0KWK,i)’s, we establish the asymptotic

normality based on the (conditional) independence and mean-zero property of

functions of Xi’s given the model selection event.
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