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SMOOTHING NOISY DATA WITH COIFLETS

Anestis Antoniadis

Laboratoire de Statistique et Modélisation Stochastique

Abstract: This paper is concerned with an orthogonal wavelet series regression esti-
mator of an unknown smooth regression function observed with noise on a bounded
interval. The method is based on applying results of the recently developed theory
of wavelets and uses the specific asymptotic interpolating properties of the wavelet
approximation generated by a particular wavelet basis, Daubechie’s coiflets. Condi-
tions are given for the estimator to attain optimal convergence rates in the integrated
mean square sense as the sample size increases to infinity. Moreover, the estimator is
shown to be pointwise consistent and asymptotically normal. The numerical imple-
mentation of the estimation procedure relies on the discrete wavelet transform; and
the algorithm for smoothing a noisy sample of size n requires order O(n) operations.
The general theory is illustrated with simulated and real examples and a comparison
with other nonparametric smoothers is made.

Key words and phrases: Nonparametric regression, curve smoothing, wavelets, mul-
tiresolution analysis, splines.

1. Introduction

The purpose of this paper is to contribute to the methodology available for
estimating smooth regression functions from noisy data.
Let Yo, Ya,...,Yy_; denote data generated by the fixed-design regression
model
YVi=g(z)+e& O0<i<N-1, (1.1)

where the design points Zo, 21, ..., Zn—1 all belong to an interval [0,T) and are
assumed to be equally spaced. The random variables (Y;) are measurements of
the unknown regression function g : [0,T] — R, contaminated with errors ¢;
which are assumed to be i.i.d. random variables with mean 0 and variance o?.
There are two main approaches to estimate the regression function g: the
parametric approach which assumes that g follows a parametric (linear or non-
linear) model and the nonparametric approach which only assumes that g is
“smooth”. In recent years several methods of nonparametric curve fitting have
been proposed and investigated, the basic motivation for investigations of this
type being the doubt concerning the usual assumptions in the classical finite
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parameter theory. Recent references with extensive bibliographies and interesting
discussions on the applicability of such smoothing methods are Eubank (1988)
Miiller (1988) and Wahba (1990).

There are a number of good estimators for g in model (1.1). A popular
choice is series estimation obtained by regression on functions @, selected from
an orthogonal basis for

b

L?[0,T] = {f : /OT f(z)dz < oo}.

Assuming that g can be expanded as
9(z) = > arpr(),
k=1
one uses estimators of the form
a(z) = arge(z), 1.2
k=1

where m is some positive integer and &, are appropriate estimators of the ag.
The parameter m in (1.2) governs the number of terms and, hence, the smooth-
ness of the estimator. Problems of this nature have been studied by Rutkowski
(1982), Rafajlowicz (1987), Cox (1988) and Eubank, Hart and Speckman (1990)
to cite only a few. However such estimates have not been widely used in prac-
tice because their quality depends very much on the selected orthogonal system.
Our aim is to suggest a new orthogonal series regression estimator which turns
out to have not only theoretical, but also computational advantages over clas-
sical orthogonal series estimators, while its smoothing properties remain very
close to the smoothing properties of kernel or penalized least-squares smoothing
estimators.

Our estimator can be treated as a projection estimate. Roughly speaking,
using an increasing sequence of closed subspaces V,, of the parameter space pro-
vided by an analysis of compactly supported wavelets in L2[0, T, the orthogonal
projection of the unknown function g onto V,, is estimated. The appropriate
choice of the wavelet basis, the coiflets, allows us to consider the data as an
estimate of the projection of g on V,, from which the estimated projections on
lower resolution subspaces are easily obtained. By means of the properties of the
wavelet basis we obtain precise rates of convergence. Moreover, a key aspect of
our estimator is that its tuning parameter m ranges over a smaller set of values
than those of other orthogonal series estimators.

The paper is organized as follows. Section 2 reviews some background on
wavelet theory. The wavelet estimator for nonparametric regression is introduced
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in Section 3, and conditions are given for the estimator to attain optimal con-
vergence rates in the integrated mean square sense as the sample size increases
to infinity. Section 4 discusses the numerical implementation of the estimator
and contains some extensive simulations and a comparison of the estimator with
other smoothers. A discussion on possible extensions and some conclusions are
presented in Section 5. The proofs of the results are deferred to the end of the
paper.

2. A Short Review of Wavelets

In this section we sketch an account of some relevant properties of orthogonal
wavelets and multiresolution analysis, which will be used to derive our estimator.
The following succinct review suffices for the understanding of this paper. For
a more detailed exposition, examples and proofs the reader is referred to the
sizable wavelet literature, especially Daubechies (1992), Meyer (1990) and Chui
(1992).

Wavelets are functions generated from one basic function by dilatations and
translations. A particularly interesting development is the recent discovery of
orthonormal bases of wavelets. For particular functions ¥ € L*(R), the family

bin(z) = 2292z — k), j ke, (2.1)

constitutes an orthonormal basis of L?(R). A classical example of such a basis is
the Haar basis; smoother choices of compactly supported ¢ were constructed by
Daubechies (1988).

In all the interesting examples, orthonormal wavelet bases can be constructed
via a multiresolution analysis, a framework developed by Mallat (1989), in which
the wavelet coefficients < f,%;, > of a function f for a fixed j describe the
difference between two approximations of f, one with resolution 27, and one with
the coarser resolution 27~1.

A multiresolution analysis (or approximation) of L? consists of a nested se-
quence of closed subspaces V;,j € Z, of L*(R),

eCcVacVacVhevicVa ey
such that their intersection is trivial and union is dense in L*(R),
nV; ={0},  UV;=L*R),
they are dilates of one another,

flz) e V; & f(2z) € Vi1,
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and there exists a scaling function ¢ € V, whose integer translates span V;, the
approximation space with resolution 1,

Vo={f e ’®) : f(2) = 3 and( — k) )}

kez

One can always choose ¢ such that Jré(z)dz = 1. An orthonormal basis of
V;, the approximation space with resolution 277 is then given by the family
{qﬁ] v 1 k € Z}, where

¢j,k(x) = 2j/2¢(2j$ - k)

is a dilated and translated version of ¢. The orthogonal projection of a function
f € L*(R) into Vj is given by

Pof =< f.dix > din,

kez

and can be thought of as an approximation of f with resolution 2.
The multiresolution analysis is said to be r-regular if ¢ is in the Holder space
C"(R), and if both ¢ and its derivatives have a fast decay,

(32)°6(@) < Cull +]2)™™, ¥meN, 0Sasr

Note that, since ¢ € Vo C V; = Span{e, 4 : k € Z} the function ¢ necessarily
satisfies an equation of the type

x) = Z ckd(2z — k), (2.2)

for some coefficients cy.

The multiresolution analysis leads directly to an orthogonal decomposition of
L*(R). Defining W; as the orthogonal complement of V; in Vj4;, we get another
sequence {W; : j € Z} of closed mutually orthogonal subspaces of L2, such that
each W is a dilate of W), and their direct sum is L*(R).

The space W, is spanned by integer translates of a single function v which
can be defined by

Y(z) = Z(—l)kc_quS(Zx ~ k), (2.3)
kezZ
where the ¢, are given by Eq. (2.2). Note that we have assumed that the c; are
real. The whole analysis carries through, modulo some complex conjugates, for
complex c,. Using this decomposition of L?(R) and Eq. (2.3), it follows that the
family {9, : j,k € Z} given in Eq.(2.1) constitutes an orthonormal basis of
L*(R).
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If a multiresolution analysis is r-regular, the wavelet v is also C" and has
vanishing moments up to the order r (see e.g. Daubechies (1992), Corollary 5.2)

+o0
/ hp(z)dr =0 for 0<k<r (2.4)
The converse is generally false, and the number of vanishing moments is usually
larger than the regularity of the multiresolution analysis. An important conse-
quence of this property is that polynomials of degree less than or equal to r can
be expressed as linear combination of the translates of ¢, i.e. they belong to Vj.

Daubechies (1988) constructed a class {¢(¥) : N € N} of scaling functions,
such that each ¢V), in its orthogonalized version, has compact support and N
vanishing moments, and such that ¢) € C*V(R) where p ~ 0.1936. From the
definition of the coefficients ¢ in Eq.(2.2), it follows that only finitely many
¢, are nonzero, so that i reduces to a finite linear combination of compactly
supported and regular functions, and therefore has compact support and the
same regularity. Constructing ¢ from the c; has the advantage of allowing better
control of the supports of ¢ and ¥. If ¢, = 0 for k¥ < N;,k > N,, then the
support of ¢ is included in the interval [N;, Np]. Note however that the size
of the support increases linearly with the number of vanishing moments. An
advantage of having a high number of vanishing moments for 1 is that the fine
scale wavelet coefficients of a function are essentially zero where the function is
smooth. Since [ ¢(z)dz = 1, the same thing can never happen for the < f, ¢, x >,
but it is possible to construct compactly supported orthonormal wavelets such
that the scaling function ¢ has N — 1 vanishing moments, i.e.

/ $(z)de = 1,

R

/x%umm=a 1<k<N-1, (2.5)
R

/m%@ﬂm=& 0<k<N-1.
R

Such wavelets were constructed by Daubechies (1990) and were named coiflets
after Ronald Coifman who asked for their construction.

To end this preliminary section let us mention some approximation properties
of regular wavelets that will be used in the sequel of this paper (for a detailed

account see Meyer (1990)).
If f belongs to the Sobolev space H°(R) and the multiresolution analysis is

r-regular, then

If = Pifll < o(277™7) as j — oo (2.6)
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If f belongs to some Holder space C*(R) then

| < fibjpe > | < C27min(em+1/D) gorall >0, kez, (2.7)
where C' is a constant independent of j and k.

3. Nonparametric Curve Estimation

The setting considered here is the well known fixed design regression model
where the ordinates of the data points in the scatter plot are regarded as deter-
ministic values. These ordinate values are usually chosen by the experimenter,
as in a designed experiment. Since in the absence of other information it is in-
tuitively sensible to take such points equally spaced, this is frequently the case.
Moreover such an assumption is very often made in theoretical investigations of
nonparametric regression. See Wahba (1983), Rice (1984), Eubank (1988), and
Hall and Titterington (1992) for ample precedent.

The fixed design model is given by

where the Y; are noisy measurements of the “mean” or regression function g(t)
taken at equidistant nonrandom design points t; within [0,1] (without loss of
generality), and the ¢,’s are independent identically distributed random variables
with mean 0 and finite variance 0. In the above model the function g is viewed
as a member of a class F of possible regressions over [0,1]. The specification of
F is an approximation of the “real” g whose explicit form can never be known.
A smooth type condition of order m > 0 will be imposed on g. More precisely,
if m € N, we shall assume that F is the set of functions [m] times continuously
differentiable in R, and such that their [m|th derivatives satisfy the Lipschitz
condition of order m — [m]. If m € N, F will be the set of functions m — 1 times
continuously differentiable in R, and such that their (m — 1)th derivatives satisfy
a Lipschitz condition of order 1. A function g in F will be called m-smooth.
Considering the structure of the wavelet multiresolution, the design points #; will
be assumed to have the form ¢; = iA, with A=2""fori =0,..., N — 1, where
N = 2",

The asymptotic results will be obtained as n goes to infinity. Our attention
will be limited to wavelet estimates that are linear functions of the observations.
If the errors are normal and if g belongs to a Sobolev space, this is no restriction
if a minimax approach is adopted since in this case linear methods can achieve
minimax rates of convergence for squared error loss. However, when F is an infi-
nite dimensional class of partially smooth functions presenting some jumps (e.g.
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Besov class) it is generally true that linear methods do not suffice for obtain-
ing minimax mean square error and nonlinear methods are generally preferable.
Donoho and Johnstone (1992) developed nonlinear wavelet based estimation pro-
cedures for noisy functions with gaussian errors using decision-theoretic criteria
based on Stein’s unbiased estimate of risk. There are however some limitations
to the interesting results of Donoho and Johnstone in their paper on regression
estimation by wavelet shrinkage. First, they implicitly suppose, as in Mallat
(1989) or Cohen (1990), that it is the wavelet coefficients < g, ¢, , > that are
directly observed instead of the sampled values of the g. Secondly, the errors
are taken to be N(0,0?) and furthermore their minimax estimation procedure
requires the knowledge of the noise level o2, though it is claimed that this can
be relaxed.

All the one-dimensional wavelets we have reviewed so far lead to bases for
L?(R). In the application we have in mind we are interested in only part of the real
line, since the regression function will be observed within the bounded interval
[0,1]. One could, of course, decide to use standard wavelet bases to analyze g,
setting the data equal to zero outside the interval, but this introduces an artificial
jump at the edges, reflected in the wavelet coefficients. Another way to deal with
this problem is to “periodize” the data and use the usual wavelets to analyze
the “periodized” version. Unless the regression function is already periodic this
will again introduce jumps at the boundaries, which will be reflected by large
fine scale wavelet coefficients near the boundaries. For this reason we follow Hall
(1983) and use an integrated mean squared error (IMSE) of the form

R. = R@)= [ Bl - o0 Pultir (3.2)

to assess the performance of an estimator § of g on [0,1]. Here u > 0 de-
notes a continuously differentiable weight function on R, supported in an interval
[, 8] C (0,1) and included to reduce the impact of boundary effects. When
viewed through the asymptotic behavior of this criterion, wavelet estimators
merit serious consideration as competitors to second order kernel or cubic-spline
estimators. '

Hereafter, ¢ and v _denote the scaling function and the wavelet associated
with an r-regular multiresolution analysis of L?(R). We assume further that the
scaling function ¢ is a coiflet of order L with L > m + 1.

Since g in Eq.(3.1) does not necessarily belong to L*(R), we replace g by a
function f such that

f(t)=g(t) foralltin [0,1], (3.3)

with f in C™(R), compactly supported in an interval [—¢, 1 + €] for some small e.
This substitution will have little effect since the properties of the estimator are
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only evaluated on [0,1], and (3.1) for the observations coincides with
Yi=f(t:)+e, 0<i<N-1 (3.4)

It follows from Eq.(3.3) that f € H™(R), where H™(R) denotes the Sobolev
space of order m.
Since

L*(R) = Vo, @ (5. W),

the function f admits the following expansion in H™ (and in L?):

FOY =D < Fidnp > dni(®) + DD < frbie > 154(t),

keZ j>n ez

with
< frbug >= /R F)bup(t)dt and < f,bie >= /R F()0; o(t)dt.

One advantage of the nested structure of a multiresolution analysis is that it
leads to an efficient tree-structured algorithm for the decomposition of functions
in V,, for which the coefficients < f, ¢, > are given. However, when a function
is given in sampled form there is no general method for deriving the coefficients
< f,9nr >. A first step towards our curve estimation method is to try to
approximate the projection P, by some operator II, in terms of the sampled
values f (2%) and to derive then a reasonable estimator of the approximation
II,f. Such a device has also been used by Istas (1992) for the estimation of the
covariance function of a Gaussian process. Since the coiflets have L vanishing
moments, one can define such an estimator of II,, f by

2" -1

fult) =TLF@) = 27723 Yadur(t) = 2772 S Yadna(t). (3.5)
k=0

keZ
This choice can be justified by the following lemma.

Lemma 3.1. The set of non zero coefficients fi"} (k) = 2"/ < f ¢, > has
a cardinality equivalent to O(2"). Moreover, with L > [m] + 1, the following
uniform ((in 0 < k < 2" — 1) bound holds:

|F1 (k) - 9('2%>| < 27", (3.6)

where Cy is a constant depending only on the coiflet ¢.

By Lemma 3.1 one is therefore able to approximate the coefficients (f, ¢ 1)
with an error O(2-™/22-™™), It is therefore natural to approximate P, f by
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)0 = X £(5-)o@re - k) =272 3 1( X )s,u00).

keZ keZ

Using such an approximation and Lemma 3.1, we have:

k
1Pof = Taflloe < sup{2™™/2 30 1£ (k) — £( 55 ) 1m0}

keZ

< 0(2“"m)stlé£{z l¢(t —k)I} <O@2™™™). (3.7)

keZ

Observing that E(Y;) = g(QLn) =f (5’%) completely justifies our choice of the
estimator fn. '
The above calculations suggest that given our observed sampled values of
g, the observations are equivalent to the estimator fn. This estimator, while
presenting a very small bias, leads to a highly oscillatory solution that perfectly
fits the data. In order to smooth the data, we associate with each sample size
N = 2" a resolution j(n), and estimate the unknown function g by the orthog-
onal projection of f, onto Vi(n). The parameter j(n) governs the smoothness of
our estimator. For the purpose of this paper, it will be treated as being deter-
ministic rather than depending on the data. It is however important to choose it
judiciously because it controls the trade-off between fidelity to the data and the
smoothness of the resulting solution. Too small a value of j(n) leads to an over-
smoothed, biased solution. From a theoretical viewpoint, in the derivation of
asymptotic results, the smoothing parameter must tend to infinity at the correct
rate as the amount of information in the data grows to infinity. The following
theorem addresses the appropriate decay rate of the integrated mean squared

error defined in Eq.(3.2).

Theorem 3.1. Under the smoothness assumptions imposed on g and the weight
function u in this section, the IMSE satisfies

Ry < O(2-2mmin(imlin)y 4 0(3(m)=ny 4 O(2i(m)g=2(n=3(m)(a+1/2)),

where o denotes the Hélder exponent of the coiflet ¢.

In Ibragimov and Hasminskii (1982), Stone (1982) and Nussbaum (1985)
it has been proved that the best global convergence rate, in the IMSE sense,
of any nonparametric estimator of g in the class F of m-smooth function, that
we considered is O(n™%) with s = 5%1%]_-1 If one takes j(n) = n/(1 + 2[m]) =
log,(N)/(1 + 2[m]), it is clear that, with enough regularity of the coifiets, our

estimator attains the best possible convergence rate.
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We devote the rest of this section to a discussion of the consistency of our
estimator. Regarding the pointwise consistency of the coiflet estimator, we have:

Theorem 3.2. If the errorse;, 0 < i < N — 1, are independent identically
distributed with zero mean and finite variance o2, then, for any dyadic t €]0,1]
(@) gn(t) — g(t) almost surely.

o
2

(b) VN(4(t) — g(t)) converges in distribution to a zero mean Gaussian random

variable with variance o?w?(t) where

2" —1

wi(t) = lim = 3 @2 4(8).
k=0

n—oo 271

Let us remark that, using the multivariate version of the central limit theorem of
Jennrich (1969), it is straightforward to extend Theorem 3.2 to the multivariate
case.

4. Numerical Aspects, Simulations and Examples

This section is devoted to the numerical application of the estimation proce-
dure. For the convenience of the reader, a short description of the fast wavelet
transform is first presented, followed by the analysis of some simulated and some
real examples.

4.1. The discrete wavelet transform

The L*-setting for wavelet decompositions used in the previous sections was
appropriate for theoretical investigations. We review here a class of numerical
algorithms, originally developed by Beylkin, Coifman and Rokhlin (1991) that are
suitable for calculating our wavelet estimator. An excellent pedagogical review,
as well as some fortran procedures of the discrete wavelet transform (DWT) that
we are going to use, are given in Press (1991). Like the fast Fourier transform
(FFT), the discrete wavelet transform (DWT) is a fast, linear, operation that
operates on a data vector whose length is an integer power of two, transforming
it into a numerically different vector of the same length. Also like the FFT, the
wavelet transform is invertible and in fact orthogonal — the inverse transform,
when viewed as a big matrix, is simply the transpose of the transform.

We start with V,, = RN, N = 2". The multiresolution approximation defined
in Section 2, is now replaced by a finite chain

Vn:‘/()@WO@Wlea"'@Wyn—la
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where dim(V;) = dim(W,) = 27. A function f in V,
f= 5"n;
J
can be written as the sum of its components in V,,_;, W,,_;

F= i  bnorp + Y dr  n e
k k

The coefficients of either of these representations can be calculated from the other
by the formulas

sk ZZCj—sz?, (4.1)
J
dy~? =Z¢2k—j+13?, (4.2)
J
and
S? = Z[Cj._gksz_l + Czk_j.;.ld;:_l], (43)
k

where the recursion coefficients ¢, are the coefficients defining the original com-
pactly supported scaling function ¢ in Eq. (2.2).

Decomposition of a vector v € V,, into its subspace components and subse-
quent reconstruction are achieved by repeated application of (4.1), (4.2) and (4.3)
if all subscripts are taken modulo 2". What is interesting is that the functions ¢
or ¢ do not explicitly enter the picture. The algorithm continues to work on a
purely algebraic level.

Application of (4.1), (4.2) and (4.3) can be considered as matrix multipli-
cation which is useful in visualizing the effect on a vector. Each step of the
orthogonal wavelet decomposition of v € V,,, as well as any partial decomposi-
tion, corresponds to multiplying v by an orthogonal matrix W. Reconstruction
corresponds to multiplication by W7, and recovers the original v = WT(Wv).

The DWT consists of applying a wavelet coefficient matrix like W hierarchi-
cally, first to the full data vector of length N, then to the “smooth” vector of
length N/2, then to the “smooth-smooth” vector of length N/4, and so on until
only a trivial number of “smooth-...-smooth” components (usually 2) remain.
The procedure is sometimes called a pyramidal algorithm (see Mallat (1989)),
for obvious reasons. The output of the DWT consists of these remaining compo-
nents and all the “detail” components that were accumulated along the way. The
following configuration borrowed from Press (1991) should make the procedure
clear:
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Y1 \ 81 81 S, S, S,
Y2 d; S D, Sy S,
Y3 82 83 S S ﬂ/-» D,
Ya d, 84 D, Sy D,
Ys S3 S5 LV—» S3 peI_‘E})lte ﬁ; D—1
Yo ds 56 D; D, D,
Y7 S4 87 Sy ' Dy . Ds
Ys _I/_V_+ dy per&yte Sg 1_)3 l_)_:i Z_)f
Yo Ss d, d, d; d,
Y10 ds dy ds d, ds
Y11 S ds ds d3 ds
Y12 ds d4 d4 d4 d4
Y13 S7 ds ds ds ds
Y14 dr dg dg dg dg
Y15 Sg d; dr d, dy
Y16/ d d d d d
(4.4)

If the length of the data vector were a higher power of two, there would be more
stages of applying W (or any other wavelet coefficients) and permuting. The
endpoint will always be a vector with two S’s and a hierarchy of D’s, D’s, d’s,
etc. Notice that once d’s are generated, they simply propagate through to all
subsequent stages.

To invert the DWT, one simply reverses the procedure, starting with the
smallest level of the hierarchy and working in (4.4) from right to left. The inverse
matrix W7 is of course used instead of the matrix W. Applying the DWT to an
arbitrary vector is therefore an order O(N) numerical procedure.

This is the algorithm we used for the numerical applications to follow in the
next section. The wavelet transform W is based on coiflets of order L = 6. These
are defined through a set of 18 nonzero coefficients whose numerical values may
be found in Daubechies (1992, Table 8.1, p.261).

4.2. Simulated and real examples

To examine the performance of our coiflet estimator and to compare it with
penalized least-squares smoothers we designed a small simulation. We did not
compare our estimator with kernel smoothers, mainly because they are costly to
compute.

In this simulation all data is of the form Y; = g(z;) + ¢; with {¢;} i.i.d.
N(0,0?).
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The sample sizes selected were 128 (intermediate sample size) and 256 (large).
For each sample size we used two different functions. These are the following (see
Fig. 4.1)
g1(z) =z(z — 0.3)(z — 0.5)(z — 1) + 0.2,
g2(z) =sin(2nz) sin(27(z — 0.3)) sin(27(z — 0.5)).

1 T T [
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X X
Figure 4.1. The two functions used in the simulations.

The choice of the first function represents a polynomial and was used to see
how well our wavelet smoother does on such regular data (this function was used
by Hall and Koch (1992) in the context of image analysis). The second function
also used in the above mentioned paper represent a class of functions with slowly
changing curvature and some inflection points.

Each function g;, ¢ = 1,2, was discretized to 128 and 256 equally spaced
points in the interval [—0.2,1.2], in such a way that o = —0.2 and zy = 1.2. The
choice of the design interval [—-0.2, 1.2] was made to avoid boundary effects at the
points 0 and 1. The values of o were determined in the same way as in Breiman
and Peters (1992) who made an extensive simulation study designed to compare
some classical smoothers). For a given design set {z;}, and a given function g,
the empirical standard deviation sd(g) of the set {g(z;)} was computed and two
values of the signal/noise ratio sd(g)/o were taken, determined by

sd(f)/o =1, 2.0.

In terms of percent of variance explained by the function, these values correspond
to 50% and 80%.

To summarize the behavior of a smooth estimate, we used a partial mean
squared error criterion PMSE. That is, if §(z;) is the estimated function value
at z;, and M the number of points within the interval [0, 1], then

PMSE = — > (gle:) — (=)

miE[O,l]
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In each run all factors were held constant, except the {¢;} which were regenerated.
All the computations were performed on a Macintosh IIcx personal computer.
The penalized least-squares splines were computed with Hutchinson’s “general-
ized cross-validated” cubic spline smoother cubgcv.

The function g; was discretized to 128 points and 256 points. For each
setting, the discretized function was degraded by a Gaussian additive noise of
mean zero and standard deviation ¢ = 0.294 or ¢ = 0.294/2. The observations
are displayed in Fig. 4.2 by dots.

0.210
0.205_ . ’ - . . . . 0.22 —
0.200 ‘ y
'Jﬂ 0.20 -

0.195 — X
0.190 0.18 -
0.185 =

0.16 -
0.180 =
0.175 0.14

T T 1 T
00 02 0.4 06 08 1.0
(b)

(%)
0.21 — 02 -
0.20 - 0.20
0.19 -

0.18 —
0.18 =
0.17 - L 0.16

T T T T T T T T
00 02 0s X o6 0.8 1.0 00 0.2 os X 06 0.8 1.0
(c) (d)

Figure 4.2. The true function g;(z) (solid line) and the wavelet reconstruction (dashed
line) using coiflets of order 6. The dots represent the noisy data obtained from g;. The
graphs (a) and (b) correspond to a 256-point discretization with a signal/noise ratio
sd(g1)/o = 1 for (a) and sd(g1)/o = 2 for (b). The graphs (c) and (d) correspond to
128-point discretization with similar signal/noise ratio.

For the 128-discretization, the estimator was calculated at the 128 points by
means of the discrete wavelet transform, using the projection onto the space V3,
according to the conclusion of Theorem 3.1. Note that the choice of j(n) =3 is
automatic and by no means suggested by the data. The PMSE was calculated for
each estimation. For each estimate plotted as a dashed line in F 1g. 4.2, we found
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the following values of PMSE: 0.0439 for the case (a), 0.0487 for (b), 0.0581 for
(c) and 0.0914 for (d).
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0.0 0.2 0.4 0.6 0.8 1.0
Figure 4.3. The true function g;(z) (solid line), the wavelet reconstruction (gray line)
and the cross-validated smoothing spline (dashed line) for the data displayed in Fig. 4.2

(d).

To examine further the performance of our estimator, for the intermediate
sample size and for the larger value of o we calculated the corresponding smooth-
ing spline. The corresponding fit is displayed in Fig. 4.3. The smoothing spline
estimate, using an optimal smoothing parameter A = 0.00009 obtained by cross-
validation, presents a PMSE = 0.009. This shows that the coiflet estimator does
not perform as well (as it is expected from asymptotic theory) when the data is
very regular. However, for large sample sizes, the difference was less pronounced.

For the second curve g, the wavelet estimator performs much better than
the spline smoother. As before, the estimator was calculated at the 256 points
by means of the discrete wavelet transform, using the projection onto the space
V, this time. For each estimate plotted as a dashed line in Fig. 4.4, we found the
following values of PMSE: 0.0014 for the case (a), 0.0015 for (b), 0.0021 for (c)
and 0.0028 for (d). As one can see, the wavelet smoother is especially suitable
here.
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Figure 4.4. The true function go(z) (solid line) and the wavelet reconstruction (dashed

line) using coiflets of order 6. The dots represent the noisy data obtained from g,. The
graphs (a) and (b) correspond to a 256-point discretization with a signal /noise ratio
sd(g1)/o = 2 for (a) and sd(g;)/o = 1 for (b). The graphs (c) and (d) correspond to
128-point discretization with similar signal/noise ratios.

Fig. 4.5 illustrates a further comparison between the wavelet estimator and
penalized least-squares splines. A smoothing spline was fitted to the data corre-
sponding to case (d) in Fig. 4.4. The optimal data driven smoothing parameter
chosen by cross-validation was A = 0.089, leading to a fit with a corresponding
PMSE equal to 0.0739. As one can see, the spline approach suffers from a local
lack of fit, a relatively large bias occuring at peaks.

To end this section, we now consider a real example. The data set is discussed
in Example 3.4.5 of Eubank (1988, p.82) and represents the voltage drop in the
battery of a guided missile motor during flight. In this example the assumptions
of an equispaced fixed design model are reasonable. In order to use the wavelet
transform, the data was interpolated by a piecewise polynomial (see next section)
and the interpolated values on an equispaced grid of 128 points was fitted. The
resulting coiflet smoother obtained by projection onto the space V3 is displayed
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Figure 4.5. The true function g,(z) (solid line), the wavelet reconstruction (gray line)
and the cross-validated smoothing spline (dashed line) for the data displayed in Fig. 4.4

(b).

14 -
2 2
= ©
S >
~ ~ 12 -
e a.
© C
= S
(] [<B]
& %0 10 4
© =
> >
8 -
| E— T T T 1 T T T
0 5 10 15 20 0 5 10 15 20
Time (seconds) Time (seconds)
coiflet smoother spline smoother

Figure 4.6. Plot of the voltage drop data. The wavelet estimator is displayed at the left
figure, while the right graph displays the cubic spline fitted by cross-validation.



668 ANESTIS ANTONIADIS

at the left plot of Fig.4.6. For comparison purposes, the right plot displays the
cross-validatory spline smoother fitted to the original data with a cross-validation
parameter A = 0.094. Considering that the wavelet estimator chose a tunning
parameter from among only two different values (j(n) = 2 or 3), it gives an
outstanding result.

As an overall conclusion, the coiflet smoother gives good performance, does
not rely on a data driven method for choosing its smoothing parameters and is
very fast to compute.

5. Discussion and Possible Extensions

We have assumed that the data are equally spaced, an assumption that is very
often made in theoretical investigations of nonparametric regression. This made
possible the use of the discrete wavelet transform to obtain a nice computational
algorithm for ¢ and to derive its asymptotic properties. However, an analysis for
the more general situation would have to take account of unequally spaced data
and of the boundaries and would proceed along different lines.

A possible approach for unequally spaced data is to first interpolate the data
vector y by a piecewise polynomial. For instance, suppose that the design points
To,T1,...,ZNn-1 form a regular design sequence in the sense that

 Juax |z —z;_1 |= O(NY).
Following De Boor (1978), let px+1.:(z) be the polynomial of order k+ 1 which in-
terpolates the noisy function at the points Tivj, J=0,....k,andlet [z;,...,z,0,]y
be its leading coefficient (the kth divided difference). Using the properties of poly-
nomial interpolation it is not difficult to show that for an m-smooth function g
and for each z € [z;, z,4,],

E(l 9(z) = p(x) |) < O(] Zpmjz1 — o |™),
* where the interpolating polynomial p is defined by
B(@) = pim)i(2) = (2 = 2.) - (& = Tigm)) [Ti, - - -, Tit gy

for z € [z;,2i41]. Using the upper bound above, one obtains a uniform upper
bound on [0, 1]:
E(l9(z) - p(z) [) < O(N™™).

It then seems natural to estimate the coefficients g, , = 2" [ g(z)$(2"z — k)dz
at resolution n by

np = 2" /ﬁ(x)¢(2"$ — k)dz.
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We conjecture that our results extend to the estimator based on §, ; and should
be comparable to the equispaced case. However, a deeper analysis of this esti-
mator and several obvious modifications of it go beyond the intent of this paper,
but provide interesting topics for future research.

Concerning the boundary effects, one could use, instead of wavelets defined
on the whole real line or their periodized version, wavelet bases on the unit in-
terval with preassigned boundary conditions. Such bases have been constructed
recently (see Auscher (1992), Meyer (1991) and Cohen, Daubechies and Vial
(1992)) and provide a wavelet analysis for the Sobolev spaces H™([0,1]) or sub-
spaces of H™([0,1]) whose members satisfy specific boundary conditions. How-
ever, for the moment, these constructions are too cumbersome to be efficiently
used for numerical purposes.

To conclude, let us say that while DWT smoothers lack the flexibility of
more sophisticated techniques such as penalized least-squares smoothing, they
seem to give satisfactory results in many cases, are capable of attaining mean
squared error rates that are optimal, get high marks for their implementational
simplicity and do not rely on choosing bandwidths or weights in loss functions.
Smoothers with such qualities are probably the kind of estimators to be used
in more complicated situations, for example, when fitting generalized additive
models or using wavelet estimators to test the adequacy of linear models.

6. Proofs of the Results

In this section the proofs are given of the lemmas and theorems stated in
Section 3. The notation and assumptions in Section 2 are in force throughout.

Proof of Lemma 3.1. The first assertion follows from the fact that both ¢ and
f are compactly supported. For the second assertion, one has:

£ (k) - g(gkg) =ft (k) - f<2ﬁn)
=/Rznf(t)¢(2"t-k)df“f(‘2@ﬁ>

v+ k k
= [(G(55) - 1Go))otwrae

since [; ¢(v)dv = 1.
A Taylor expansion at the point k/2™ up to the order [m], and the vanishing
moments ¢ lead to:
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Now,
Pt v fml ()il D ()
| S ewlz) e =
[m] — m]—1 k v k
(50" [ S 0 (s o)~ ()
since [ (I;f)jd = ﬁ

It follows, that

F ) - (o)

[m) 1-— k
= [ () "ew) | (—(m%?[f“m (55 +95) = £ () |dad
— o-nlm] /abv[m]¢(v) [ %F—n]_m%T!l{f( ( k ro ) - f(["‘“(%)}dxdv,
since the support of ¢ is within [a, b].
To end the proof, note that

1(1 = g)lml-1 k k al 1bl\ meim
[ O [ (4w ) — 1 () 1 (R

by the Holder continuity of f.

Proof of Theorem 3.1. Since the weight function u has support within the
interval [0,1] and g coincides with f on [0, 1], the integrated squared error R,
can be written as

R, = B(@) = B( [ [a) - a)Pu(®)dt) = B( [ [662) - F0)ult)a).

Applying the usual variance-bias decomposition to the integrated mean squared
error yields

R(g) = B( / 9(t) = B(G@)Put)dt) + ( / (F(t) = E(3(1))*u(t)dt)
=V, + B2,

We shall concentrate first on bounding the squared bias B? of g.
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Recall from G. Beylkin and al. (1991) that given a function h in V, of the
form

2" -1
h(z) = Y sidnk(t)
k=0
it can be expressed in the form
on=f(n)) _y o(n=j(n)) _
he)= Y s imat)+ D AV ajmi(t),
k=0 k=0
where the si(”) denote the coefficients of the projection of h onto Vj(,). It follows
that
o(n—=i(n))_4
i) = (P, /)= > 8" jmult):
k=0

Note also that since
f=Puf+{I-P,)f=l,f+P, f-If+{T—-Py,)f
:PVA an+1—-[nf'—P\/j(n)an+(Pan—an)+(I_PVn)f>

J(n)

we have
2("-1("))_1 n 2("—5)_1
ft) = Z Si(n)fbn—j(n),k(t) + Z Z ditbn—ek(t)
k=0 £=j(n) k=0

+ (Pv,f =T f) () + (I = Pv,) f) (2).

Using the above expressions, for any t € [0, 1], the bias term can be decomposed

as follows
Elg(t)] — f(t) = Bi(t) + Ba(t) + Bs(t),

where

Bi(t) = i Z_ ditn_ek(t), (6.1)

£=j(n) k=0

By(t) = (Py, f = . f) (1), (6.2)

and
By(t) = ((I-Py,)f)®). (6.3)

The first two terms are due to the fact that
E[(Py,,8)(®)] # (Pv,., ))(2),

while the third term Bs(t) is the usual term that appears in the bias whenever
a projection method is used, and represents the error of approximating f by its
projection on V,,.
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Using the bound given by Eq. (2.6) we obtain

[ B0t = | = Pu sy < o (27 mntnio) (64

as n — o0.
The term B;(t) can be written as

Bi(t) = (nf) (8) = (Pv.f) (8) + (Py,, (Prf = L F)) (&) + ((Py, — Py, ) f)(2).
By Eq. (3.7) we have
M f = Py, flle < O (2727), (6.5)
and since Py, is an orthogonal projector the same bound holds for
1Py, (nf = Py, f) || < O(272nmin(rlmd), (6.6)

It remains to control the remaining term

((PVn (n))f (t Z Z<f7¢3k>¢]k()

ji>j(n) keZ

of Bi(t). Considering precisely the supports of f, u and Y;x and using the
assumed regularity of f and the uniform upper bound for < f, Yk > given by
Eq. (2.7), we have

LR =Pt s S X 1< fu sl (6.7)

j2ji(n) —b<k<2i—qa
< C Z 2—2jmin(r,[m]) < 0(2—2j(n)min(r,[m])).

Jjzi(n)
Combining (6.4), (6.5), (6.6) and (6.7), we obtain
B: < O(27 %M min(nlml)y (6.8)
Now consider the variance term V,. We have
V= B( [16) - B@)Pu(t)d)
= B( [ (P F)(0) = (Puy, L) O u(t)it)
= B( [ 1P (f - <an>><t>]2u<t>dt).

Using the Schwarz inequality, we obtain
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v, < CE( /R {Puyy [T 27 (Vi - f(%))%,k] ()Y u(t)dt)
2" -1 k

=57 T 5 (- 1(5) 1< bmates 1)

a<{<29(M) b k=0
2" -1

=027 Y D < Bitnye Gnp > (6.9)

a<eL2i (M 4b k=0
Noting that
< @jn) s Pk > = < @, Prcj(n) k—2n-1(m1¢ >
and using the inequality (6.5.3, p.204) in Daubechies (1992), we have

|< Gi(n)er Bnk >°= 2’(")_n¢2(m - 5) + 0272 mim)er1/2)),

where « is the exponent of the Hélder continuous wavelet ¢, and the constant in

O does not depend on n, j(n) or k. Hence Eq. (6.9) becomes

2" —1 k

asC27%® 3 3 2j(n)-n¢2(2n-j(n) - E)

a<£<L23(n) 4b k=0

+ O(27(M=2n=i(m)(e+1/2)) (6.10)

Now,
2" -1
k

2 Y Y ot (6.11)

a<£L2i(M) b k=0

as n — oo, and therefore Inequality (6.10) can be rewritten as
V, < O(2(M=") 4 O(2i(mM=2n=s(m)(e+1/2) (6.12)
which completes the proof.

The lemma to follow, a variant of which may also be found in Genon-Catalot
et al. (1990) shows that expression (6.11) used in the proof of the Theorem 3.1
holds.

Lemma 6.1. With the notation of this paper, if w is in C'[0,1], then

= k k 1
27" Z Z ¢2<2n_j(n) - £>w<57) —-4/0 w(s)ds,

anSZj(")-}-b k=0

as n — O0.

Proof. Let g, = 21'(")(2% — 1), re = £/27™ and set Ty ¢ = [qr, Grs1] X [Te, Tet1]-
The rectangles T} , have an area equal to 27" and cover the domain
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b U
— 2 i
Rj(n) - {(u, 3) €R 2](71) Ssss1+ 2i(n)’ 0< 27 (n)

Note that, by the change of variables t = s + u/2/(™), v = u, and since ¢ is
normalized in L?(R), we have

1
I = / *(uyw (s +u/2™ ) duds = / w(s)ds = I.
J(n) 0

Letting S,(w) denote the expression of the lemma, we have
Sn(’l.U) = Sl +52 +I,
where

S = E/T B (ae)w (50 + 277 g) — 6 (qhw (s +277g) | dgds

and
Sy = —/ ¢2(q)w(s + 2_j(”)q) dgds.
5(n) \Nk, 2Tk e

It is easy to see that S, is bounded by O(27("~"). Moreover, a Taylor expansion
up to the order 1 of

¢*(gr)w (Se +277™ ) ¢*(q)w (3 + Tj(n)f])
yields the upper bound
1S, = I| < 277 C Z(Qk-z—l — )" (ax)
k

+ D27 S (g — a) (6%(ak) + (67)(a1)) + 0(1),

k

where C and D are generic constants. The desired result follows now from the
fact that both ¢, and (¢,)" are integrable.

The study of the asymptotic distribution is facilitated with the following
notation.

Let z = (z;) and y = (y,) be two sequences of real numbers, and let [z, y], =
n~t 3 z;y;. If (z,y), converges to a real number its limit [z, y] will be called
the tail product of z and y. Let h and w be two sequence valued functions on a
compact subset T of a Euclidian space. If [h(a), w(8)]. converges to [h(a), w(B)]
uniformly for all @ and § in T, |h,w] will denote the function on T x T" which
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takes (a, 8) into [h(a),w(B)]. This function will be called the tail cross product
of h and w. Note that if in addition the components of h and w are continuous
then [h, w], as a uniform limit of continuous functions, is also continuous.

Proof of Theorem 3.2. Recall that g, = Py, , fn and N = 2". We first study

the convergence of the sequence fn.

By definition,
2m—1

~E(f) =277 e¢nilt).
k=0

Now, for any t € [0,1] and any n > 0, we have

2" -1 27 -1 2" -1

[P, (£); B, ()] Z ¢ () = E ¢*(2"t — k) < Z 1+ lznt k)2

The last inequality follows by the assumed r-regularity of the multiresolution
analysis. Setting a = 2"t in the previous expression yields

[énk(t) <i)nlc <Z(1+Ia’_k|) < sup 2(1+‘a’ _kl)
keZ lrez

(1+£)7% < 0.

£=0

Moreover, for any dyadic t € [0,1], the series 2. o' ¢?(2"t — k) converges. It
follows that the tail cross product of the sequence valued function ¢ with itself
exist. We shall denote this limit by [¢(t), ¢(¢)]. By a strong law of large numbers
(see e.g. Theorem 4 of Jennrich (1969, p.636)), it follows that f,(t) — E(f,)(t)
almost surely, for all ¢ € [0,1]. Moreover, by the form of the central limit theorem
given in Theorem 5 of Jennrich (1969), we also know that, for any dyadic ¢ in [0, 1],
the sequence of random variables VN (7, (t) — E(f,)(t)) converges in distribution
to a centered Gaussian variable with variance o?w?(t) where w?(t) = [¢(t), #(t)].
Since j(n) goes to infinity as n — oo and since, by Theorem 4.1 of Walter
(1992, p.337) the pointwise error of approximation of any function in H™(R)
by its orthogonal projection on Vj(,) is uniformly bounded in the sup-norm by
O(277(M(m=1/2)) "for every t in |0, 1], the sequence g,(t) inherits the asymptotic
properties of f,(t). Therefore, §,(t) — E(§g,)(t) almost surely as n — oo and
gn(t) is asymptotically normal, with the same asymptotic distribution as that of
falt).

To end the proof it suffices now to control the local bias of the estimator.
Note that, for any ¢ €]0, 1],

|E{3. (1)} — 9(t)] = [(Pv,,, [T f)(t) — (D)
< Py I )(#) = (P, P F) ()] + (T = Py, ) ()]
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With similar arguments as for the proof of Theorem 3.1, it is easy to see that
the first term of the right-hand side is uniformly bounded by an upper bound of
order O(277(m)min([m].r))  The second term is equal to

((I =Py, ))t)= E Z < [y > ¥, (t).

i2j(n) k€Z

The m-smoothness of f, together with the regularity of 1, implies that the
uniform upper bound for < f, ¢, > given by Eq.(2.7) holds. Moreover, since
v is also compactly supported, the number of nonzero ¢; x(t)’s for t €]0,1[ is of
the order O(27). Thus,

| S < fie> b€ Y 2 mmniminny

j2j(n) kEZ i23j(n)
— O(z—j(n) min([m],'r)—l/2),

which concludes the proof.

Acknowledgments

We wish to thank I. Daubechies, P. Auscher and A. Cohen for providing us
with a preprint of their paper prior to publication. We also owe thanks to the
referee whose valuable comments and recommendations helped to improve this
article. Special thanks are due to W. Press for providing the scientific community
the fast wavelet transform subroutines.

References

Auscher, P. (1992). Wavelets with boundary conditions on the interval. In Wavelets: A tutorial
in theory and applications (Edited by C. K. Chui), 217-236.

Beylkin, G., Coifman, R. and Rokhlin, V. (1991). Fast wavelet transforms and numerical
algorithms. Comm. Pure Appl. Math. 44, 141-183.

Breiman, L. and Peters, S. (1992). Comparing automatic smoothers. Internat. Statist. Rev.
60, 271-290.

Chui, C. K. (1992). An Introduction to Wavelets. Academic Press, New York.

Cohen, A. (1990). Ondelettes, Analyses Multirésolutions et Traitement Numérigue du Signal.
Thesis, Université Paris IX.

Cohen, A. and Daubechies, I. (1991). Orthonormal bases of compactly supported wavelets.
Better frequency resolution. AT & T Bell Laboratories, preprint.

Cohen, A., Daubechies, I. and Vial, P. (1992). Wavelets and fast wavelet transform on the
interval. AT & T Bell Laboratories, preprint.

Cox, D. D. (1988). Approximation of least squares regression on nested subspaces. Ann. Statist.
16, 713-732.

Daubechies, 1. (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl.
Math. 41, 909-996.

Daubechies, I. (1990). Orthonormal bases of compactly supported wavelets II. Variation on a
theme. Preprint, submitted to SIAM Journal Math. Anal.



SMOOTHING NOISY DATA WITH COIFLETS 677

Daubechies, 1. (1992). Ten Lectures on Wavelets. CBMS-NSF regional conferences series in
applied mathematics, STAM, Philadelphia, Pennsylvania.

De Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York.

Donoho, D. L. and Johnstone, I. M. (1992). Minimax estimation via Wavelet Shrinkage. Tech-
nical Report, Stanford University.

Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression. Marcel Dekker, New
York.

Eubank, R. L., Hart, J. D. and Speckman, P. (1990). Trigonometric series regression estimators
with an application to partially linear models. J. Multivariate Anal. 32, 70-83.

Genon-Catalot, Laredo C. and Picard, D. (1990). Estimation non paramétrique de la variance
d’une diffusion par méthodes d’ondelettes. C. R. Acad. Sci. Paris 311, 379-382.

Hall, P. (1983). Measuring the efficiency of trigonometric series estimates of a demnsity. J.
Multivariate Anal. 13, 234-256.

Hall, P. and Koch, I. (1992). On the feasibility of cross-validation in image analysis. SIAM J.
Appl. Math. 52, 292-313.

Hall, P. and Titterington, D. M. (1992). Edge-preserving and peak-preserving smoothing. Tech-
nometrics 34, 429-440.

Ibragimov, I. A. and Khas’'minskii R. Z. (1982). Bounds for the risks of non-parametric regres-
sion estimates. Theory Probab. Appl. 27, 84-99.

Istas, J. (1992). Statistique des Processus Gaussiens Stationnaires Continus par Méthodes
D’ondelettes. Thesis, Université Paris VII, Paris.

Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. Ann.
Math. Statist. 40, 633-643.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet represen-
tation. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 674-693.

Meyer, Y. (1990). Ondelettes et Opérateurs. Hermann, Paris.

Meyer, Y. (1991). Ondelettes sur I'intervalle. Rev. Math. Iberoamer. 7, 115-133.

Miiller, H. G. (1988). Nonparametric regression analysis of longitudinal data. Lecture Notes in
Statist. 46, Springer-Verlag, Berlin.

Nussbaum, M. (1985). Spline smoothing in regression models and asymptotic efficiency in L.
Ann. Statist. 13, 984-997.

Press, H. W. (1991). Wavelet transforms. Technical Report 3184, Harvard-Smithsonian center
for Astrophysics, Cambridge.

Rafajlowicz, E. (1987). Nonparametric orthogonal series estimators of regression: A class at-
taining the optimal convergence rate in Lo. Statist. Probab. Lett. 5, 219-224.

Rutkowski, L. (1982). On system identification by nonparametric function fitting. IEEE Trans.
Automat. Control 27, 225-227.

Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12, 1215-1230.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann.
Statist. 10, 1040-1053.

Wahba, G. (1983). Bayesian ‘confidence intervals’ for the cross-validated smoothing spline. J.
Roy. Statist. Soc. Ser. B 45, 133-150.

Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF regional conferences
series in applied mathematics, SIAM, Philadelphia, Pennsylvania.

Walter, G. G. (1992). Approximation of the delta function by wavelets. J. Approz. Theory 71,
329-343.



678 ANESTIS ANTONIADIS

Laboratoire de Statistique et Modélisation Stochastique, IMAG-LMC, B.P. 53 X, 38042 Greno-
ble Cedex, France.

(Received January 1993; accepted December 1993)





