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Abstract: Amethod of generalized regression that blends tree-structured nonparamet-

ric regression and adaptive recursive partitioning with maximum likelihood estimation

is studied. The function estimate is a piecewise polynomial, with the pieces determined

by the terminal nodes of a binary decision tree. The decision tree is constructed by

recursively partitioning the data according to the signs of the residuals from a model

�tted by maximum likelihood to each node. Algorithms for tree-structured Poisson

and logistic regression and examples to illustrate them are given. Large-sample prop-

erties of the estimates are derived under appropriate regularity conditions.
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1. Introduction: Motivation and Main Ideas

Consider a general regression setup in which a real-valued response Y is re-

lated to a real or a vector-valued regressor X through a probability model that

characterizes the nature of the dependence of Y on X. Let ffyjg(x)g denote the

conditional density or mass function of Y given X = x, where the form of f is

known but g is an unknown function to be estimated. Familiar examples include

the logistic regression model (where Y is binary, and g(x) is the \logit" of the

conditional probability parameter given X = x), the Poisson regression model

(where Y is a nonnegative integer-valued random variable with a Poisson distri-

bution, and g(x) is related to its unknown conditional mean given X = x), and

generalized linear models (GLM) (Nelder and Wedderburn (1972), McCullagh

and Nelder (1989)), where g is related to the link function. On the other hand,

g(x) may be the unknown location parameter associated with the conditional dis-

tribution of Y given X = x. That is, Y may satisfy the equation Y = g(X) + �,

where the conditional distribution of � may be normal, Cauchy or exponential

power (see, e.g., Box and Tiao (1973)) with center at zero.

We focus on the situation where no �nite-dimensional parametric model is

imposed on g, and it is assumed to be a fairly smooth function. Nonparametric
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estimation of the functional parameter g has been explored by Chaudhuri and

Dewanji (1994), Cox and O'Sullivan (1990), Gu (1990), Hastie and Tibshirani

(1986, 1990), O'Sullivan, Yandell and Raynor (1986), Staniswalis (1989), Stone

(1986, 1991a), and others, who considered nonparametric smoothers when the

conditional distribution of the response given the regressor is assumed to have a

known shape (e.g., the conditional distribution may possess a GLM-type expo-

nential structure).

In the case of the usual regression setup, where Y = g(X)+ � with E(�jX) =

0, several attempts have been made to estimate g by recursively partitioning

the regressor space and then constructing a regression estimate in each partition

using the method of least squares. Some examples are AID (Sonquist (1970),

Sonquist, Baker and Morgan (1973)), CART (Breiman, Friedman, Olshen and

Stone (1984)) and SUPPORT (Chaudhuri, Huang, Loh and Yao (1994)). The

purpose of this article is to explore recursive partitioning algorithms and related

likelihood-based nonparametric function estimates in a generalized regression

setting.

Tree-structured regression possesses three signi�cant advantages over stan-

dard parametric and nonparametric regression:

1. By allowing the tree-structure to handle much of the overall model complexity,

the models in each partition can be kept at a low order and hence be more easily

interpreted.

2. Interactions among covariates are directly conveyed by the structure of the

decision tree. As a result, interactions can be understood and interpreted more

easily in qualitative terms.

3. The simple form of the �tted function in each terminal node permits the

statistical properties of the method to be studied analytically.

The adaptive nature of recursive partitioning allows varying degrees of

smoothing over the regressor space so that the terminal nodes may have variable

sizes in terms of both numbers of observations and diameters of the sets in the

regressor space to which they correspond. The main motivation behind such

adaptive variable smoothing is to take care of heteroscedasticity as well as the

possibility that the amount of smoothness in the functional parameter g may be

di�erent in di�erent parts of the regressor space. This is an improvement over

most of the earlier nonparametric estimation techniques in generalized regression,

which concentrate either on adaptive but non-variable smoothing (i.e., using a

smoothing parameter whose value is constant over the entire regressor space) or

on deterministic smoothing.

The general recursive partitioning methodology explored in this paper con-
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sists of two recursive steps: (i) the function g is estimated from the data in each

node by a low order polynomial using maximum likelihood and (ii) each node is

split into two subnodes using a criterion based on the distributions of the covari-

ate vectors according to the signs of the residuals. Recursive partitioning stops

when the number of cases in each terminal node is smaller than a pre-assigned

threshold. A cross-validation pruning procedure (Breiman et al: (1984)) is ap-

plied to determine the �nal tree. Sections 2 and 3 give speci�c algorithms and

illustrative examples for Poisson and logistic regression, respectively. One of the

examples also shows how categorical (unordered) covariates can be included in

the models.

Adaptive recursive partitioning algorithms construct random subsets of the

regressor space to form the terminal nodes. A serious technical barrier in studying

the analytic properties of the likelihood-based function estimates is the random

nature of these subsets. A key tool in coping with this situation is a well-known

combinatorial result of Vapnik and Chervonenkis (1971). In Section 4, we investi-

gate the large-sample statistical properties of the estimates that are constructed

via recursive partitioning of the regressor space followed by maximum likelihood

estimation of g by piecewise polynomials.

The MARS (Friedman (1991)) method combines spline �tting with recursive

partitioning to produce a continuous regression function estimate. The com-

plexity of the estimate makes interpretation di�cult and theoretical analysis of

its statistical properties extremely challenging. In the SUPPORT method of

Chaudhuri, et al: (1994), a weighted averaging technique is used to combine

piecewise-polynomial �ts into a smooth one. An identical technique can be used

here to create a smooth estimate from a discontinuous piecewise-polynomial es-

timate without altering the asymptotic properties of the original estimate (see

Chaudhuri, Lo, Loh and Yang (1993) for some examples). Proposals for extend-

ing MARS to logistic regression and GLM-type problems are given in Friedman

(1991), Buja, Du�y, Hastie and Tibshirani (1991) and Stone (1991b). Our ap-

proach is more general as it is applicable to other regression setups in addition

to logistic regression.

2. Poisson Regression Trees

Our algorithm for �tting Poisson regression trees has three main compo-

nents: (i) a method to select the variable and the splitting value to be used at a

partition, (ii) a method to determine the size of the tree, and (iii) a method to

�t a model to each terminal node. Although there are many reasonable solutions

for each component (see Yang (1993) for some variations), the model �tting for

the examples in this section is carried out recursively as follows.
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1. The Poisson loglinear model, log(m) = �0 +
PK

k=1 �kxk, is �tted to the data

in node t. Here m = EY and x1; : : : ; xK are the K covariates.

2. Let m̂i be the estimated value of m for the ith case and let yi denote the

observed value of Yi. The adjusted Anscombe residual (Pierce and Schafer (1986))

ri = fy
2=3
i � (m̂

2=3
i � (1=9)m̂

�1=3
i )g=f(2=3)m̂

1=6
i g (1)

is calculated for each yi in t.

3. Observations with nonnegative ri are classi�ed as belonging to one group and

the remainder to a second group.

4. Two-sample t-statistics to test for di�erences in means and variances between

the two groups along each covariate axis are computed. The latter test is Levene's

(1960) test.

5. The covariate selected to split the node is the one with the largest absolute t-

statistic. The cut-point for the selected covariate is the average of the two group

means along the covariate. Observations with covariate values less than or equal

to the cut-point are channeled to the left subnode and the remainder to the right

subnode.

6. After a large tree is constructed, a nested sequence of subtrees is obtained by

progressively deleting branches according to the pruning method of Breiman et

al: (1984), with residual deviance replacing apparent error in the cost-complexity

function.

7. The subtree with the smallest cross-validation estimate of deviance is selected.

Remark 1. Our split selection strategy is motivated by the methods in Chaud-

huri et al: (1994) for tree-structured least squares regression and Ahn and Loh

(1994) for tree-structured proportional hazards regression. It di�ers fundamen-

tally from the exhaustive search strategy used in the AID and CART algorithms.

The latter strategy calls for all possible splits of the data in a node to be evaluated

to �nd the one that most reduces some measure of node impurity (e.g., deviance).

In the present problem, this requires Poisson loglinear models to be �tted to the

subnodes induced by every split. Because loglinear �tting typically involves

Newton-Raphson iteration, this strategy is not practical for routine application

on present-day workstations. Our split selection strategy performs model �tting

only once at each node. The task of �nding the best split is reduced to a classi-

�cation problem by grouping the covariate vectors into two classes according to

the signs of the residuals. The t-tests, which were developed for tree-structured

classi�cation in Loh and Vanichsetakul (1988), essentially rank the covariates in

terms of the degree of clustering of the signs. The highest ranking covariate is

interpreted as the direction in which lack of model �t is greatest and is selected

to split the node.
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Remark 2. Empirical evidence (Yang (1993)) suggests that the adjusted

Anscombe residuals de�ned in (1) tend to yield superior splits compared to the

unadjusted Anscombe residuals, especially when some of the Poisson means are

small. The Pearson and deviance residuals are not employed because they have

the same signs as the unadjusted Anscombe residuals.

We now give two examples to illustrate the Poisson regression tree method.

The �rst example uses ordered covariates and the second example categorical

(unordered) covariates.

2.1. E�ect of N-nitrosomorpholine (NNM) on rats

The data come from an experiment (Moolgavkar, Luebeck, de Gunst, Port

and Schwarz (1990)) in which 173 female rats were exposed to a chemical, N -

nitrosomorpholine, at various doses (0, 0.1, 1, 5, 10, 20, 40, 80ppm) in their

drinking water starting at 14 weeks of age. The animals were killed at di�erent

ages and three sections from the identical lobe of the liver were examined for

the number of ATPase-de�cient transections. The response is the number of

transections, which ranged from 0 to 160. These transections, sometimes called

foci, are believed to represent clones of premalignant cells. The time to sacri�ce

ranged from 42 to 686 days.

Table 1 gives the results from �tting a �rst-degree and then a full second-

degree Poisson loglinear model to the data. The residual deviances for the two

models are 3,455 and 2,027 with 170 and 167 degrees of freedom, respectively.

Clearly, the �rst-degree model is rejected in favor of the second-degree model.

Note that the coe�cients for dose-squared and time-squared are negative and

that the most signi�cant term is the interaction between dose and time. This

makes interpretation tricky.

Table 1. Coe�cients from two Poisson loglinear models �tted to NNM data

Model Term Coe�cient t-value

First- Intercept 1.71862 23.64

degree Dose 0.02556 26.75

GLM Time 0.00122 7.74

Second- Intercept �1:529E+00 �4:71

degree Dose 4.251E�02 4.43

GLM Time 1.308E�02 8.73

Dose-squared �4:547E�04 �7:76

Time-squared �1:150E�05 �7:12

Dose � Time 2.712E�04 10.14
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Figure 1. Poisson regression tree for NNM data using 10-fold cross-

validation. A case goes to the left subnode if the condition at the split is

true. The number beneath a terminal node is the learning sample size. The

number on the left of a terminal is the sample mean number of transections.

The tree in Figure 1 shows the result of �tting piecewise Poisson loglinear

models with the proposed method using only main e�ect terms. The presence of

the dose-time interaction is obvious from the splits. The tree has �ve terminal

nodes and its residual deviance is 1,432. The sample mean number of transections

is given beside each terminal node. This increases from 0.9 when both dose and

time are small to 29.8 when both covariates take large values. The regression

coe�cients and t-statistics for the models at the terminal nodes are given in Table

2. The coe�cients for dose and time are all positive as expected. Except at node

8, both covariates are highly statistically signi�cant. Since the nearest dose to

5ppm in the experiment was 1ppm, this implies that the number of transections

is essentially random if the dose level is 1ppm or lower and sacri�ce time is less

than 414 days.

Figure 2 shows contour plots of the �tted log-means for the second-degree

GLM and tree-structured models with the observed points superimposed. The

contours for the tree-structured model are piecewise-linear and they track the

shape of the contours from the GLM model. Observe that the data points are

concentrated near the left and bottom sides of the plots and that the contours

in the GLM plot increase rapidly in the upper-right corner. Notice also that the

contour line for zero log-count in this plot has a U-shape. These are artifacts

caused by the quadratic components in the GLM model. The tree-structured

model does not have these problems because it models the data in a piecewise
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fashion. The trade-o� is lack of smoothness of the �tted surface at the partition

boundaries.

Table 2. Estimated coe�cients and t-values for models in terminal nodes

in Figure 1.

Node Intercept Dose Time Residual

no. Coef. t Coef. t Coef. t deviance Df

5 �1:970 �4:3 0.537 14.6 0.0062 8.5 479 55

6 �3:377 �8:1 0.039 13.5 0.0282 16.2 86 15

7 �0:231 �0:9 0.051 12.8 0.0093 14.2 629 28

8 �2:352 �2:9 1.519 3.8 0.0049 2.1 69 31

9 �2:439 �7:8 0.112 5.8 0.0146 20.4 168 29
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Figure 2. Contour plots of predicted log-means of number of transections.

The upper plot is for the second-degree GLM with interaction and the lower

one for the tree-structured model. Dotted lines in the lower plot mark the

partitions and observations are indicated by dots.

Qualitatively similar results are obtained when the above analysis is repeated

with log(dose + 0:01) instead of dose. All the coe�cients except the one for

flog(dose + 0:01)g2 are highly signi�cant when a second-degree GLM model is

�tted to the entire data set. The corresponding Poisson regression tree has the

same number of terminal nodes as before, but with di�erent splits.
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2.2. A factorial experiment with categorical covariates

The data come from an unreplicated 3 � 2 � 4 � 10 � 3 experiment on

wave-soldering of electronic components on printed circuit boards (Comizzoli,

Landwehr and Sinclair (1990)). There are 720 observations and the covariates

are all categorical variables. The factor levels are:

1. Opening: amount of clearance around a mounting pad (levels `small',

`medium', or `large')

2. Solder: amount of solder (levels `thin' and `thick')

3. Mask: type and thickness of the material for the solder mask (levels A1.5, A3,

B3, and B6)

4. PadType: geometry and size of the mounting pad (levels W4, D4, L4, D6, L6,

D7, L7, L8, W9, and L9)

5. Panel: each board was divided into three panels (levels 1, 2, and 3)

The response is the number of solder skips which range from 0-48.

Table 3. Results from a full second-degree Poisson loglinear model �tted

to solder data

Term Df Sum of Sq Mean Sq F -value Pr(F )

Opening 2 1587.563 793.7813 568.65 0.00000

Solder 1 515.763 515.7627 369.48 0.00000

Mask 3 1250.526 416.8420 298.62 0.00000

PadType 9 454.624 50.5138 36.19 0.00000

Panel 2 62.918 31.4589 22.54 0.00000

Opening:Solder 2 22.325 11.1625 8.00 0.00037

Opening:Mask 6 66.230 11.0383 7.91 0.00000

Opening:PadType 18 45.769 2.5427 1.82 0.01997

Opening:Panel 4 10.592 2.6479 1.90 0.10940

Solder:Mask 3 50.573 16.8578 12.08 0.00000

Solder:PadType 9 43.646 4.8495 3.47 0.00034

Solder:Panel 2 5.945 2.9726 2.13 0.11978

Mask:PadType 27 59.638 2.2088 1.58 0.03196

Mask:Panel 6 20.758 3.4596 2.48 0.02238

PadType:Panel 18 13.615 0.7564 0.54 0.93814

Residuals 607 847.313 1.3959

Table 3 gives the results from �tting a Poisson loglinear model to the data

with all two-factor interactions. The three most signi�cant two-factor interac-

tions are between Opening, Solder, and Mask. These variables also have the

most signi�cant main e�ects. Chambers and Hastie (1992, p: 10) (see also Hastie
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and Pregibon (1992, p: 217)) analyze these data and conclude that a parsimo-

nious model is one containing all main e�ect terms and these three two-factor

interactions. The residual deviance for the latter model is 972 with 691 degrees

of freedom (the null deviance is 6,856 with 719 degrees of freedom). Estimates

of the individual terms in this model are given in Table 4. The model is very

complicated and is not easy to interpret.

Table 4. Estimates from a Poisson loglinear model �tted to solder data.

The model contains all main e�ects and all two-factor interactions involving

Opening, Solder, and Mask. The letters `L' and `Q' below refer to the

linear and quadratic components of the Opening factor.

Term Value t

Intercept 0.5219 12.28

Opening.L �1:6244 �24:68

Opening.Q 0.4573 6.93

Solder �1:0894 �20:83

Mask1 0.3110 4.47

Mask2 0.3834 13.07

Mask3 0.4192 28.11

PadType1 0.0550 1.66

PadType2 0.1058 6.10

PadType3 �0:1049 �6:92

PadType4 �0:1229 �9:03

PadType5 0.0131 1.48

PadType6 �0:0466 �5:28

PadType7 �0:0076 �1:09

PadType8 �0:1355 �12:79

PadType9 �0:0283 �4:31

Panel1 0.1668 7.93

Panel2 0.0292 2.49

Opening.LSolder �0:3808 �5:19

Opening.QSolder �0:2607 �3:63

Opening.LMask1 0.0308 0.32

Opening.QMask1 �0:3510 �3:45

Opening.LMask2 0.0524 1.28

Opening.QMask2 0.2024 4.26

Opening.LMask3 0.0871 4.07

Opening.QMask3 �0:0187 �0:80

SolderMask1 0.0120 0.16

SolderMask2 0.1858 6.10

SolderMask3 0.1008 6.25
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To con�rm the inadequacy of a main-e�ects model, we �t a Poisson regression

tree to these data using only main e�ects models in each node. Because the

covariates are categorical, we need to convert them to ordered variables before

using the algorithm. Instead of arbitrarily assigning scores, we use a loglinear

model to determine the scores as follows. Let X be a categorical variable with

values in the set f1; 2; : : : ; cg.

1. De�ne dummy variables Z1; : : : ; Zc�1 such that

Zk =

�
1; if X = k,

0; if X 6= k,
k = 1; : : : ; c� 1:

2. Fit the Poisson loglinear model, log(m) = 
0 + 
1Z1 + � � �+ 
c�1Zc�1, and let


̂i (i = 0; : : : ; c� 1) denote the estimated coe�cients.

3. Transform X to the ordered variable V , where

V =

�

̂0 + 
̂k; if X = k and k 6= c,


̂0; if X = c.

4. Use the variable V in place of X in the main algorithm.

This method of scoring is similar in concept to the method of dealing with cate-

gorical covariates in the FACT method (Loh and Vanichsetakul (1988)) for tree-

structured classi�cation, although in the latter the scoring is done at each node

instead of merely at the root node. A future version of the present algorithm will

perform scoring at every node.

The V -scores for each covariate are given in Table 5. Note that for the

variable Opening, the score assigned to the `small' category is much larger than

those assigned to the `medium' and `large' categories. This suggests that the

response is likely to be quite a bit larger when Opening is small than when it is

medium or large. Similarly, the scores for Mask when it takes values B3 or B6

are much larger than for other values.

Table 5. Covariate V -scores for solder data

Covariate Opening Mask

Category Small Medium Large A1.5 A3 B3 B6

V -score 11.071 2.158 1.667 1.611 2.472 5.361 10.417

Covariate Panel Solder

Category 1 2 3 Thin Thick

V -score 4.042 5.642 5.213 7.450 2.481

Covariate Pad type

Category W4 D4 L4 D6 L6 D7 L7 L8 W9 L9

V -score 5.972 6.667 8.667 4.611 3.417 6.042 4.083 5.083 1.583 3.528
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Figure 3. Poisson regression tree for solder data using 10-fold cross-

validation. A case goes to the left subnode if the condition at a split is

true. The number beneath a terminal node is the learning sample size.

The number on the left of a terminal node is the sample mean number of

solder skips.

Figure 3 shows the Poisson regression tree. It has a residual deviance of 1,025.

The splits are on Solder, Mask and Opening, indicating substantial interactions

among these covariates. The sample mean response is given beside each terminal

node of the tree. These numbers show that the response is least when the Solder

amount is thick and theMask is A1.5 or A3. It is largest when the Solder amount

is thin, Opening is small, and the Mask is B3 or B6. These conclusions are not

readily apparent from Tables 3 and 4. Table 6 gives the estimated coe�cients for

the loglinear models in each terminal node. Because the e�ect of interactions is

modeled in the splits, no interaction terms are needed in the piecewise models.

Table 6. Estimated coe�cients for loglinear models in terminal nodes of

tree in Figure 3

Covariate Node 4 Node 5 Node 6 Node 8 Node 9

Coef. t Coef. t Coef. t Coef. t Coef. t

Intercept �4:674 �4:93 �3:036 �9:10 �3:910 �8:67 �0:997 �2:21 0.753 3.23

Opening 0.139 6.38 0.226 23.33 0.210 1.38 - - - -

Mask 0.542 2.38 0.136 9.11 0.223 20.38 0.358 3.33 0.090 8.54

Pad type 0.257 5.15 0.212 11.42 0.226 11.65 0.209 8.76 0.166 12.29

Panel 0.152 1.05 0.122 2.25 0.389 6.42 0.241 3.38 0.169 4.27
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Figure 4. Observed versus �tted values for solder example. The GLM

model contains all main e�ects and all two-factor interactions involving

Opening, Solder and Mask.

Figure 4 shows plots of the observed values versus the �tted values from

the tree-structured model and from the generalized linear model with all main

e�ects and all two-factor interactions involving Solder, Mask, and Opening. The

agreement between two sets of �tted values is quite good and lends support to

our method of scoring categorical variables.

3. Logistic Regression Trees

The basic algorithm for Poisson regression trees is applicable to logistic re-

gression trees. The only di�erence is that a more careful de�nition of residual is

needed. This is because the 0-1 nature of the response variable Y makes the signs

of the Pearson and deviance residuals too variable (Lo (1993) gives some empiri-

cal evidence). To reduce the amount of variability, the following additional steps
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are taken at each node to smooth the observed Y -values prior to computation of

the residuals.

1. Compute p̂i, the estimate of pi = P (Yi = 1) from a logistic regression model.

2. Smooth the Y -values using the following nearest-neighbor average method

Fowlkes (1987). Let d(xs; xi) be the Euclidean distance between the standardized

(i.e., sample variance one) values of xs and xi and let As be the set of [hn]-

nearest neighbors of xs, where h 2 (0; 1) is a �xed smoothing parameter. De�ne

ds = maxxi2As
d(xs; xi). The smoothed estimate (called a `pseudo-observation')

is given by

p�s =
X
xi2As

wi;syi

, X
xi2As

wi;s ;

where wi;s = f1 � (d(xi; xs)=ds)
3g is the tricube weight function. This method

of smoothing is similar to the LOWESS method of Cleveland (1979) except that

a weighted average instead of a weighted regression is employed.

3. Compute the `pseudo-residual,' r�i = (p�i � p̂i), for each observation. The

pseudo-residual replaces the adjusted Anscombe residual in the Poisson regression

tree algorithm.

The value of the smoothing parameter h may be chosen by cross-validation

if necessary. Our experience shows, however, that a �xed value between 0.3 and

0.4 is often satisfactory. This is because the pseudo-observations are used here

to provide only a preliminary estimate of p that does not have to be very precise.

3.1. Survival following breast cancer surgery

The data in this example come from a study conducted between 1958 and

1970 at the University of Chicago Billings Hospital on the survival of patients who

had undergone surgery for breast cancer. There are 306 observations on each of

three covariates: Age of patient at time of surgery, Year (year of surgery minus

1900), and Nodes (number of positive axillary nodes detected in the patient).

The response variable Y is equal to 1 if the patient survived 5 years or more, and

is equal to 0 otherwise. Two hundred and twenty-�ve of the cases had Y = 1.

Table 7 shows the ranges of values taken by the covariates.

Table 7. Range of values of covariates for breast cancer data

Covariate Minimum Maximum

Age 30 83

Year 58 69

Nodes 0 52
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Table 8 gives the coe�cient estimates for two linear logistic models �tted to

the data. The only di�erence between the models is that the �rst uses Nodes as

a covariate while the second uses log(Nodes + 1). Only the covariate involving

Nodes is signi�cant in either model. The residual deviances of the models are

328 and 316 respectively, each with 302 degrees of freedom.

Table 8. Estimated coe�cients for two linear logistic models �tted to the

breast cancer data

Model 1 (deviance = 328 with 302 df) Model 2 (deviance = 316 with 302 df)

Term Coe�cient t-value Term Coe�cient t-value

Constant 1.862 0.70 Constant 2.617 0.97

Age �0:020 �1:57 Age �0:024 �1:89

Year 0.010 0.23 Year 0.008 0.19

Nodes �0:088 �4:47 log(Nodes +1) �0:733 �5:76

Table 9. Estimated coe�cients for models of Haberman (1976) and

Landwehr et al: (1984)

Haberman (deviance = 314 with 300 df) Landwehr et al. (deviance = 302 with 299 df)

Term Coe�cient t-value Term Coe�cient t-value

Constant 35.931 2.62 Constant 77.831 3.29

Age �0:661 �2:62 Age �2:868 �2:91

Year �0:528 �2:43 Year �0:596 �2:44

Age � Year 0.010 2.54 Age � Year 0.011 2.51

Nodes �0:175 �4:57 log(Nodes + 1) �0:756 �5:73

(Nodes)2 0.003 2.61 (Age)2 0.039 2.35

(Age)3 �0:000 �2:31

Haberman (1976) �nds that the model

log(p=(1�p)) = �0+�1Age+�2Year+�3Nodes+�4(Nodes)
2+�5Age�Year (2)

�ts better than the linear logistic Model 1 of Table 8. The residual deviance of

(2) is 314 with 300 degrees of freedom. The regression coe�cients and t-statistics

are given on the left half of Table 9. Except for Nodes which is highly signi�cant,

all the other covariates are marginally signi�cant (the Bonferroni two-sided t-

statistic at the 0.05 simultaneous signi�cance level is 2.58).

Landwehr, Pregibon and Shoemaker (1984) re-analyze these data with the
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help of graphical diagnostics. Their model replaces the linear and squared terms

inNodes in Haberman's model with the terms log(1+Nodes), (Age)2, and (Age)3.

This model has a residual deviance of 302 with 299 degrees of freedom. The

estimated coe�cients are given on the right half of Table 9. Again the term in-

volving Nodes is highly signi�cant and the other terms are marginally signi�cant.

Nodes � 4 1��
��

2

230

�
�
�
�� B

B
B
BB
3

76

Figure 5. Logistic regression tree for breast cancer data using 10-fold cross-

validation. A case goes to the left subnode if the condition at a split is true.

The number beneath a terminal node is the learning sample size.

Using Age, Year, and Nodes as covariates and the smoothing parameter

value h = 0:3, our method yields the logistic regression tree in Figure 5. It has

only one split, on the covariate Nodes. The estimated logistic regression coef-

�cients are given in Table 10. None of the t-statistics is signi�cant, although

that for Nodes is marginally signi�cant in the left subnode. The reason is that

much of the signi�cance of Nodes is captured in the split. The estimated co-

e�cient for Nodes changes, however, from the marginally signi�cant value of

�0:289 to the non-signi�cant value of �0:012 as we move from the left subnode

to the right subnode. This implies that the survival probability decreases as the

value of Nodes increases from 0 to 4; for values of Nodes greater than 4, survival

probability is essentially independent of the covariate.

Table 10. Estimated coe�cients for logistic regression tree model in Figure 5

Left subnode (Nodes � 4) Right subnode (Nodes > 4)

Term Coe�cient t-value Term Coe�cient t-value

Constant 2.4509 0.734 Constant 0.5117 0.106

Age �0:0199 �1:267 Age �0:0378 �1:528

Year 0.0063 0.120 Year 0.0243 0.326

Nodes �0:2890 �2:255 Nodes �0:0124 �0:472
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Figure 6. Plots of predicted logit values for breast cancer data according

to various models.

Figure 6 shows plots of the predicted logit values from the three models.

The Haberman and tree models appear to be most similar. Note the outlying

point marked by an `X' in each plot. It represents an 83 year-old patient who

was operated in 1958, had 2 positive axillary nodes and died within 5 years. The

cubic term (Age)3 in the Landwehr et al: (1984) model causes it to predict a

much lower logit value for this case than the other models.

Following Landwehr et al: (1984, p: 69), we plot the estimated survival prob-

ability as a function of Age for the situations when Year = 63 and Nodes = 0

or 20. The results are shown in Figure 7. The non-monotonic shapes of the

curves for the Landwehr et al. model are due to the cubic term in Age. Figure 8

shows corresponding plots against Nodes for the cases Year = 63 and Age = 40

or 70. The presence of the quadratic term in Nodes is now obvious in the plot

for the Haberman model. The plots for the tree-structured show that survival

probability decreases monotonically with Age and Nodes, as might be expected.
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Figure 7. Plots of estimated survival probability as a function of Age when

Year = 63. The solid line corresponds to the cases for which Nodes = 0

and the dotted line to Nodes = 20.

When the covariate Nodes is replaced by its log-transformed version

log(Nodes + 1), the logistic tree method yields a trivial tree with no splits. This

suggests that if the log-transformation is used, then the simple linear logistic

Model 2 given in Table 8 is adequate. This conclusion is consistent with the

earlier observation that the t-statistics corresponding to the nonlinear terms in

the Landwehr et al. model are marginally signi�cant at best.
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Figure 8. Plots of estimated survival probability as a function of Nodes

when Year = 63. The solid line corresponds to the cases for which Age

= 40 and the dotted line to Age = 70.

4. Consistency of Function Estimates

We now give conditions for the consistency of the function estimates in a very

general setup. Assume that (Y1;X1); (Y2;X2); : : : ; (Yn;Xn) are independent data

points, where the response Yi is real-valued and the regressor Xi is d-dimensional.

As before, let ffyijg(xi)g be the conditional pdf/pmf of Yi given Xi = xi. We

wish to estimate the function g over a compact set C � Rd.

Let Tn be a random partition of C (i.e., C = [t2Tnt), which is generated
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by some adaptive recursive partitioning algorithm applied to the data, and it

is assumed to consist of polyhedrons having at most M faces, where M is a

�xed positive integer. Denote the diameter of a set t 2 Tn by �(t) (i.e., �(t) =

supx;y2t jx� yj), which is assumed to be positive for each set t 2 Tn. For t 2 Tn,

let �Xt denote the average of the Xi's that belong to t. Also, assuming that the

function g ism-th order di�erentiable (m � 0), write its Taylor expansion around
�Xt as

g(x) =
X
u2U

(u!)�1Dug( �Xt)(x� �Xt)
u + rt(x; �Xt):

Here U = fuju = (v1; v2; : : : ; vd); [u] � mg, where [u] = v1 + v2 + : : : + vd and

the vi's are nonnegative integers. For u 2 U , D
u is the mixed partial di�erential

operator with index u, u! =
Qd
i=1 vi!, and for x = (z1; z2; : : : ; zd), x

u =
Qd
i=1 z

vi
i

(with the convention that 0! = 1 and 00 = 1). Let s(U) be the cardinality

of the set U . For Xi 2 t, let �i be the s(U)-dimensional column vector with

components given by (u!)�1f�(t)g�[u](Xi � �Xt)
u, where u 2 U . Finally, denote

byDt the s(U)�s(U) matrix de�ned as
P

Xi2t
�i�

T
i , where T indicates transpose.

We impose the following conditions which are similar to conditions (a) through

(c) in Chaudhuri et al: (1994). A detailed discussion of these conditions is given

in Chaudhuri et al: (1993).

Condition 1. maxt2Tn supx2tf�(t)g
�mjrt(x; �Xt)j

P
�! 0 as n!1.

Condition 2. Let Nt be the number of Xi's that lie in t, and Nn =

mint2Tnf�(t)g
2mNt. Then Nn= log n

P
�!1 as n!1.

Condition 3. Let �t be the smallest eigenvalue of N�1
t Dt and let �n =

mint2Tn �t. Then �n remains bounded away from zero in probability as n!1.

For � = (�u)u2U , de�ne the polynomial P (x;�; �Xt) in x as

P (x;�; �Xt) =
X
u2U

�u(u!)
�1f�(t)g�[u](x� �Xt)

u :

Following the estimation procedure described in the previous sections, let �̂t be

the estimate obtained by applying the maximum likelihood technique to the data

points (Yi; Xi) for which Xi 2 t. In other words,

�̂t = arg max
�

Y
Xi2t

ffYijP (Xi;�; �Xt)g:

Condition 3 guarantees that for large sample size, each of the matrices Dt's

will be nonsingular and nicely behaved with high probability (cf. Condition (c)

in Chaudhuri et al: (1994)). It ensures regularity in the behavior of the Fisher

information matrix associated with the �nite-dimensional model �tted to the
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conditional distribution within each set in Tn. Note that we �t a polynomial of

a �xed degree with a �nite number of coe�cients to the data points in any set

in Tn.

Finally, we need a Cram�er-type regularity condition on the conditional dis-

tribution of the response given the regressor. This condition is crucial in es-

tablishing desirable asymptotic behavior of our estimates, which are constructed

using maximum likelihood.

Condition 4. Consider the pdf/pmf f(yjs) as a function of two variables so

that s is a real-valued parameter varying in a bounded open interval J . Here J

is such that as x varies over some open set containing C, g(x) takes its values

in J . The support of f(yjs) for any given s 2 J is the same, independent of s.

The function logff(yjs)g is three times continuously di�erentiable w.r.t. s for

any given value of y. Let A(yjs), B(yjs) and H(yjs) be the �rst, second and

third derivatives respectively of logff(yjs)g w.r.t. s. Let Y have pdf/pmf f(yjs).

The random variable A(Y js) has zero mean, and the mean of B(Y js) is negative

and stays away from zero as s varies in J . There exists a nonnegative function

K(y) which dominates each of A(yjs), B(yjs) and H(yjs) for all values of s 2 J

(i:e:, jA(yjs)j � K(y), jB(yjs)j � K(y) and jH(yjs)j � K(y)). The moment

generating function of K(Y ), M(w; s) = E [expfwK(Y )g], remains bounded as

w varies over an open interval around the origin and s varies over J .

Note that Condition 4 is trivially satis�ed when the response Y is binary or,

more generally, when its conditional distribution given the regressor is binomial,

and s is the logit of the probability parameter such that the probability remains

bounded away from 0 and 1. This condition holds whenever the conditional

distribution of the response belongs to a standard exponential family (e.g., bino-

mial, Poisson, exponential, gamma, normal, etc.), and s is the natural parameter

taking values in a bounded interval. If f(yjs) is a location model with s behaving

like a location parameter varying over a bounded parameter space, Condition 4

remains true for several important cases such as the Cauchy or exponential power

distribution (see e.g., Box and Tiao (1973)). This condition can be viewed as an

extension of Condition (d) in Chaudhuri et al: (1994).

Theorem 1. Suppose that Conditions 1 through 4 hold. There is a choice of

the maximum likelihood estimate �̂t (possibly a local maximizer of the likelihood)

for every t 2 Tn such that given any u 2 U ,

max
t2Tn

sup
x2t

jDuP (x; �̂t; �Xt)�Dug(x)j
P
�!0 as n!1.

This theorem guarantees that there is a choice of the maximum likelihood

estimate �̂t for each t 2 Tn so that the resulting piecewise polynomial estimates
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of the function g and its derivatives are consistent. It may happen that the

estimate �̂t is only a local maximizer of the likelihood instead of being a global

maximizer. For instance, the likelihood based on the data points in a set in

Tn may have multiple maxima. However, when the conditional distribution of

the response given the regressor belongs to a standard exponential family, strict

concavity of the loglikelihood guarantees uniqueness of the maximum likelihood

estimate in large samples. In the special case where a constant (i.e., a polynomial

of degree zero) is �tted to the data points in each set in Tn using the maximum

likelihood approach, Theorem 1 generalizes the consistency result for piecewise

constant tree-structured regression estimates discussed in Breiman et al: (1984).

The piecewise polynomial estimates of g and its derivatives are not contin-

uous everywhere in the regressor space. Smooth estimates, which can be con-

structed by combining the polynomial pieces by smooth weighted averaging, will

be consistent provided the weight functions are chosen properly. Theorem 2 in

Chaudhuri, Huang, Loh and Yao (1994) describes a way of constructing families

of smooth weight functions that give smooth and consistent estimates of g and

its derivatives. Some examples for smoothing estimates from Poisson and logistic

regression trees are given in Chaudhuri et al: (1993).

Remark 3. The results in this section are very general and hence are not speci�c

to any particular partitioning algorithm. The main di�culty with applying them

to a given algorithm lies in the complexity of algorithmic details such as the choice

of splitting rule, pruning method, etc. This is a problem associated with any

nontrivial adaptive recursive partitioning algorithm that has its own particular

set of features and tuning parameters. (See page 327 of Breiman et al: (1984) for

a discussion of similar issues in the context of tree-structured classi�cation.)
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Appendix: Proofs

We give a brief sketch of the proof of Theorem 1. More details can be found
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in Chaudhuri, Lo, Loh and Yang (1993). We begin by giving some preliminary

results. Unless stated otherwise, all vectors are assumed to be column vectors.

Let ��

t denote the s(U)-dimensional vector with typical entry f�(t)g[u]Dug( �Xt)

where u 2 U . Then P (x;��

t ;
�Xt) is the Taylor polynomial of g(x) expanded

around �Xt.

Lemma 1. Under Conditions 1, 2 and 4, we have

max
t2Tn

N�1
t f�(t)g�m

�����
X
Xi2t

�
AfYijP (Xi;�

�

t ;
�Xt)g

�
�i

����� P
�! 0 as n!1 :

Proof. First observe that a straightforward application of the mean value theo-

rem of di�erential calculus yields

N�1
t f�(t)g�m

X
Xi2t

�
AfYijP (Xi;�

�

t ;
�Xt)g

�
�i

= N�1
t f�(t)g�m

X
Xi2t

[AfYijg(Xi)g] �i

�N�1
t f�(t)g�m

X
Xi2t

frt(Xi; �Xt)B(YijZi)g�i; (3)

where Zi is a random variable that lies between P (Xi;�
�

t ;
�Xt) and g(Xi). Because

of Condition 4, the conditional mean of AfY jg(X)g given X = x is zero, and if

we denote its conditional moment generating function by M1(wjx), there exist

constants k1 > 0 and �1 > 0 such that M1(wjx) � 2 exp(k1w
2=2) for all x 2 C

and 0 � w � �1 (see the arguments at the beginning of Lemma 12.27 in Breiman

et al: (1984)). Recall that each set in Tn is a polyhedron in R
d having at mostM

faces. The fundamental combinatorial result of Vapnik and Chervonenkis (1971)

(Dudley (1978, Section 7)) implies that there exists a collection C of subsets of

the set fX1; X2; : : : ;Xng such that #(C) � (2n)M(d+2), and for any polyhedron

t with at most M faces, there is a set t� 2 C with the property that Xi 2 t if

and only if Xi 2 t�. By Condition 2 and the arguments used in handling the

\variance term" in the proof of Theorem 1 in Chaudhuri et al: (1994), it can be

shown that

max
t2Tn

f�(t)g�mN�1
t

�����
X
Xi2t

[AfYijg(Xi)g] �i

����� P
�! 0 as n!1 :

Further, using Conditions 1, 2 and 4,

max
t2Tn

N�1
t f�(t)g�m

�����
X
Xi2t

�
rt(Xi; �Xt)B(YijZi)

	
�i

�����
�

�
max
t2Tn

f�(t)g�m sup
x2t

jrt(x; �Xt)j

�
max
t2Tn

N�1
t

X
Xi2t

K(Yi)j�ij

P
�! 0 as n!1.
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This proves the lemma.

Lemma 2. Let 
(t) denote the smallest eigenvalue of the s(U)� s(U) matrix

� N�1
t

X
Xi2t

�
BfYijP (Xi;�

�

t ;
�Xt)g

�
�i�

T
i :

De�ne 
n = mint2Tn 
(t). Then, under Conditions 1 through 4, 
n remains

positive and bounded away from zero in probability as n!1.

Proof. The mean value theorem of di�erential calculus yields

N�1
t

X
Xi2t

�
BfYijP (Xi;�

�

t ;
�Xt)g

�
�i�

T
i

= N�1
t

X
Xi2t

[BfYijg(Xi)g �  (Xi)] �i�
T
i +N�1

t

X
Xi2t

 (Xi)�i�
T
i

�N�1
t

X
Xi2t

frt(Xi; �Xt)H(YijVi)g�i�
T
i ; (4)

where  (x) is the conditional mean of BfY jg(X)g given X = x, and Vi is a

random variable that falls between g(Xi) and P (Xi;�
�

t ;
�Xt). It follows from

Conditions 3 and 4 that if �n = mint2Tn �(t), where �(t) is the smallest eigenvalue

of the matrix �N�1
t

P
Xi2t

 (Xi)�i�
T
i , then �n remains positive and bounded

away from zero in probability as n ! 1. On the other hand, the �rst term on

the right of (4) can be handled in the same way as the �rst term on the right of

(3) in the proof of Lemma 1 to yield

max
t2Tn

N�1
t

�����
X
Xi2t

[BfYijg(Xi)g �  (Xi)] �i�
T
i

����� P
�! 0 as n!1 :

Finally, using Conditions 1, 2 and 4, and arguments similar to those employed

to treat the second term on the right of (3) in the proof of Lemma 1, we obtain

the following result for the third term on the right of (4):

max
t2Tn

N�1
t

�����
X
Xi2t

frt(Xi; �Xt)H(YijVi)g�i�
T
i

�����
�

�
max
t2Tn

sup
x2t

jrt(x; �Xt)j

�
max
t2Tn

N�1
t

X
Xi2t

K(Yi)j�i�
T
i j

P
�! 0 as n!1.

This completes the proof of the lemma.
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Proof of Theorem 1. First note that the assertion in the Theorem will follow

if we show that there exist choices for the maximum likelihood estimates �̂t's

such that

max
t2Tn

f�(t)g�mj�̂t � ��

t j
P
�! 0 as n!1 :

For t 2 Tn, let lt(�) denote the loglikelihood based on the observations (Yi;Xi)

such that Xi 2 t. That is, lt(�) =
P

Xi2t
log

�
ffYijP (Xi;�; �Xt)g

�
. Given � > 0,

de�ne Et(�) to be the event:

lt(�) is concave in a neighborhood of ��

t with radius f�(t)gm� (i.e.,

for � satisfying f�(t)g�mj����

t j � �), and it has a (possibly local)

maximum in the interior of this neighborhood.

The occurrence of this event implies that the maximum likelihood equation ob-

tained by di�erentiating lt(�) w.r.t. � will have a root �̂t such that f�(t)g
�mj�̂t�

��

t j < �. A Taylor expansion of lt(�) around ��

t yields

lt(�) = lt(�
�

t ) +
X
Xi2t

(����

t )
T�iAfYijP (Xi;�

�

t ;
�Xt)g

+ (1=2)
X
Xi2t

(����

t )
T�i�

T
i BfYijP (Xi;�

�

t ;
�Xt)g(����

t )

+ (1=6)
X
Xi2t

f(����

t )
T�ig

3H(YijWi); (5)

whereWi is a random variable lying between P (Xi;�
�

t ;
�Xt) and P (Xi;�; �Xt). For

the third term on the right of (5), note that the �i's are bounded vectors. Also,

for � in a su�ciently small neighborhood of ��

t , we have
P

Xi2t
jH(YijWi)j �P

Xi2t
K(Yi) in view of Condition 4. It follows from Lemmas 1 and 2 and the

arguments used in their proofs that there exists �3 > 0 such that whenever � � �3,

we must have Pr(\t2TnEt(�))! 1 as n!1. This proves the theorem.
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