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Abstract: Panel count data occur in many fields, including clinical, demographic,

and industrial studies, and an extensive body of literature has been established for

their regression analysis. However, most existing methods apply only to situations

in which both the covariates and their effects are constant or one of them may be

time dependent. This study considers the situation in which both the covariates

and their effects may be time dependent, and we develop an estimating equation-

based approach to estimate these time-varying effects. The proposed method uses

the B-splines to approximate the time-dependent coefficients, and we establish the

asymptotic properties of the proposed estimators. To assess the finite-sample per-

formance of the proposed estimators, we conduct an extensive simulation study,

showing that the proposed method works well in practical situations. Lastly, we

demonstrate our method by applying it to data from the China Health and Nutrition

Survey.

Key words and phrases: B-spline, panel count data, proportional mean model, time-

dependent effect.

1. Introduction

Event-history studies that examine the times to recurrent event occurrences

appear in many fields, including clinical, demographic, and industrial studies.

Such studies give rise to two types of data namely recurrent event data and

panel count data (Cook and Lawless (2007); Sun and Zhao (2013)). The former

means that all study subjects can be observed or followed continuously and, thus,

one has complete data on the occurrence times of the event of interest. In con-

trast, the latter means that study subjects can be observed only at discrete time

points, yielding only incomplete information on the occurrence times. Despite

the missing information, panel count data frequently arise in practice, because

subjects usually cannot be followed continuously. Thus, it is necessary to develop
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statistical methods for such data.

An example of panel count data that motivated this study is given by the

China Health and Nutrition Survey (CHNS) (Tian (2018); Oliveira (2016)). The

surveys were conducted every two to four years between 1989 and 2015 to obtain

the fertility histories of the female participants, as well as their demographic, ed-

ucation, income, and health information. Owing to the intermittent survey times,

the exact dates of the pregnancies or childbirths may not be available, leading to

typical panel count data on the pregnancy number of the study subjects. Among

others, one objective of the CHNS is to determine the relationship between the

pregnancy process and various factors or covariates, including the income, loca-

tion, education level, and health status of the female subject. It is apparent that

some of these factors may change over time, as might their effects on the preg-

nancy process. For instance, the fertility difference between women with a good

and a poor education may be more considerable for older women, because the

education effect could accumulate over time. Furthermore, the health condition

could also have a larger impact on older women, because they tend to be less

resilient to diseases. As pointed out by many authors (Tian, Zucker and Wei

(2005); Yu and Lin (2010); Perperoglou (2014); Lin, Fei and Li (2016)), an anal-

ysis of such data that ignores the time-dependent nature of the covariates and/or

their effects would be less efficient. In other words, we need statistical methods

that can accommodate both time-dependent covariates and time-varying effects.

A large body of literature has been established for regression analyses of

panel count data with time-independent covariates and covariate effects. Other

methods have been proposed for cases in which either the covariates are time-

dependent or their effects vary over time. For example, Li, Sun and Sun (2010)

considered a semi-parametric transformation mean model for panel count data

with time-dependent covariates. Zhao, Tu and Yu (2018) and Wang and Yu

(2021) considered time-varying coefficients and proposed some pseudo-likelihood

methods for estimation. The former used a B-spline function approximation, and

the latter employed a local polynomial approximation. However, both methods

can apply only to constant covariate situations. To the best of our knowledge,

there is no established method for regression analyses of panel count data that

allows both time-dependent covariates and time-varying effects. As such, we

propose a relevant estimating equation-based method.

The remainder of this paper is organized as follows. After introducing the

notation and assumptions that we use throughout the paper, we present an es-

timating equation procedure in Section 2 for estimating covariate effects. In

the proposed method, the conditional mean model is employed for the underly-
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ing recurrent event process, and B-spline functions are used to approximate the

time-varying covariate effects. The asymptotic properties of the proposed esti-

mators, namely, the consistency, convergence rate, and asymptotic distribution,

are established in Section 3. Section 4 presents the results obtained from an ex-

tensive simulation study conducted to assess the finite-sample performance of the

proposed method, showing that it works well for practical situations. In Section

5, we apply the proposed approach to the CHNS, and Section 6 concludes the

paper.

2. Estimation of Time-varying Covariate Effects

Consider a recurrent event study consisting of n independent subjects, and let

Ni(t) denote the underlying recurrent event process representing the total number

of the occurrences of the recurrent event of interest up to time t for subject i.

Assume that Ni(t) is potentially observed only at 0 < ti,1 < · · · < ti,mi
< τ and

define H∗i (t) =
∑mi

j=1 I(ti,j ≤ t), the underlying observation process. In practice,

for each subject, there usually exists a following or stopping time Ci, and it

follows that the realized censored observation process on the ith subject is given

by Hi(t) = H∗i {min(Ci, t)}. In other words, one observes panel count data such

that Ni(t) is observed only at the time points where Hi(t) jumps, for i = 1, . . . , n.

For each subject, suppose that there exist two vectors of covariates, denoted

by Wi(t) = (Wi1(t), . . . ,Wip1(t))
T and Zi(t) = (Zi1(t), . . . , Zip2(t))

T , that are

possibly time dependent. The former Wi(t) represents the covariates assumed

to have constant effects, and Zi(t) denotes the covariates assumed to have time-

varying effects. To describe the covariate effects on Ni(t), we assume that, given

Wi(t) and Zi(t), the recurrent event process Ni(t) follows the conditional multi-

plicative mean model

E {Ni(t)|Wi(t),Zi(t)} = Λ(t) exp
{
γTWi(t) + βT (t)Zi(t)

}
, (2.1)

where, Λ(t) denotes an unknown baseline mean function, and γ = (γ1, . . . , γp1)
T

and β(t) = (β1(t), . . . , βp2(t))
T represent the constant and time-dependent coef-

ficients, respectively. Futhermore, we assume that, given Wi(t) and Zi(t), Ni(t)

and Hi(t) are conditionally independent, and some comments on this are given

in Section 6.

Let Mj denote the parameter space for βj , for j = 1, . . . , p2. Because of

the infinite dimension of each Mj , the estimation of β(t) is usually infeasible.

To deal with this, we propose employing the sieve approach to approximate β(t)

by a linear combination of a finite number of basis functions, such as B-splines
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(He et al. (2017)). More specifically, define a sequence of knots T = {tj}mn+2l
j=1 ,

with 0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ ,

that partition [0, τ ] into Kn + 1 subintervals [tl+j , tl+j+1], for j = 0, . . . ,Kn,

where Kn = O (nν) and max0<j<mn
|tj+1 − tj | = O (n−ν) for ν ∈ (0, 0.5). For

simplicity, we assume the same knots for all βj(t) for j = 1, . . . , p2. Then, we can

construct a sieve space to approximate Mj as

Mnj =

{
βnj(t) = αj0 +

qn∑
k=1

αjkBk(t) = BT
n (t)αj , ‖αj‖∞ < Mn

}
,

which is the class of B-splines of order l with the knots sequence T . In the

above, Mn is some large number with Mn →∞ as n→∞, qn = Kn + l, Bn(t) =

{1, B1(t), . . . , Bk(t)}T is a class of B-spline bases, andαnj =(αnj0, αnj1, . . . , αnjqn).

Because the dimension ofMnj , that is, qn, is finite, we can now estimate the pa-

rameters in a much easier way by adopting existing methods for panel count data

with a finite number of parameters.

Under the sieve space, by replacing β(t) with βn(t), model (2.1) can be

rewritten as

E{Ni(t)|Wi(t),Zi(t)} = Λ0(t) exp

γTWi(t) +

p2∑
j=1

(
BT
n (t)αnj

)
Zij(t)


= Λ0(t) exp

{
γTWi(t) +αTn Z̃i(t)

}
= Λ0(t) exp

{
θTnXi(t)

}
. (2.2)

Here, Z̃i(t) =
(
Zi1(t)BT

n (t), Zi2(t)BT
n (t), . . . , Zip2(t)B

T
n (t)

)T
, αn = (αTn1,α

T
n1,

. . . ,αTnp2)
T , Xi(t) = (WT

i (t), Z̃Ti (t))T , and θn = (γ,αn)T . Note that model (2.2)

involves only time-independent covariate effects, and many existing methods can

be used to estimate θn without much modification. More specifically, motivated

by Hu, Sun and Wei (2003), we propose using the estimating equation

1

n

n∑
i=1

∫ τ

0
Yi(t)Ni(t)

{
Xi(t)− X̄(t;θn)

}
dHi(t) = 0 . (2.3)

In the above, Yi(t) = I(Ci ≥ t) is the at-risk indicator and X̄(t;θn) = S1(t;θn)/

S0(t;θn), where

Su(t;θ) =
1

n

n∑
i=1

Yi(t)X
⊗u
i (t) exp

(
θTXi(t)

)
dHi(t) ,
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u = 0, 1, 2 for 0 ≤ t ≤ τ , with a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT , for some vector

a.

Let θ̂n denote the estimator of θn given by the solution to equation (2.3).

Then, one can estimate βj(t) using β̂j(t) = BT
n (t)α̂nj . In practice, we may also

be interested in estimating the baseline mean function Λ(t), for which a natural

estimator is given by the Breslow-type estimator

Λ̂(t, θ̂n) =

n∑
i=1

Yi(u)Ni(u)dHi(u)

nS0(u; θ̂n)
.

3. Asymptotic Properties

Now, we establish the asymptotic properties of the estimators proposed in

the previous section, including the consistency, convergence rate, and asymptotic

normality. Let ϑ = (γ,β,Λ), ϑ̂n = (γ̂, β̂n, Λ̂), and ϑ0 = (γ0,β0,Λ0) denote the

true value of ϑ. In addition for convenience, let V(t) =
(
WT (t),ZT (t)

)T
, the

population version of the combined covariates, and define the parameter space

Θ = A×M×F , where A, M =
∏p2
j=1Mj , and F denote the parameter spaces

of γ, β, and Λ, respectively. Let Bd denote the collection of Borel sets in Rd

and L2 [0, τ ] the collection of Borel sets in L2 on [0, τ ], and define B1 [0, τ ] ={
B ∩ [0, τ ] : B ∈ B1

}
and Ld2 [0, τ ] = L2 [0, τ ]× · · · × L2 [0, τ ]︸ ︷︷ ︸

d

.

In addition, define the measure

υ1 (B1 ×B2 ×B3) =

∫
B3×B2

∫
B1

dE [Y (t)H(t)] dµZ×W

for B1 ∈ B1 [0, τ ], B2 ∈ Lp22 [0, τ ], and B3 ∈ Lp12 [0, τ ], where µZ×W denotes the

joint probability measure for W(t) and Z(t). Alternatively, from the definition

of V, we have µV = µZ×W and can rewrite υ1 (B1 ×B2 ×B3) as

υ1 (B1 ×B4) =

∫
B4

∫
B1

dE [Y (t)H(t)] dµV ,

for B1 ∈ B1 [0, τ ] and B4 ∈ Lp2 [0, τ ], and µ1 (B) = υ1 (B × Lp2 [0, τ ]). Define the

L2 metric d (ϑ1,ϑ2) on Θ as

d (ϑ1,ϑ2)2 = ‖γ1 − γ2‖22 +

∫
‖β1(U)− β2(U)‖22 dµ1(U)

+

∫
(Λ1(U)− Λ2(U))2 dµ1(U).
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To establish the asymptotic results, we need the following regularity condi-

tions:

(C1) The observation process has the rate function E [dH∗(t)|W(t),Z(t), C] =

ω(t)dt, where ω(t) is a bounded, nonnegative, and continuous function on

[0, τ ]. There exists a positive integer D0 such that Pr (H∗ (τ) < D0) = 1.

That is, the total observation number is finite. Moreover, the support of

ω(t) is [τ0, τ ], with τ0 > 0 and Λ0 (τ0) > 0, for some constant τ0.

(C2) The measure µ1 × µV is absolutely continuous with respect to υ1 and

µ1 ({τ}) > 0.

(C3) The parameter space of Λ, that is, F , consists of bounded nondecreasing

functions in L2 over [0, τ ].

(C4) The parameter space of βj , that is,Mj , is bounded and convex in L2([0, τ ])

for each j = 1, . . . , p2. Each component of the true value of β(t), denoted

by β0j(t), for j = 1, . . . , p2, is continuously rth differentiable in [0, τ ], for

r + 1 ≤ l.

(C5) The parameter space of γ, that is, A, is bounded and convex in Rp1 .

(C6) The covariate vector V(t) =
(
WT (t),ZT (t)

)T
is uniformly bounded over

[0, τ ] with the distribution µV .

(C7) Given V(t), for t ∈ [0, τ ], C and N are independent. Futhermore, with

probability one,

inf
V(t),t∈[0,τ ]

Pr (C ≥ τ |V(t) = v(t), t ∈ [0, τ ])

= inf
V(t),t∈[0,τ ]

Pr (C = τ |V(t) = v(t), t ∈ [0, τ ]) > 0.

(C8) If γTW(t) + βT (t)Z(t) ≡ 0 for t ∈ [0, τ ] with probability one for some γ

and β, then γ = 0 and β(t) = 0 for t ∈ [0, τ ] with probability one.

(C9) The random functionM0 (V) =
∫
N(t) log (N(t)) dH(t) satisfies E[M0 (V)]

<∞.

(C10) E [exp (cN(t))] is bounded in [0, τ ] for some constant c > 0.

(C11) The true baseline mean function Λ0 is differentiable in [τ0, τ ]. Moreover,

the lower and upper bounds of its first-order derivative are positive and

finite on [τ0, τ ].
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(C12) There exist η1 ∈ (0, 1) such that aTVar (V(U)|U) a ≥ η1a
TE(V(U)VT (U)|

U)a, a.s. for all a ∈ Rp1+p2 , where (U,V) has distribution ν1/ν1 (R+ × V),

where V is the support of V.

Note that conditions (C1) and (C7) are common in observation schemes

and similar to the combination of C8, C10, and C11 in Lu, Zhang and Huang

(2009). Condition (C2) comes from the conditions in Theorem 1 of Wellner and

Zhang (2007) and Theorem 1 of Lu, Zhang and Huang (2009), ensuring that Λ̂ is

bounded, and conditions (C6)–(C11) are common assumptions in semiparametric

estimation. Conditions (C2) and (C8) ensure the identifiability of the semipara-

metric model, and conditions (C9), (C10), and (C11) are technical assumptions,

similar to conditions C4, C10, and C12 in Wellner and Zhang (2007). Condition

(C12) is needed to prove the convergence rate and can be justified by arguments

similar to those in Wellner and Zhang (2007). Now, we are ready to establish the

asymptotic properties of the proposed estimator.

Theorem 1 (Consistency). Assume that the regularity conditions (C1)–(C9)

given above hold. Then, we have that d(ϑ̂n,ϑ0)→ 0 in probability as n→∞.

Note that the proof of the consistency does not rely on the continuity of

the baseline function Λ, but does require the differentiability of the time-varying

coefficients. This is because the B-spline approximation usually works well when

the true time-varying coefficient functions are smooth, to some degree. To derive

the convergence rate in the next theorem, we need condition (C11), to control

the smoothness of Λ, and condition (C12).

Theorem 2 (Rate of Convergence). Assume that the regularity conditions (C1)–

(C12) given above hold. Then, we have that

nmin{n(1−ν)/3,nrν}d
(
ϑ̂n,ϑ0

)
= Op (1) ,

with the optimal rate Op(n
−r/(3r+1)) achieved at ν = 1/ (1 + 3r).

Note that the order of the optimal rate n−r/(3r+1) is slower than n−r/(2r+1)

in Lu, Zhang and Huang (2009) because the nonparametric parameter Λ is essen-

tially estimated using a step function, whereas β(t) is estimated using B-splines.

Nevertheless, we can still derive the asymptotic distribution of γ̂ with the rate

of convergence n−1/2. The next theorem establishes the asymptotic normality of

θ̂n in a form similar to that of He et al. (2017).

Theorem 3 (Asymptotic Normality). Assume that the regularity conditions

(C1)–(C12) given above hold, and that (4r)−1 < ν < 2−1, with r > 1. Define
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H1 = {h1 : h1 ∈ A, ‖h1‖ ≤ 1}, H2 = {h2 : h2 ∈ M, each component of h2 is of

bounded total variation.}, and H3 = {h3 : h3 is a function with bounded total

variation in [0, τ ] and h3(0) = 0}. Then, for some (h1,h2, h3) ∈ H1 ×H2 ×H3,

we have that

√
n (γ̂ − γ0)T h1 +

√
n

∫ τ

0

(
β̂(t)− β0(t)

)T
dh2(t) +

√
n

∫ τ

0

(
Λ̂(t)− Λ0(t)

)
dh3(t)

→d N
(
0, σ2

)
,

where σ2 is given in the Supplementary Material.

Proofs of the above results are provided in the Supplementary Material.

These results suggest that one can asymptotically approximate the distribution

of γ̂ by the normal distribution. However, note that, similarly to He et al.

(2017), we cannot determine the explicit form of the asymptotic distribution

because the explicit forms of (h1,h2, h3) cannot be determined even though they

exist. To estimate the asymptotic covariance matrix of γ̂ and the pointwise

asymptotic variance of β̂(t) in t ∈ [0, τ ] or the covariance matrix of θ̂n, based

on the estimating equation (2.3) and by following Amorim et al. (2008) and Hu,

Sun and Wei (2003), we propose employing the robust sandwich-type estimator

Σ̂ = Â−1D̂Â−1. Here,

Â =
∂U(θn)

∂θn

∣∣∣∣
θn=θ̂n

= −
n∑
i=1

∫ τ

0
Yi(t)Ni(t)

{
S2(t; θ̂n)

S0(t; θ̂n)
−

(
S1(t; θ̂n)

S0(t; θ̂n)

)⊗2}
dHi(t),

and

D̂ =

n∑
i=1

[∫ τ

0
Yi(t)

(
Ni(t)− Λ̂(t, θ̂n) exp(θ̂n

T
Xi(t))

){
X(t)− X̄(t; θ̂n)

}
dHi(t)

]⊗2

.

It follows from the above that the asymptotic covariance matrix of γ̂ can be

estimated by the top-left p1 × p1 sub-matrix of Σ̂, denoted by Σ̂γ̂ . Furthermore,

because β̂j = BT
n (t)α̂j , the pointwise asymptotic variance of β̂j(t) for a given t

can be estimated by Ω̂j(t) = BT
n (t)Σ̂α̂jBn(t), where Σ̂α̂j denotes the diagonal

block sub-matrix of Σ̂ formed from the (p1 + (j − 1)p2 + 1)th to the (p1 + jp2)th

rows and columns, corresponding to the estimated covariance matrix of α̂j . The

numerical study in the next section suggests that the estimators above work well.

As an alternative, of course, one may estimate the asymptotic covariance matrix

of γ̂ using the bootstrap procedure, as shown in the next section, although it is

relatively more time consuming.
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4. A Simulation Study

In this section, we present the results obtained from an extensive simulation

study conducted to evaluate the finite-sample performance of the proposed esti-

mation procedure. In the study, we considered four covariates, two with constant

effects and two with time-varying effects. That is, p1 = p2 = 2. More specifi-

cally, we assumed that W1(t) and Z1(t) are time-dependent covariates given by

W1(t) = B11I(t ≤ V1) + B12I(t > V1) and Z1(t) = B21I(t ≤ V2) + B22I(t > V2),

where Bj1, Bj2, and Vj are generated independently from uniform distributions

over (0, 0.5), (0.5, 1), and (0, τ), with τ = 1, respectively, for j = 1, 2. Further-

more, W2(t) and Z2(t) are assumed to be time independent and are generated

independently from the uniform distribution over (0, 1).

Note that the covariates generated above are mutually independent. Cor-

responding to this, we also considered the situation where they are dependent.

Here, we first generated (L1, . . . , L6) from the multivariate normal distribution

with E[Lj ] = 1, for j = 1, . . . , 6, and cov(Lj , Lk) = 0.25 if j 6= k and 1 if

j = k, for j, k = 1, . . . , 6. Then, we generated W1(t) and Z1(t) as above, but

setting B11 = Φ (L1) /2, B12 = (Φ (L1) + Φ (L2)) /2, B21 = Φ (L3) /2, and B22 =

(Φ (L3) + Φ (L4)) /2, with V1 and V2 generated independently from the uniform

distribution over (0, τ). In addition, we set W2 = Φ (L5) /2 and Z2 = Φ (L6) /2.

For the regression parameters, we set γ1 = 0.5 and γ2 = 0.5 and considered two

setups for β(t):

Scenario 1 β1(t) = t and β2(t) = t2;

Scenario 2 β1(t) = (sin(4πt) + 4πt)/12 and β2(t) = (cos(4πt) + 4πt)/12.

To generate the panel count data, we first generated the observation times

ti,j from the non-homogeneous Poisson process with mean function 3t+4, and the

follow-up times Ci from the uniform distribution over (0.9τ , τ). Then, given the

covariates and the real observation times, the panel count data were generated by

Ni (ti,j) =
∑j

k=1N
∗
i (ti,k)−N∗i (ti,k−1), with ti,0 = 0, where N∗i (ti,k)−N∗i (ti,k−1)

follows the Poisson distribution with the mean

vi Λ0 (ti,k) e
(γTWi(ti,k)+βT (ti,j)Zi(ti,j))−viΛ0 (ti,j−1) e(γTWi(ti,j−1)+βT (ti,j−1)Zi(ti,j−1)),

given vi. Here, we set Λ0(t) = 2t+3 or Λ0(t) = (sin(4πt)+4πt)/2, and considered

two settings for vi. One is that vi = 1 for all i, meaning that Ni are Poisson

processes with the mean function Λ0(t) exp
{
γTWi(t) + βT (t)Zi(t)

}
. The other

is that vi follows a gamma distribution with mean one and variance σ2 = 1,

meaning that Ni(t) are mixed Poisson processes with the same mean function as
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Table 1. Simulation results of estimating γ1 and γ2, with Λ0(t) = 2t+ 3.

Poisson Robust Bootstrap
Model Para Bias SE ESE CP ESE CP

Scenario 1 for β(t)
Independent Covariates

Yes γ1 -0.0002 0.0518 0.0479 0.942 0.0494 0.949
γ2 -0.0016 0.0529 0.0477 0.928 0.0494 0.935

No γ1 0.0079 0.2321 0.2078 0.919 0.2144 0.929
γ2 0.0004 0.2327 0.2086 0.917 0.2157 0.921

Dependent Covariates
Yes γ1 -0.0002 0.0635 0.0479 0.928 0.0654 0.936

γ2 -0.0023 0.1567 0.1426 0.922 0.1478 0.929
No γ1 0.0030 0.2680 0.2466 0.931 0.2537 0.941

γ2 0.0003 0.5968 0.5514 0.934 0.5724 0.945
Scenario 2 for β(t)

Independent Covariates
Yes γ1 -0.0002 0.0486 0.0449 0.920 0.0463 0.926

γ2 -0.0000 0.0495 0.0446 0.918 0.0460 0.924
No γ1 -0.0144 0.2238 0.2079 0.928 0.2145 0.944

γ2 0.0082 0.2240 0.2080 0.920 0.2146 0.928
Dependent Covariates

Yes γ1 -0.0023 0.0654 0.0607 0.927 0.0624 0.938
γ2 0.0011 0.1475 0.1265 0.920 0.1416 0.932

No γ1 -0.0020 0.2602 0.2460 0.930 0.2539 0.931
γ2 0.0064 0.6156 0.5444 0.921 0.5650 0.929

above. The results given below are based on n = 300 with 1,000 replications.

Table 1 presents the results of estimating two time-independent regression

coefficients γ1 and γ2, with Λ0(t) = 2t + 3. Here, we used cubic B-splines with

three internal knots equally spaced on (0, τ). The results include the empirical

bias (BIAS), given by the average of the estimates minus the true value, the

sampling standard deviation (SE), the average of the estimated standard errors

(ESE), and the 95% empirical coverage probability (CP). Note that for the vari-

ance estimation, in addition to the robust estimation discussed above, we also

applied a simple bootstrap procedure with 200 bootstrapped samples for compar-

ison. The results suggest that the proposed estimators seem to be unbiased and

the variance estimations appear to be appropriate. In addition, the results on

CP indicate that the normal approximation to the distribution of the proposed

estimator γ̂ seems to be reasonable.

Figure 1 gives the averages of the estimated β1(t) and β2(t) where Ni(t)

is a Poisson process with independent covariates over 1,000 equal-spaced grid

points on the time axis. For comparison, the true function is also included in
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Table 2. Simulation results of estimating γ1 and γ2, with Λ0(t) = (sin(4πt) + 4πt)/2.

Poisson Robust Bootstrap
Model Para Bias SE ESE CP ESE CP

Scenario 1 for β(t)
Independent Covariates

Yes γ1 -0.0009 0.0521 0.0485 0.933 0.0501 0.941
γ2 0.0012 0.0531 0.0485 0.925 0.0501 0.929

No γ1 -0.0023 0.2484 0.2217 0.919 0.2289 0.928
γ2 -0.0028 0.2508 0.2212 0.926 0.2291 0.932

Dependent Covariates
Yes γ1 0.0016 0.0659 0.0631 0.931 0.0651 0.939

γ2 0.0013 0.1490 0.1372 0.923 0.1420 0.936
No γ1 0.0035 0.2766 0.2573 0.928 0.2659 0.938

γ2 0.0027 0.6337 0.5610 0.916 0.5852 0.927
Scenario 2 for β(t)

Independent Covariates
Yes γ1 -0.0002 0.0476 0.0449 0.931 0.0501 0.950

γ2 -0.0001 0.0489 0.0449 0.922 0.0501 0.943
No γ1 0.0104 0.2505 0.2199 0.918 0.2270 0.920

γ2 -0.0157 0.2442 0.2200 0.921 0.2273 0.923
Dependent Covariates

Yes γ1 0.0009 0.0662 0.0608 0.929 0.0628 0.932
γ2 -0.0005 0.1436 0.1344 0.942 0.1390 0.941

No γ1 -0.0009 0.2750 0.2559 0.930 0.2641 0.940
γ2 -0.0166 0.6369 0.5594 0.923 0.5825 0.930

the figure; once again, the proposed procedure seems to yield unbiased estimates.

Furthermore, Figure 1 shows the respective averages of the estimated pointwise

standard errors by the robust and bootstrap methods, along with the pointwise

empirical standard errors of β(t). Again they indicate that the proposed method

appears to give reasonable variance estimates. The same can be seen from Figure

2, which provides the results of estimating β1(t) and β2(t), as in Figure 1, except

for a mixed Poisson process with independent covariates.

Table 2 provides the results of estimating two time-independent regression

coefficients γ1 and γ2, obtained under the same setup as Table 1, except that

Λ0(t) = (sin(4πt) + 4πt)/2. The corresponding results of estimating β1(t) and

β2(t) are given in Figures 3–4. It is apparent that the conclusions are similar.

Futhermore, the same is true for the dependent covariates, for which the results

are provided in the Supplementary Material, owing to the space limitations. We

also considered other setups, including different degrees of B-spline functions,

different numbers of interior knots, and other types of covariates, and obtained

similar results.
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Figure 1. Simulation results of estimating β1(t) and β2(t) under the Poisson process with
Λ0(t) = 2t+ 3 and independent covariates. (a1) to (a4): results of estimating β1(t) and

β2(t); (a5) to (a8): results on variance estimation of β̂1(t) and β̂2(t).

5. Analysis of the CHNS

In this section, we apply the proposed methodology to data from the CHNS,

an international collaborative project between the Carolina Population Center at

the University of North Carolina at Chapel Hill and the National Institute for

Nutrition and Health at the Chinese Center for Disease Control and Prevention.

The survey took place over a seven-day period using a multistage, random clus-

ter process to draw a sample of over 11,000 households, representing over 42,000

individuals participating in 15 provinces and municipal cities that vary substan-
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Figure 2. Simulation results of estimating β1(t) and β2(t) under the nonPoisson process
with Λ0(t) = 2t+ 3 and independent covariates. (a1) to (a4): results of estimating β1(t)

and β2(t); (a5) to (a8): results on variance estimation of β̂1(t) and β̂2(t).

tially in terms of geography, economic development, public resources, and health

indicators. Villages and townships within counties and urban/suburban neigh-

borhoods within cities were selected randomly.

Among others, one objective of the CHNS is to assess the relationship be-

tween the pregnancy process of the female participants and various factors. Fur-

thermore, owing to the nature of the study, only panel count data are available for

the pregnancy occurrence process. For the analysis below, we focus on the 2,537

female participants with complete information on the following four covariates:
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Figure 3. Simulation results of estimating β1(t) and β2(t) under the Poisson process with
Λ0(t) = (sin(4πt)+4πt)/2 and independent covariates. (a1) to (a4): results of estimating

β1(t) and β2(t); (a5) to (a8): results on variance estimation of β̂1(t) and β̂2(t).

whether the mother came from a urban or a rural area (0: urban, 1: rural), the

average monthly wage in the previous year, the completed formal education level

in regular school (0: No school; 1: Primary school; 2: Middle school; 3: Techni-

cal school; 4: College)), and the current health status (1: Excellent, 2: Good, 3:

Fair, 4: Poor). Table 3 gives a descriptive summary of the four covariates at the

baseline, and the range of the pregnancies is from one to eight.

To apply the proposed estimation procedure, we first assume that all four

covariates have time-varying effects; Figure 5 presents the estimated covariate
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Figure 4. Simulation results of estimating β1(t) and β2(t) under the nonPoisson process
with Λ0(t) = (sin(4πt) + 4πt)/2 and independent covariates. (a1) to (a4): results of

estimating β1(t) and β2(t); (a5) to (a8): results on variance estimation of β̂1(t) and

β̂2(t).

effects with three interior knots for the B-splines. The results suggest that the

mother’s location seems to have a significantly positive relationship with the fer-

tility occurrence rate and the effect magnitude appears to increase with a moth-

ers’ age. In other words, mothers from rural areas are more likely to have more

children than those from urban areas, and the differences between the number of

pregnancies increases as the women get older. In contrast, the mother’s education

level seems to have a significantly negative effect on the number of pregnancies,
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indicating that well-educated mothers tend to have fewer children, and the effect

increases as the women become older. Furthermore, it seems that the average

monthly wage and mother’s health status have no significant time-varying effects,

or might only have constant effects on the pregnancy process.

To further investigate the above estimated effects, we repeat the analysis by

adding the interaction effect between location and education level; the results

are presented in Figure 6. The results are similar for the four individual factors,

suggesting that there are significantly negative interaction effects for mid-aged

mothers. In other words, the education level effect magnitude increases faster for

female subjects in rural areas. Note that one may not want to pay much attention

to the estimated effects after age 60, owing to the sparsity of the observed data.

Based on the results above, we again apply the proposed estimation proce-

dure, but assume that only the location, the education level, and their interaction

may have time-varying effects. In other words, it is supposed that the average

monthly wage and health status have only constant effects on the pregnancy

process. Table 4 gives the estimated covariate effects for the average monthly

wage and current health status with three, five, or seven interior knots for the

B-splines. The estimated time-dependent effects based on three interior knots

are presented in Figure 7; the results with five or seven interior knots are similar,

and are provided in the Supplementary Material. One can see from Table 4 that

a mother’s average monthly wage is significantly negatively correlated with her

fertility rate, and mothers with lower income tend to have more children. In

contrast, the health status level has positive effects on the fertility rate, and all

results are consistent with respect to the number of interior knots. Finally, the

results given in Figure 7 are similar to those given in Figure 6, and again indicate

the existence of the time-varying effect and the necessity of using the proposed

method.

6. Conclusion

In this paper, we have discussed the regression analysis of panel count data in

the presence of both time-dependent covariates and time-varying covariate effects.

We developed a spline-based estimating equation procedure and established the

asymptotic properties of the proposed estimators. An extensive numerical study

indicated that the proposed method works well in practical situations. In ad-

dition, the usefulness and necessity of the proposed estimation procedure was

illustrated by applying it to data from the CHNS, identifying some time-varying

covariate effects.
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Table 3. Summary of the four covariates at the baseline for the CHNS.

Covariate Mean ± SD Median Range
Average Monthly Wage

1,635.13± 3,741.61 800 8− 99,999
Last Year (Yuan)

Category Count Percentage
Location

Rural 1,366 53.84%
Urban 1,171 46.16%

Education Level
0: No school 89 3.51%
1: Primary school 359 14.15%
2: Middle school 1,373 54.12%
3: Technical school 330 13.01%
4: College 386 15.21%

Current Health Status
1:Excellent 410 16.16%
2:Good 1,351 54.25%
3:Fair 713 28.10%
4:Poor 63 2.48%

Table 4. The estimated time-constant effects of the average monthly wage (wage) and
the current health status (health) for the CHNS.

# of interior knots Covariate Estimated effect SD 95% CI
3 wage -0.0301 0.0152 (-0.0598, -0.0003)

health 0.0287 0.0111 (0.0069, 0.0505)
5 wage -0.0300 0.0150 (-0.0595, -0.0004)

health 0.0292 0.0111 (0.0074, 0.0510)
7 wage -0.0300 0.0150 (-0.0590, -0.0004)

health 0.0290 0.0111 (0.0072, 0.0508)

There exist several directions for future research. First, in the proposed

method, we have assumed that the observation process does not depend on co-

variates and is also independent of the underlying recurrent event process of

interest. In practice, this may not be true (Sun and Zhao (2013)). To develop a

valid estimation procedure, one may need to model the three processes together.

A second assumption is that the underlying recurrent event process follows the

proportional mean model, meaning that the mean functions associated with any

two sets of covariate values are proportional over time. Sometimes, this may be

too restrictive (Lin, Wei and Ying (2001)) and as such, one may want to consider

other models, such as the class of semiparametric transformation mean models,

when developing estimation procedures (Li, Sun and Sun (2010)).

In the proposed estimation procedure, we also assumed that one knows which
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Figure 5. Estimated time-varying effects of all four covariates (solid curves) and corre-
sponding pointwise 95% confidence intervals (ribbons).

covariates have time-varying effects or time-constant effects. In practice, however,

this is usually unknown. A simple approach is to try different combinations, as

shown in the application above. On the other hand, it would be useful to develop

a data-driven procedure to separate the two types of covariates. In practice, a

common problem of interest is hypothesis testing about β0 (·). Theoretically, one

could use the results given in Theorem 3 to develop a test procedure. However,

this may not be straightforward because we cannot derive the explicit relationship

between h2 and h1, as well as that between h2 and h3. In other words, we

cannot construct a variance estimation for β(t) based on Theorem 3 directly. An

alternative to this is to apply the bootstrap procedure.

Supplementary Material

The online Supplementary Material includes extra simulation results, addi-

tional real-data analysis results, and proofs of the asymptotic theorems.



REGRESSION ANALYSIS OF PANEL COUNT DATA 979

−1.0

−0.5

0.0

0.5

1.0

20 40 60

Age

β(
t)

Effect of Location

−1.0

−0.5

0.0

0.5

20 40 60

Age

β(
t)

Effect of Average
 Monthly Wage

−0.50

−0.25

0.00

0.25

20 40 60

Age

β(
t)

Effect of Education Level

−0.8

−0.4

0.0

20 40 60

Age

β(
t)

Effect of Current
 Health Status

−0.50

−0.25

0.00

0.25

0.50

20 40 60

Age

β(
t)

Effect of Interaction between
 Location and Education Level

Figure 6. Estimated time-varying effects of all four covariates and the interaction (solid
curves) between them, and corresponding pointwise 95% confidence intervals (ribbons).
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